]> git.sesse.net Git - x264/blob - encoder/macroblock.c
Faster 2x2 chroma DC dequant
[x264] / encoder / macroblock.c
1 /*****************************************************************************
2  * macroblock.c: h264 encoder library
3  *****************************************************************************
4  * Copyright (C) 2003-2008 x264 project
5  *
6  * Authors: Laurent Aimar <fenrir@via.ecp.fr>
7  *          Loren Merritt <lorenm@u.washington.edu>
8  *          Fiona Glaser <fiona@x264.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
23  *****************************************************************************/
24
25 #include "common/common.h"
26 #include "macroblock.h"
27
28 /* These chroma DC functions don't have assembly versions and are only used here. */
29
30 #define ZIG(i,y,x) level[i] = dct[x*2+y];
31 static inline void zigzag_scan_2x2_dc( int16_t level[4], int16_t dct[4] )
32 {
33     ZIG(0,0,0)
34     ZIG(1,0,1)
35     ZIG(2,1,0)
36     ZIG(3,1,1)
37 }
38 #undef ZIG
39
40 #define IDCT_DEQUANT_START \
41     int d0 = dct[0] + dct[1]; \
42     int d1 = dct[2] + dct[3]; \
43     int d2 = dct[0] - dct[1]; \
44     int d3 = dct[2] - dct[3]; \
45     int dmf = dequant_mf[i_qp%6][0] << i_qp/6;
46
47 static inline void idct_dequant_2x2_dc( int16_t dct[4], int16_t dct4x4[4][16], int dequant_mf[6][16], int i_qp )
48 {
49     IDCT_DEQUANT_START
50     dct4x4[0][0] = (d0 + d1) * dmf >> 5;
51     dct4x4[1][0] = (d0 - d1) * dmf >> 5;
52     dct4x4[2][0] = (d2 + d3) * dmf >> 5;
53     dct4x4[3][0] = (d2 - d3) * dmf >> 5;
54 }
55
56 static inline void idct_dequant_2x2_dconly( int16_t out[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
57 {
58     IDCT_DEQUANT_START
59     out[0] = (d0 + d1) * dmf >> 5;
60     out[1] = (d0 - d1) * dmf >> 5;
61     out[2] = (d2 + d3) * dmf >> 5;
62     out[3] = (d2 - d3) * dmf >> 5;
63 }
64
65 static inline void dct2x2dc( int16_t d[4], int16_t dct4x4[4][16] )
66 {
67     int d0 = dct4x4[0][0] + dct4x4[1][0];
68     int d1 = dct4x4[2][0] + dct4x4[3][0];
69     int d2 = dct4x4[0][0] - dct4x4[1][0];
70     int d3 = dct4x4[2][0] - dct4x4[3][0];
71     d[0] = d0 + d1;
72     d[2] = d2 + d3;
73     d[1] = d0 - d1;
74     d[3] = d2 - d3;
75     dct4x4[0][0] = 0;
76     dct4x4[1][0] = 0;
77     dct4x4[2][0] = 0;
78     dct4x4[3][0] = 0;
79 }
80
81 static inline void dct2x2dc_dconly( int16_t d[4] )
82 {
83     int d0 = d[0] + d[1];
84     int d1 = d[2] + d[3];
85     int d2 = d[0] - d[1];
86     int d3 = d[2] - d[3];
87     d[0] = d0 + d1;
88     d[2] = d2 + d3;
89     d[1] = d0 - d1;
90     d[3] = d2 - d3;
91 }
92
93 static ALWAYS_INLINE int x264_quant_4x4( x264_t *h, int16_t dct[16], int i_qp, int i_ctxBlockCat, int b_intra, int idx )
94 {
95     int i_quant_cat = b_intra ? CQM_4IY : CQM_4PY;
96     if( h->mb.b_trellis )
97         return x264_quant_4x4_trellis( h, dct, i_quant_cat, i_qp, i_ctxBlockCat, b_intra, 0, idx );
98     else
99         return h->quantf.quant_4x4( dct, h->quant4_mf[i_quant_cat][i_qp], h->quant4_bias[i_quant_cat][i_qp] );
100 }
101
102 static ALWAYS_INLINE int x264_quant_8x8( x264_t *h, int16_t dct[64], int i_qp, int b_intra, int idx )
103 {
104     int i_quant_cat = b_intra ? CQM_8IY : CQM_8PY;
105     if( h->mb.b_trellis )
106         return x264_quant_8x8_trellis( h, dct, i_quant_cat, i_qp, b_intra, idx );
107     else
108         return h->quantf.quant_8x8( dct, h->quant8_mf[i_quant_cat][i_qp], h->quant8_bias[i_quant_cat][i_qp] );
109 }
110
111 /* All encoding functions must output the correct CBP and NNZ values.
112  * The entropy coding functions will check CBP first, then NNZ, before
113  * actually reading the DCT coefficients.  NNZ still must be correct even
114  * if CBP is zero because of the use of NNZ values for context selection.
115  * "NNZ" need only be 0 or 1 rather than the exact coefficient count because
116  * that is only needed in CAVLC, and will be calculated by CAVLC's residual
117  * coding and stored as necessary. */
118
119 /* This means that decimation can be done merely by adjusting the CBP and NNZ
120  * rather than memsetting the coefficients. */
121
122 void x264_mb_encode_i4x4( x264_t *h, int idx, int i_qp )
123 {
124     int nz;
125     uint8_t *p_src = &h->mb.pic.p_fenc[0][block_idx_xy_fenc[idx]];
126     uint8_t *p_dst = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[idx]];
127     ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
128
129     if( h->mb.b_lossless )
130     {
131         nz = h->zigzagf.sub_4x4( h->dct.luma4x4[idx], p_src, p_dst );
132         h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
133         h->mb.i_cbp_luma |= nz<<(idx>>2);
134         return;
135     }
136
137     h->dctf.sub4x4_dct( dct4x4, p_src, p_dst );
138
139     nz = x264_quant_4x4( h, dct4x4, i_qp, DCT_LUMA_4x4, 1, idx );
140     h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
141     if( nz )
142     {
143         h->mb.i_cbp_luma |= 1<<(idx>>2);
144         h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4 );
145         h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4IY], i_qp );
146         h->dctf.add4x4_idct( p_dst, dct4x4 );
147     }
148 }
149
150 #define STORE_8x8_NNZ(idx,nz)\
151 {\
152     M16( &h->mb.cache.non_zero_count[x264_scan8[idx*4+0]] ) = nz * 0x0101;\
153     M16( &h->mb.cache.non_zero_count[x264_scan8[idx*4+2]] ) = nz * 0x0101;\
154 }
155
156 #define CLEAR_16x16_NNZ \
157 {\
158     M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = 0;\
159     M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = 0;\
160     M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = 0;\
161     M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = 0;\
162 }
163
164 void x264_mb_encode_i8x8( x264_t *h, int idx, int i_qp )
165 {
166     int x = 8 * (idx&1);
167     int y = 8 * (idx>>1);
168     int nz;
169     uint8_t *p_src = &h->mb.pic.p_fenc[0][x+y*FENC_STRIDE];
170     uint8_t *p_dst = &h->mb.pic.p_fdec[0][x+y*FDEC_STRIDE];
171     ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
172
173     if( h->mb.b_lossless )
174     {
175         nz = h->zigzagf.sub_8x8( h->dct.luma8x8[idx], p_src, p_dst );
176         STORE_8x8_NNZ(idx,nz);
177         h->mb.i_cbp_luma |= nz<<idx;
178         return;
179     }
180
181     h->dctf.sub8x8_dct8( dct8x8, p_src, p_dst );
182
183     nz = x264_quant_8x8( h, dct8x8, i_qp, 1, idx );
184     if( nz )
185     {
186         h->mb.i_cbp_luma |= 1<<idx;
187         h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8 );
188         h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8IY], i_qp );
189         h->dctf.add8x8_idct8( p_dst, dct8x8 );
190         STORE_8x8_NNZ(idx,1);
191     }
192     else
193         STORE_8x8_NNZ(idx,0);
194 }
195
196 static void x264_mb_encode_i16x16( x264_t *h, int i_qp )
197 {
198     uint8_t  *p_src = h->mb.pic.p_fenc[0];
199     uint8_t  *p_dst = h->mb.pic.p_fdec[0];
200
201     ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
202     ALIGNED_ARRAY_16( int16_t, dct_dc4x4,[16] );
203
204     int i, nz;
205     int decimate_score = h->mb.b_dct_decimate ? 0 : 9;
206
207     if( h->mb.b_lossless )
208     {
209         for( i = 0; i < 16; i++ )
210         {
211             int oe = block_idx_xy_fenc[i];
212             int od = block_idx_xy_fdec[i];
213             nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[i], p_src+oe, p_dst+od, &dct_dc4x4[block_idx_yx_1d[i]] );
214             h->mb.cache.non_zero_count[x264_scan8[i]] = nz;
215             h->mb.i_cbp_luma |= nz;
216         }
217         h->mb.i_cbp_luma *= 0xf;
218         h->mb.cache.non_zero_count[x264_scan8[24]] = array_non_zero( dct_dc4x4 );
219         h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct_dc4x4 );
220         return;
221     }
222
223     h->dctf.sub16x16_dct( dct4x4, p_src, p_dst );
224
225     for( i = 0; i < 16; i++ )
226     {
227         /* copy dc coeff */
228         dct_dc4x4[block_idx_xy_1d[i]] = dct4x4[i][0];
229         dct4x4[i][0] = 0;
230
231         /* quant/scan/dequant */
232         nz = x264_quant_4x4( h, dct4x4[i], i_qp, DCT_LUMA_AC, 1, i );
233         h->mb.cache.non_zero_count[x264_scan8[i]] = nz;
234         if( nz )
235         {
236             h->zigzagf.scan_4x4( h->dct.luma4x4[i], dct4x4[i] );
237             h->quantf.dequant_4x4( dct4x4[i], h->dequant4_mf[CQM_4IY], i_qp );
238             if( decimate_score < 6 ) decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[i] );
239             h->mb.i_cbp_luma = 0xf;
240         }
241     }
242
243     /* Writing the 16 CBFs in an i16x16 block is quite costly, so decimation can save many bits. */
244     /* More useful with CAVLC, but still useful with CABAC. */
245     if( decimate_score < 6 )
246     {
247         h->mb.i_cbp_luma = 0;
248         CLEAR_16x16_NNZ
249     }
250
251     h->dctf.dct4x4dc( dct_dc4x4 );
252     if( h->mb.b_trellis )
253         nz = x264_quant_dc_trellis( h, dct_dc4x4, CQM_4IY, i_qp, DCT_LUMA_DC, 1, 0 );
254     else
255         nz = h->quantf.quant_4x4_dc( dct_dc4x4, h->quant4_mf[CQM_4IY][i_qp][0]>>1, h->quant4_bias[CQM_4IY][i_qp][0]<<1 );
256
257     h->mb.cache.non_zero_count[x264_scan8[24]] = nz;
258     if( nz )
259     {
260         h->zigzagf.scan_4x4( h->dct.luma16x16_dc, dct_dc4x4 );
261
262         /* output samples to fdec */
263         h->dctf.idct4x4dc( dct_dc4x4 );
264         h->quantf.dequant_4x4_dc( dct_dc4x4, h->dequant4_mf[CQM_4IY], i_qp );  /* XXX not inversed */
265         if( h->mb.i_cbp_luma )
266             for( i = 0; i < 16; i++ )
267                 dct4x4[i][0] = dct_dc4x4[block_idx_xy_1d[i]];
268     }
269
270     /* put pixels to fdec */
271     if( h->mb.i_cbp_luma )
272         h->dctf.add16x16_idct( p_dst, dct4x4 );
273     else if( nz )
274         h->dctf.add16x16_idct_dc( p_dst, dct_dc4x4 );
275 }
276
277 static inline int idct_dequant_round_2x2_dc( int16_t ref[4], int16_t dct[4], int dequant_mf[6][16], int i_qp )
278 {
279     int16_t out[4];
280     idct_dequant_2x2_dconly( out, dct, dequant_mf, i_qp );
281     return ((ref[0] ^ (out[0]+32))
282           | (ref[1] ^ (out[1]+32))
283           | (ref[2] ^ (out[2]+32))
284           | (ref[3] ^ (out[3]+32))) >> 6;
285 }
286
287 /* Round down coefficients losslessly in DC-only chroma blocks.
288  * Unlike luma blocks, this can't be done with a lookup table or
289  * other shortcut technique because of the interdependencies
290  * between the coefficients due to the chroma DC transform. */
291 static inline int x264_mb_optimize_chroma_dc( x264_t *h, int b_inter, int i_qp, int16_t dct2x2[4] )
292 {
293     int16_t dct2x2_orig[4];
294     int coeff;
295     int nz = 0;
296
297     /* If the QP is too high, there's no benefit to rounding optimization. */
298     if( h->dequant4_mf[CQM_4IC + b_inter][i_qp%6][0] << (i_qp/6) > 32*64 )
299         return 1;
300
301     idct_dequant_2x2_dconly( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
302     dct2x2_orig[0] += 32;
303     dct2x2_orig[1] += 32;
304     dct2x2_orig[2] += 32;
305     dct2x2_orig[3] += 32;
306
307     /* If the DC coefficients already round to zero, terminate early. */
308     if( !((dct2x2_orig[0]|dct2x2_orig[1]|dct2x2_orig[2]|dct2x2_orig[3])>>6) )
309         return 0;
310
311     /* Start with the highest frequency coefficient... is this the best option? */
312     for( coeff = 3; coeff >= 0; coeff-- )
313     {
314         int sign = dct2x2[coeff] < 0 ? -1 : 1;
315         int level = dct2x2[coeff];
316
317         if( !level )
318             continue;
319
320         while( level )
321         {
322             dct2x2[coeff] = level - sign;
323             if( idct_dequant_round_2x2_dc( dct2x2_orig, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp ) )
324                 break;
325             level -= sign;
326         }
327
328         nz |= level;
329         dct2x2[coeff] = level;
330     }
331
332     return !!nz;
333 }
334
335 void x264_mb_encode_8x8_chroma( x264_t *h, int b_inter, int i_qp )
336 {
337     int i, ch, nz, nz_dc;
338     int b_decimate = b_inter && h->mb.b_dct_decimate;
339     ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
340     h->mb.i_cbp_chroma = 0;
341
342     /* Early termination: check variance of chroma residual before encoding.
343      * Don't bother trying early termination at low QPs.
344      * Values are experimentally derived. */
345     if( b_decimate && i_qp >= (h->mb.b_trellis ? 12 : 18) )
346     {
347         int thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
348         int ssd[2];
349         int score  = h->pixf.var2_8x8( h->mb.pic.p_fenc[1], FENC_STRIDE, h->mb.pic.p_fdec[1], FDEC_STRIDE, &ssd[0] );
350             score += h->pixf.var2_8x8( h->mb.pic.p_fenc[2], FENC_STRIDE, h->mb.pic.p_fdec[2], FDEC_STRIDE, &ssd[1] );
351         if( score < thresh*4 )
352         {
353             h->mb.cache.non_zero_count[x264_scan8[16]] = 0;
354             h->mb.cache.non_zero_count[x264_scan8[17]] = 0;
355             h->mb.cache.non_zero_count[x264_scan8[18]] = 0;
356             h->mb.cache.non_zero_count[x264_scan8[19]] = 0;
357             h->mb.cache.non_zero_count[x264_scan8[20]] = 0;
358             h->mb.cache.non_zero_count[x264_scan8[21]] = 0;
359             h->mb.cache.non_zero_count[x264_scan8[22]] = 0;
360             h->mb.cache.non_zero_count[x264_scan8[23]] = 0;
361             h->mb.cache.non_zero_count[x264_scan8[25]] = 0;
362             h->mb.cache.non_zero_count[x264_scan8[26]] = 0;
363             for( ch = 0; ch < 2; ch++ )
364             {
365                 if( ssd[ch] > thresh )
366                 {
367                     h->dctf.sub8x8_dct_dc( dct2x2, h->mb.pic.p_fenc[1+ch], h->mb.pic.p_fdec[1+ch] );
368                     dct2x2dc_dconly( dct2x2 );
369                     if( h->mb.b_trellis )
370                         nz_dc = x264_quant_dc_trellis( h, dct2x2, CQM_4IC+b_inter, i_qp, DCT_CHROMA_DC, !b_inter, 1 );
371                     else
372                         nz_dc = h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4IC+b_inter][i_qp][0]>>1, h->quant4_bias[CQM_4IC+b_inter][i_qp][0]<<
373     1 );
374
375                     if( nz_dc )
376                     {
377                         if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
378                             continue;
379                         h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 1;
380                         zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
381                         idct_dequant_2x2_dconly( dct2x2, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
382                         h->dctf.add8x8_idct_dc( h->mb.pic.p_fdec[1+ch], dct2x2 );
383                         h->mb.i_cbp_chroma = 1;
384                     }
385                 }
386             }
387             return;
388         }
389     }
390
391     for( ch = 0; ch < 2; ch++ )
392     {
393         uint8_t  *p_src = h->mb.pic.p_fenc[1+ch];
394         uint8_t  *p_dst = h->mb.pic.p_fdec[1+ch];
395         int i_decimate_score = 0;
396         int nz_ac = 0;
397
398         ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
399
400         if( h->mb.b_lossless )
401         {
402             for( i = 0; i < 4; i++ )
403             {
404                 int oe = block_idx_x[i]*4 + block_idx_y[i]*4*FENC_STRIDE;
405                 int od = block_idx_x[i]*4 + block_idx_y[i]*4*FDEC_STRIDE;
406                 nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i+ch*4], p_src+oe, p_dst+od, &h->dct.chroma_dc[ch][i] );
407                 h->mb.cache.non_zero_count[x264_scan8[16+i+ch*4]] = nz;
408                 h->mb.i_cbp_chroma |= nz;
409             }
410             h->mb.cache.non_zero_count[x264_scan8[25]+ch] = array_non_zero( h->dct.chroma_dc[ch] );
411             continue;
412         }
413
414         h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
415         dct2x2dc( dct2x2, dct4x4 );
416         /* calculate dct coeffs */
417         for( i = 0; i < 4; i++ )
418         {
419             if( h->mb.b_trellis )
420                 nz = x264_quant_4x4_trellis( h, dct4x4[i], CQM_4IC+b_inter, i_qp, DCT_CHROMA_AC, !b_inter, 1, 0 );
421             else
422                 nz = h->quantf.quant_4x4( dct4x4[i], h->quant4_mf[CQM_4IC+b_inter][i_qp], h->quant4_bias[CQM_4IC+b_inter][i_qp] );
423             h->mb.cache.non_zero_count[x264_scan8[16+i+ch*4]] = nz;
424             if( nz )
425             {
426                 nz_ac = 1;
427                 h->zigzagf.scan_4x4( h->dct.luma4x4[16+i+ch*4], dct4x4[i] );
428                 h->quantf.dequant_4x4( dct4x4[i], h->dequant4_mf[CQM_4IC + b_inter], i_qp );
429                 if( b_decimate )
430                     i_decimate_score += h->quantf.decimate_score15( h->dct.luma4x4[16+i+ch*4] );
431             }
432         }
433
434         if( h->mb.b_trellis )
435             nz_dc = x264_quant_dc_trellis( h, dct2x2, CQM_4IC+b_inter, i_qp, DCT_CHROMA_DC, !b_inter, 1 );
436         else
437             nz_dc = h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4IC+b_inter][i_qp][0]>>1, h->quant4_bias[CQM_4IC+b_inter][i_qp][0]<<1 );
438
439         h->mb.cache.non_zero_count[x264_scan8[25]+ch] = nz_dc;
440
441         if( (b_decimate && i_decimate_score < 7) || !nz_ac )
442         {
443             /* Decimate the block */
444             h->mb.cache.non_zero_count[x264_scan8[16+0]+24*ch] = 0;
445             h->mb.cache.non_zero_count[x264_scan8[16+1]+24*ch] = 0;
446             h->mb.cache.non_zero_count[x264_scan8[16+2]+24*ch] = 0;
447             h->mb.cache.non_zero_count[x264_scan8[16+3]+24*ch] = 0;
448             if( !nz_dc ) /* Whole block is empty */
449                 continue;
450             if( !x264_mb_optimize_chroma_dc( h, b_inter, i_qp, dct2x2 ) )
451             {
452                 h->mb.cache.non_zero_count[x264_scan8[25]+ch] = 0;
453                 continue;
454             }
455             /* DC-only */
456             zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
457             idct_dequant_2x2_dconly( dct2x2, dct2x2, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
458             h->dctf.add8x8_idct_dc( p_dst, dct2x2 );
459         }
460         else
461         {
462             h->mb.i_cbp_chroma = 1;
463             if( nz_dc )
464             {
465                 zigzag_scan_2x2_dc( h->dct.chroma_dc[ch], dct2x2 );
466                 idct_dequant_2x2_dc( dct2x2, dct4x4, h->dequant4_mf[CQM_4IC + b_inter], i_qp );
467             }
468             h->dctf.add8x8_idct( p_dst, dct4x4 );
469         }
470     }
471
472     if( h->mb.i_cbp_chroma )
473         h->mb.i_cbp_chroma = 2;    /* dc+ac (we can't do only ac) */
474     else if( h->mb.cache.non_zero_count[x264_scan8[25]] |
475              h->mb.cache.non_zero_count[x264_scan8[26]] )
476         h->mb.i_cbp_chroma = 1;    /* dc only */
477 }
478
479 static void x264_macroblock_encode_skip( x264_t *h )
480 {
481     h->mb.i_cbp_luma = 0x00;
482     h->mb.i_cbp_chroma = 0x00;
483     memset( h->mb.cache.non_zero_count, 0, X264_SCAN8_SIZE );
484     /* store cbp */
485     h->mb.cbp[h->mb.i_mb_xy] = 0;
486 }
487
488 /*****************************************************************************
489  * x264_macroblock_encode_pskip:
490  *  Encode an already marked skip block
491  *****************************************************************************/
492 static void x264_macroblock_encode_pskip( x264_t *h )
493 {
494     const int mvx = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][0],
495                                 h->mb.mv_min[0], h->mb.mv_max[0] );
496     const int mvy = x264_clip3( h->mb.cache.mv[0][x264_scan8[0]][1],
497                                 h->mb.mv_min[1], h->mb.mv_max[1] );
498
499     /* don't do pskip motion compensation if it was already done in macroblock_analyse */
500     if( !h->mb.b_skip_mc )
501     {
502         h->mc.mc_luma( h->mb.pic.p_fdec[0],    FDEC_STRIDE,
503                        h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0],
504                        mvx, mvy, 16, 16, &h->sh.weight[0][0] );
505
506         h->mc.mc_chroma( h->mb.pic.p_fdec[1],       FDEC_STRIDE,
507                          h->mb.pic.p_fref[0][0][4], h->mb.pic.i_stride[1],
508                          mvx, mvy, 8, 8 );
509
510         if( h->sh.weight[0][1].weightfn )
511             h->sh.weight[0][1].weightfn[8>>2]( h->mb.pic.p_fdec[1], FDEC_STRIDE,
512                                                h->mb.pic.p_fdec[1], FDEC_STRIDE,
513                                                &h->sh.weight[0][1], 8 );
514
515         h->mc.mc_chroma( h->mb.pic.p_fdec[2],       FDEC_STRIDE,
516                          h->mb.pic.p_fref[0][0][5], h->mb.pic.i_stride[2],
517                          mvx, mvy, 8, 8 );
518
519         if( h->sh.weight[0][2].weightfn )
520             h->sh.weight[0][2].weightfn[8>>2]( h->mb.pic.p_fdec[2], FDEC_STRIDE,
521                                                h->mb.pic.p_fdec[2], FDEC_STRIDE,
522                                                &h->sh.weight[0][2], 8 );
523     }
524
525     x264_macroblock_encode_skip( h );
526 }
527
528 /*****************************************************************************
529  * Intra prediction for predictive lossless mode.
530  *****************************************************************************/
531
532 /* Note that these functions take a shortcut (mc.copy instead of actual pixel prediction) which assumes
533  * that the edge pixels of the reconstructed frame are the same as that of the source frame.  This means
534  * they will only work correctly if the neighboring blocks are losslessly coded.  In practice, this means
535  * lossless mode cannot be mixed with lossy mode within a frame. */
536 /* This can be resolved by explicitly copying the edge pixels after doing the mc.copy, but this doesn't
537  * need to be done unless we decide to allow mixing lossless and lossy compression. */
538
539 void x264_predict_lossless_8x8_chroma( x264_t *h, int i_mode )
540 {
541     int stride = h->fenc->i_stride[1] << h->mb.b_interlaced;
542     if( i_mode == I_PRED_CHROMA_V )
543     {
544         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-stride, stride, 8 );
545         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-stride, stride, 8 );
546     }
547     else if( i_mode == I_PRED_CHROMA_H )
548     {
549         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[1], FDEC_STRIDE, h->mb.pic.p_fenc_plane[1]-1, stride, 8 );
550         h->mc.copy[PIXEL_8x8]( h->mb.pic.p_fdec[2], FDEC_STRIDE, h->mb.pic.p_fenc_plane[2]-1, stride, 8 );
551     }
552     else
553     {
554         h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[1] );
555         h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[2] );
556     }
557 }
558
559 void x264_predict_lossless_4x4( x264_t *h, uint8_t *p_dst, int idx, int i_mode )
560 {
561     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
562     uint8_t *p_src = h->mb.pic.p_fenc_plane[0] + block_idx_x[idx]*4 + block_idx_y[idx]*4 * stride;
563
564     if( i_mode == I_PRED_4x4_V )
565         h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-stride, stride, 4 );
566     else if( i_mode == I_PRED_4x4_H )
567         h->mc.copy[PIXEL_4x4]( p_dst, FDEC_STRIDE, p_src-1, stride, 4 );
568     else
569         h->predict_4x4[i_mode]( p_dst );
570 }
571
572 void x264_predict_lossless_8x8( x264_t *h, uint8_t *p_dst, int idx, int i_mode, uint8_t edge[33] )
573 {
574     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
575     uint8_t *p_src = h->mb.pic.p_fenc_plane[0] + (idx&1)*8 + (idx>>1)*8*stride;
576
577     if( i_mode == I_PRED_8x8_V )
578         h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-stride, stride, 8 );
579     else if( i_mode == I_PRED_8x8_H )
580         h->mc.copy[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src-1, stride, 8 );
581     else
582         h->predict_8x8[i_mode]( p_dst, edge );
583 }
584
585 void x264_predict_lossless_16x16( x264_t *h, int i_mode )
586 {
587     int stride = h->fenc->i_stride[0] << h->mb.b_interlaced;
588     if( i_mode == I_PRED_16x16_V )
589         h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc_plane[0]-stride, stride, 16 );
590     else if( i_mode == I_PRED_16x16_H )
591         h->mc.copy_16x16_unaligned( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.p_fenc_plane[0]-1, stride, 16 );
592     else
593         h->predict_16x16[i_mode]( h->mb.pic.p_fdec[0] );
594 }
595
596 /*****************************************************************************
597  * x264_macroblock_encode:
598  *****************************************************************************/
599 void x264_macroblock_encode( x264_t *h )
600 {
601     int i_cbp_dc = 0;
602     int i_qp = h->mb.i_qp;
603     int b_decimate = h->mb.b_dct_decimate;
604     int b_force_no_skip = 0;
605     int i,idx,nz;
606     h->mb.i_cbp_luma = 0;
607     h->mb.cache.non_zero_count[x264_scan8[24]] = 0;
608
609     if( h->sh.b_mbaff
610         && h->mb.i_mb_xy == h->sh.i_first_mb + h->mb.i_mb_stride
611         && IS_SKIP(h->mb.type[h->sh.i_first_mb]) )
612     {
613         /* The first skip is predicted to be a frame mb pair.
614          * We don't yet support the aff part of mbaff, so force it to non-skip
615          * so that we can pick the aff flag. */
616         b_force_no_skip = 1;
617         if( IS_SKIP(h->mb.i_type) )
618         {
619             if( h->mb.i_type == P_SKIP )
620                 h->mb.i_type = P_L0;
621             else if( h->mb.i_type == B_SKIP )
622                 h->mb.i_type = B_DIRECT;
623         }
624     }
625
626     if( h->mb.i_type == P_SKIP )
627     {
628         /* A bit special */
629         x264_macroblock_encode_pskip( h );
630         return;
631     }
632     if( h->mb.i_type == B_SKIP )
633     {
634         /* don't do bskip motion compensation if it was already done in macroblock_analyse */
635         if( !h->mb.b_skip_mc )
636             x264_mb_mc( h );
637         x264_macroblock_encode_skip( h );
638         return;
639     }
640
641     if( h->mb.i_type == I_16x16 )
642     {
643         const int i_mode = h->mb.i_intra16x16_pred_mode;
644         h->mb.b_transform_8x8 = 0;
645
646         if( h->mb.b_lossless )
647             x264_predict_lossless_16x16( h, i_mode );
648         else
649             h->predict_16x16[i_mode]( h->mb.pic.p_fdec[0] );
650
651         /* encode the 16x16 macroblock */
652         x264_mb_encode_i16x16( h, i_qp );
653     }
654     else if( h->mb.i_type == I_8x8 )
655     {
656         ALIGNED_ARRAY_16( uint8_t, edge,[33] );
657         h->mb.b_transform_8x8 = 1;
658         /* If we already encoded 3 of the 4 i8x8 blocks, we don't have to do them again. */
659         if( h->mb.i_skip_intra )
660         {
661             h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i8x8_fdec_buf, 16, 16 );
662             M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i8x8_nnz_buf[0];
663             M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i8x8_nnz_buf[1];
664             M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i8x8_nnz_buf[2];
665             M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i8x8_nnz_buf[3];
666             h->mb.i_cbp_luma = h->mb.pic.i8x8_cbp;
667             /* In RD mode, restore the now-overwritten DCT data. */
668             if( h->mb.i_skip_intra == 2 )
669                 h->mc.memcpy_aligned( h->dct.luma8x8, h->mb.pic.i8x8_dct_buf, sizeof(h->mb.pic.i8x8_dct_buf) );
670         }
671         for( i = h->mb.i_skip_intra ? 3 : 0 ; i < 4; i++ )
672         {
673             uint8_t  *p_dst = &h->mb.pic.p_fdec[0][8 * (i&1) + 8 * (i>>1) * FDEC_STRIDE];
674             int      i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[4*i]];
675             h->predict_8x8_filter( p_dst, edge, h->mb.i_neighbour8[i], x264_pred_i4x4_neighbors[i_mode] );
676
677             if( h->mb.b_lossless )
678                 x264_predict_lossless_8x8( h, p_dst, i, i_mode, edge );
679             else
680                 h->predict_8x8[i_mode]( p_dst, edge );
681
682             x264_mb_encode_i8x8( h, i, i_qp );
683         }
684     }
685     else if( h->mb.i_type == I_4x4 )
686     {
687         h->mb.b_transform_8x8 = 0;
688         /* If we already encoded 15 of the 16 i4x4 blocks, we don't have to do them again. */
689         if( h->mb.i_skip_intra )
690         {
691             h->mc.copy[PIXEL_16x16]( h->mb.pic.p_fdec[0], FDEC_STRIDE, h->mb.pic.i4x4_fdec_buf, 16, 16 );
692             M32( &h->mb.cache.non_zero_count[x264_scan8[ 0]] ) = h->mb.pic.i4x4_nnz_buf[0];
693             M32( &h->mb.cache.non_zero_count[x264_scan8[ 2]] ) = h->mb.pic.i4x4_nnz_buf[1];
694             M32( &h->mb.cache.non_zero_count[x264_scan8[ 8]] ) = h->mb.pic.i4x4_nnz_buf[2];
695             M32( &h->mb.cache.non_zero_count[x264_scan8[10]] ) = h->mb.pic.i4x4_nnz_buf[3];
696             h->mb.i_cbp_luma = h->mb.pic.i4x4_cbp;
697             /* In RD mode, restore the now-overwritten DCT data. */
698             if( h->mb.i_skip_intra == 2 )
699                 h->mc.memcpy_aligned( h->dct.luma4x4, h->mb.pic.i4x4_dct_buf, sizeof(h->mb.pic.i4x4_dct_buf) );
700         }
701         for( i = h->mb.i_skip_intra ? 15 : 0 ; i < 16; i++ )
702         {
703             uint8_t  *p_dst = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i]];
704             int      i_mode = h->mb.cache.intra4x4_pred_mode[x264_scan8[i]];
705
706             if( (h->mb.i_neighbour4[i] & (MB_TOPRIGHT|MB_TOP)) == MB_TOP )
707                 /* emulate missing topright samples */
708                 M32( &p_dst[4-FDEC_STRIDE] ) = p_dst[3-FDEC_STRIDE] * 0x01010101U;
709
710             if( h->mb.b_lossless )
711                 x264_predict_lossless_4x4( h, p_dst, i, i_mode );
712             else
713                 h->predict_4x4[i_mode]( p_dst );
714             x264_mb_encode_i4x4( h, i, i_qp );
715         }
716     }
717     else    /* Inter MB */
718     {
719         int i8x8, i4x4;
720         int i_decimate_mb = 0;
721
722         /* Don't repeat motion compensation if it was already done in non-RD transform analysis */
723         if( !h->mb.b_skip_mc )
724             x264_mb_mc( h );
725
726         if( h->mb.b_lossless )
727         {
728             if( h->mb.b_transform_8x8 )
729                 for( i8x8 = 0; i8x8 < 4; i8x8++ )
730                 {
731                     int x = 8*(i8x8&1);
732                     int y = 8*(i8x8>>1);
733                     nz = h->zigzagf.sub_8x8( h->dct.luma8x8[i8x8],
734                                         h->mb.pic.p_fenc[0]+x+y*FENC_STRIDE,
735                                         h->mb.pic.p_fdec[0]+x+y*FDEC_STRIDE );
736                     STORE_8x8_NNZ(i8x8,nz);
737                     h->mb.i_cbp_luma |= nz << i8x8;
738                 }
739             else
740                 for( i4x4 = 0; i4x4 < 16; i4x4++ )
741                 {
742                     nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4x4],
743                                         h->mb.pic.p_fenc[0]+block_idx_xy_fenc[i4x4],
744                                         h->mb.pic.p_fdec[0]+block_idx_xy_fdec[i4x4] );
745                     h->mb.cache.non_zero_count[x264_scan8[i4x4]] = nz;
746                     h->mb.i_cbp_luma |= nz << (i4x4>>2);
747                 }
748         }
749         else if( h->mb.b_transform_8x8 )
750         {
751             ALIGNED_ARRAY_16( int16_t, dct8x8,[4],[64] );
752             b_decimate &= !h->mb.b_trellis; // 8x8 trellis is inherently optimal decimation
753             h->dctf.sub16x16_dct8( dct8x8, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
754             h->nr_count[1] += h->mb.b_noise_reduction * 4;
755
756             for( idx = 0; idx < 4; idx++ )
757             {
758                 if( h->mb.b_noise_reduction )
759                     h->quantf.denoise_dct( dct8x8[idx], h->nr_residual_sum[1], h->nr_offset[1], 64 );
760                 nz = x264_quant_8x8( h, dct8x8[idx], i_qp, 0, idx );
761
762                 if( nz )
763                 {
764                     h->zigzagf.scan_8x8( h->dct.luma8x8[idx], dct8x8[idx] );
765                     if( b_decimate )
766                     {
767                         int i_decimate_8x8 = h->quantf.decimate_score64( h->dct.luma8x8[idx] );
768                         i_decimate_mb += i_decimate_8x8;
769                         if( i_decimate_8x8 >= 4 )
770                             h->mb.i_cbp_luma |= 1<<idx;
771                     }
772                     else
773                         h->mb.i_cbp_luma |= 1<<idx;
774                 }
775             }
776
777             if( i_decimate_mb < 6 && b_decimate )
778             {
779                 h->mb.i_cbp_luma = 0;
780                 CLEAR_16x16_NNZ
781             }
782             else
783             {
784                 for( idx = 0; idx < 4; idx++ )
785                 {
786                     if( h->mb.i_cbp_luma&(1<<idx) )
787                     {
788                         h->quantf.dequant_8x8( dct8x8[idx], h->dequant8_mf[CQM_8PY], i_qp );
789                         h->dctf.add8x8_idct8( &h->mb.pic.p_fdec[0][(idx&1)*8 + (idx>>1)*8*FDEC_STRIDE], dct8x8[idx] );
790                         STORE_8x8_NNZ(idx,1);
791                     }
792                     else
793                         STORE_8x8_NNZ(idx,0);
794                 }
795             }
796         }
797         else
798         {
799             ALIGNED_ARRAY_16( int16_t, dct4x4,[16],[16] );
800             h->dctf.sub16x16_dct( dct4x4, h->mb.pic.p_fenc[0], h->mb.pic.p_fdec[0] );
801             h->nr_count[0] += h->mb.b_noise_reduction * 16;
802
803             for( i8x8 = 0; i8x8 < 4; i8x8++ )
804             {
805                 int i_decimate_8x8 = 0;
806                 int cbp = 0;
807
808                 /* encode one 4x4 block */
809                 for( i4x4 = 0; i4x4 < 4; i4x4++ )
810                 {
811                     idx = i8x8 * 4 + i4x4;
812
813                     if( h->mb.b_noise_reduction )
814                         h->quantf.denoise_dct( dct4x4[idx], h->nr_residual_sum[0], h->nr_offset[0], 16 );
815                     nz = x264_quant_4x4( h, dct4x4[idx], i_qp, DCT_LUMA_4x4, 0, idx );
816                     h->mb.cache.non_zero_count[x264_scan8[idx]] = nz;
817
818                     if( nz )
819                     {
820                         h->zigzagf.scan_4x4( h->dct.luma4x4[idx], dct4x4[idx] );
821                         h->quantf.dequant_4x4( dct4x4[idx], h->dequant4_mf[CQM_4PY], i_qp );
822                         if( b_decimate && i_decimate_8x8 < 6 )
823                             i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[idx] );
824                         cbp = 1;
825                     }
826                 }
827
828                 /* decimate this 8x8 block */
829                 i_decimate_mb += i_decimate_8x8;
830                 if( b_decimate )
831                 {
832                     if( i_decimate_8x8 < 4 )
833                         STORE_8x8_NNZ(i8x8,0)
834                     else
835                         h->mb.i_cbp_luma |= 1<<i8x8;
836                 }
837                 else if( cbp )
838                 {
839                     h->dctf.add8x8_idct( &h->mb.pic.p_fdec[0][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] );
840                     h->mb.i_cbp_luma |= 1<<i8x8;
841                 }
842             }
843
844             if( b_decimate )
845             {
846                 if( i_decimate_mb < 6 )
847                 {
848                     h->mb.i_cbp_luma = 0;
849                     CLEAR_16x16_NNZ
850                 }
851                 else
852                 {
853                     for( i8x8 = 0; i8x8 < 4; i8x8++ )
854                         if( h->mb.i_cbp_luma&(1<<i8x8) )
855                             h->dctf.add8x8_idct( &h->mb.pic.p_fdec[0][(i8x8&1)*8 + (i8x8>>1)*8*FDEC_STRIDE], &dct4x4[i8x8*4] );
856                 }
857             }
858         }
859     }
860
861     /* encode chroma */
862     if( IS_INTRA( h->mb.i_type ) )
863     {
864         const int i_mode = h->mb.i_chroma_pred_mode;
865         if( h->mb.b_lossless )
866             x264_predict_lossless_8x8_chroma( h, i_mode );
867         else
868         {
869             h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[1] );
870             h->predict_8x8c[i_mode]( h->mb.pic.p_fdec[2] );
871         }
872     }
873
874     /* encode the 8x8 blocks */
875     x264_mb_encode_8x8_chroma( h, !IS_INTRA( h->mb.i_type ), h->mb.i_chroma_qp );
876
877     if( h->param.b_cabac )
878     {
879         i_cbp_dc = h->mb.cache.non_zero_count[x264_scan8[24]]
880                  | h->mb.cache.non_zero_count[x264_scan8[25]] << 1
881                  | h->mb.cache.non_zero_count[x264_scan8[26]] << 2;
882     }
883
884     /* store cbp */
885     h->mb.cbp[h->mb.i_mb_xy] = (i_cbp_dc << 8) | (h->mb.i_cbp_chroma << 4) | h->mb.i_cbp_luma;
886
887     /* Check for P_SKIP
888      * XXX: in the me perhaps we should take x264_mb_predict_mv_pskip into account
889      *      (if multiple mv give same result)*/
890     if( !b_force_no_skip )
891     {
892         if( h->mb.i_type == P_L0 && h->mb.i_partition == D_16x16 &&
893             !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) &&
894             M32( h->mb.cache.mv[0][x264_scan8[0]] ) == M32( h->mb.cache.pskip_mv )
895             && h->mb.cache.ref[0][x264_scan8[0]] == 0 )
896         {
897             h->mb.i_type = P_SKIP;
898         }
899
900         /* Check for B_SKIP */
901         if( h->mb.i_type == B_DIRECT && !(h->mb.i_cbp_luma | h->mb.i_cbp_chroma) )
902         {
903             h->mb.i_type = B_SKIP;
904         }
905     }
906 }
907
908 /*****************************************************************************
909  * x264_macroblock_probe_skip:
910  *  Check if the current MB could be encoded as a [PB]_SKIP
911  *****************************************************************************/
912 int x264_macroblock_probe_skip( x264_t *h, int b_bidir )
913 {
914     ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
915     ALIGNED_ARRAY_16( int16_t, dct2x2,[4] );
916     ALIGNED_ARRAY_16( int16_t, dctscan,[16] );
917
918     int i_qp = h->mb.i_qp;
919     int mvp[2];
920     int ch, thresh, ssd;
921
922     int i8x8, i4x4;
923     int i_decimate_mb;
924
925     if( !b_bidir )
926     {
927         /* Get the MV */
928         mvp[0] = x264_clip3( h->mb.cache.pskip_mv[0], h->mb.mv_min[0], h->mb.mv_max[0] );
929         mvp[1] = x264_clip3( h->mb.cache.pskip_mv[1], h->mb.mv_min[1], h->mb.mv_max[1] );
930
931         /* Motion compensation */
932         h->mc.mc_luma( h->mb.pic.p_fdec[0],    FDEC_STRIDE,
933                        h->mb.pic.p_fref[0][0], h->mb.pic.i_stride[0],
934                        mvp[0], mvp[1], 16, 16, &h->sh.weight[0][0] );
935     }
936
937     for( i8x8 = 0, i_decimate_mb = 0; i8x8 < 4; i8x8++ )
938     {
939         int fenc_offset = (i8x8&1) * 8 + (i8x8>>1) * FENC_STRIDE * 8;
940         int fdec_offset = (i8x8&1) * 8 + (i8x8>>1) * FDEC_STRIDE * 8;
941         /* get luma diff */
942         h->dctf.sub8x8_dct( dct4x4, h->mb.pic.p_fenc[0] + fenc_offset,
943                                     h->mb.pic.p_fdec[0] + fdec_offset );
944         /* encode one 4x4 block */
945         for( i4x4 = 0; i4x4 < 4; i4x4++ )
946         {
947             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PY][i_qp], h->quant4_bias[CQM_4PY][i_qp] ) )
948                 continue;
949             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
950             i_decimate_mb += h->quantf.decimate_score16( dctscan );
951             if( i_decimate_mb >= 6 )
952                 return 0;
953         }
954     }
955
956     /* encode chroma */
957     i_qp = h->mb.i_chroma_qp;
958     thresh = (x264_lambda2_tab[i_qp] + 32) >> 6;
959
960     for( ch = 0; ch < 2; ch++ )
961     {
962         uint8_t  *p_src = h->mb.pic.p_fenc[1+ch];
963         uint8_t  *p_dst = h->mb.pic.p_fdec[1+ch];
964
965         if( !b_bidir )
966         {
967             h->mc.mc_chroma( h->mb.pic.p_fdec[1+ch],       FDEC_STRIDE,
968                              h->mb.pic.p_fref[0][0][4+ch], h->mb.pic.i_stride[1+ch],
969                              mvp[0], mvp[1], 8, 8 );
970
971             if( h->sh.weight[0][1+ch].weightfn )
972                 h->sh.weight[0][1+ch].weightfn[8>>2]( h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
973                                                       h->mb.pic.p_fdec[1+ch], FDEC_STRIDE,
974                                                       &h->sh.weight[0][1+ch], 8 );
975         }
976
977         /* there is almost never a termination during chroma, but we can't avoid the check entirely */
978         /* so instead we check SSD and skip the actual check if the score is low enough. */
979         ssd = h->pixf.ssd[PIXEL_8x8]( p_dst, FDEC_STRIDE, p_src, FENC_STRIDE );
980         if( ssd < thresh )
981             continue;
982
983         h->dctf.sub8x8_dct( dct4x4, p_src, p_dst );
984
985         /* calculate dct DC */
986         dct2x2dc( dct2x2, dct4x4 );
987         if( h->quantf.quant_2x2_dc( dct2x2, h->quant4_mf[CQM_4PC][i_qp][0]>>1, h->quant4_bias[CQM_4PC][i_qp][0]<<1 ) )
988             return 0;
989
990         /* If there wasn't a termination in DC, we can check against a much higher threshold. */
991         if( ssd < thresh*4 )
992             continue;
993
994         /* calculate dct coeffs */
995         for( i4x4 = 0, i_decimate_mb = 0; i4x4 < 4; i4x4++ )
996         {
997             if( !h->quantf.quant_4x4( dct4x4[i4x4], h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] ) )
998                 continue;
999             h->zigzagf.scan_4x4( dctscan, dct4x4[i4x4] );
1000             i_decimate_mb += h->quantf.decimate_score15( dctscan );
1001             if( i_decimate_mb >= 7 )
1002                 return 0;
1003         }
1004     }
1005
1006     h->mb.b_skip_mc = 1;
1007     return 1;
1008 }
1009
1010 /****************************************************************************
1011  * DCT-domain noise reduction / adaptive deadzone
1012  * from libavcodec
1013  ****************************************************************************/
1014
1015 void x264_noise_reduction_update( x264_t *h )
1016 {
1017     int cat, i;
1018     for( cat = 0; cat < 2; cat++ )
1019     {
1020         int size = cat ? 64 : 16;
1021         const uint16_t *weight = cat ? x264_dct8_weight2_tab : x264_dct4_weight2_tab;
1022
1023         if( h->nr_count[cat] > (cat ? (1<<16) : (1<<18)) )
1024         {
1025             for( i = 0; i < size; i++ )
1026                 h->nr_residual_sum[cat][i] >>= 1;
1027             h->nr_count[cat] >>= 1;
1028         }
1029
1030         for( i = 0; i < size; i++ )
1031             h->nr_offset[cat][i] =
1032                 ((uint64_t)h->param.analyse.i_noise_reduction * h->nr_count[cat]
1033                  + h->nr_residual_sum[cat][i]/2)
1034               / ((uint64_t)h->nr_residual_sum[cat][i] * weight[i]/256 + 1);
1035     }
1036 }
1037
1038 /*****************************************************************************
1039  * RD only; 4 calls to this do not make up for one macroblock_encode.
1040  * doesn't transform chroma dc.
1041  *****************************************************************************/
1042 void x264_macroblock_encode_p8x8( x264_t *h, int i8 )
1043 {
1044     int i_qp = h->mb.i_qp;
1045     uint8_t *p_fenc = h->mb.pic.p_fenc[0] + (i8&1)*8 + (i8>>1)*8*FENC_STRIDE;
1046     uint8_t *p_fdec = h->mb.pic.p_fdec[0] + (i8&1)*8 + (i8>>1)*8*FDEC_STRIDE;
1047     int b_decimate = h->mb.b_dct_decimate;
1048     int nnz8x8 = 0;
1049     int ch, nz;
1050
1051     if( !h->mb.b_skip_mc )
1052         x264_mb_mc_8x8( h, i8 );
1053
1054     if( h->mb.b_lossless )
1055     {
1056         int i4;
1057         if( h->mb.b_transform_8x8 )
1058         {
1059             nnz8x8 = h->zigzagf.sub_8x8( h->dct.luma8x8[i8], p_fenc, p_fdec );
1060             STORE_8x8_NNZ(i8,nnz8x8);
1061         }
1062         else
1063         {
1064             for( i4 = i8*4; i4 < i8*4+4; i4++ )
1065             {
1066                 int nz;
1067                 nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4],
1068                                     h->mb.pic.p_fenc[0]+block_idx_xy_fenc[i4],
1069                                     h->mb.pic.p_fdec[0]+block_idx_xy_fdec[i4] );
1070                 h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1071                 nnz8x8 |= nz;
1072             }
1073         }
1074         for( ch = 0; ch < 2; ch++ )
1075         {
1076             int16_t dc;
1077             p_fenc = h->mb.pic.p_fenc[1+ch] + (i8&1)*4 + (i8>>1)*4*FENC_STRIDE;
1078             p_fdec = h->mb.pic.p_fdec[1+ch] + (i8&1)*4 + (i8>>1)*4*FDEC_STRIDE;
1079             nz = h->zigzagf.sub_4x4ac( h->dct.luma4x4[16+i8+ch*4], p_fenc, p_fdec, &dc );
1080             h->mb.cache.non_zero_count[x264_scan8[16+i8+ch*4]] = nz;
1081         }
1082     }
1083     else
1084     {
1085         if( h->mb.b_transform_8x8 )
1086         {
1087             ALIGNED_ARRAY_16( int16_t, dct8x8,[64] );
1088             h->dctf.sub8x8_dct8( dct8x8, p_fenc, p_fdec );
1089             nnz8x8 = x264_quant_8x8( h, dct8x8, i_qp, 0, i8 );
1090             if( nnz8x8 )
1091             {
1092                 h->zigzagf.scan_8x8( h->dct.luma8x8[i8], dct8x8 );
1093
1094                 if( b_decimate && !h->mb.b_trellis )
1095                     nnz8x8 = 4 <= h->quantf.decimate_score64( h->dct.luma8x8[i8] );
1096
1097                 if( nnz8x8 )
1098                 {
1099                     h->quantf.dequant_8x8( dct8x8, h->dequant8_mf[CQM_8PY], i_qp );
1100                     h->dctf.add8x8_idct8( p_fdec, dct8x8 );
1101                     STORE_8x8_NNZ(i8,1);
1102                 }
1103                 else
1104                     STORE_8x8_NNZ(i8,0);
1105             }
1106             else
1107                 STORE_8x8_NNZ(i8,0);
1108         }
1109         else
1110         {
1111             int i4;
1112             int i_decimate_8x8 = 0;
1113             ALIGNED_ARRAY_16( int16_t, dct4x4,[4],[16] );
1114             h->dctf.sub8x8_dct( dct4x4, p_fenc, p_fdec );
1115             for( i4 = 0; i4 < 4; i4++ )
1116             {
1117                 nz = x264_quant_4x4( h, dct4x4[i4], i_qp, DCT_LUMA_4x4, 0, i8*4+i4 );
1118                 h->mb.cache.non_zero_count[x264_scan8[i8*4+i4]] = nz;
1119                 if( nz )
1120                 {
1121                     h->zigzagf.scan_4x4( h->dct.luma4x4[i8*4+i4], dct4x4[i4] );
1122                     h->quantf.dequant_4x4( dct4x4[i4], h->dequant4_mf[CQM_4PY], i_qp );
1123                     if( b_decimate )
1124                         i_decimate_8x8 += h->quantf.decimate_score16( h->dct.luma4x4[i8*4+i4] );
1125                     nnz8x8 = 1;
1126                 }
1127             }
1128
1129             if( b_decimate && i_decimate_8x8 < 4 )
1130                 nnz8x8 = 0;
1131
1132             if( nnz8x8 )
1133                 h->dctf.add8x8_idct( p_fdec, dct4x4 );
1134             else
1135                 STORE_8x8_NNZ(i8,0);
1136         }
1137
1138         i_qp = h->mb.i_chroma_qp;
1139
1140         for( ch = 0; ch < 2; ch++ )
1141         {
1142             ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
1143             p_fenc = h->mb.pic.p_fenc[1+ch] + (i8&1)*4 + (i8>>1)*4*FENC_STRIDE;
1144             p_fdec = h->mb.pic.p_fdec[1+ch] + (i8&1)*4 + (i8>>1)*4*FDEC_STRIDE;
1145
1146             h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
1147             dct4x4[0] = 0;
1148
1149             if( h->mb.b_trellis )
1150                 nz = x264_quant_4x4_trellis( h, dct4x4, CQM_4PC, i_qp, DCT_CHROMA_AC, 0, 1, 0 );
1151             else
1152                 nz = h->quantf.quant_4x4( dct4x4, h->quant4_mf[CQM_4PC][i_qp], h->quant4_bias[CQM_4PC][i_qp] );
1153
1154             h->mb.cache.non_zero_count[x264_scan8[16+i8+ch*4]] = nz;
1155             if( nz )
1156             {
1157                 h->zigzagf.scan_4x4( h->dct.luma4x4[16+i8+ch*4], dct4x4 );
1158                 h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4PC], i_qp );
1159                 h->dctf.add4x4_idct( p_fdec, dct4x4 );
1160             }
1161         }
1162     }
1163     h->mb.i_cbp_luma &= ~(1 << i8);
1164     h->mb.i_cbp_luma |= nnz8x8 << i8;
1165     h->mb.i_cbp_chroma = 0x02;
1166 }
1167
1168 /*****************************************************************************
1169  * RD only, luma only
1170  *****************************************************************************/
1171 void x264_macroblock_encode_p4x4( x264_t *h, int i4 )
1172 {
1173     int i_qp = h->mb.i_qp;
1174     uint8_t *p_fenc = &h->mb.pic.p_fenc[0][block_idx_xy_fenc[i4]];
1175     uint8_t *p_fdec = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
1176     int nz;
1177
1178     /* Don't need motion compensation as this function is only used in qpel-RD, which caches pixel data. */
1179
1180     if( h->mb.b_lossless )
1181     {
1182         nz = h->zigzagf.sub_4x4( h->dct.luma4x4[i4], p_fenc, p_fdec );
1183         h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1184     }
1185     else
1186     {
1187         ALIGNED_ARRAY_16( int16_t, dct4x4,[16] );
1188         h->dctf.sub4x4_dct( dct4x4, p_fenc, p_fdec );
1189         nz = x264_quant_4x4( h, dct4x4, i_qp, DCT_LUMA_4x4, 0, i4 );
1190         h->mb.cache.non_zero_count[x264_scan8[i4]] = nz;
1191         if( nz )
1192         {
1193             h->zigzagf.scan_4x4( h->dct.luma4x4[i4], dct4x4 );
1194             h->quantf.dequant_4x4( dct4x4, h->dequant4_mf[CQM_4PY], i_qp );
1195             h->dctf.add4x4_idct( p_fdec, dct4x4 );
1196         }
1197     }
1198 }