7 uniform sampler2DArray tex;
11 float x_m2 = textureOffset(tex, tc, ivec2(-2, 0)).x;
12 float x_m1 = textureOffset(tex, tc, ivec2(-1, 0)).x;
13 float x_p1 = textureOffset(tex, tc, ivec2( 1, 0)).x;
14 float x_p2 = textureOffset(tex, tc, ivec2( 2, 0)).x;
16 float y_m2 = textureOffset(tex, tc, ivec2( 0, -2)).x;
17 float y_m1 = textureOffset(tex, tc, ivec2( 0, -1)).x;
18 float y_p1 = textureOffset(tex, tc, ivec2( 0, 1)).x;
19 float y_p2 = textureOffset(tex, tc, ivec2( 0, 2)).x;
21 derivatives.x = (x_p1 - x_m1) * (2.0/3.0) + (x_m2 - x_p2) * (1.0/12.0);
22 derivatives.y = (y_p1 - y_m1) * (2.0/3.0) + (y_m2 - y_p2) * (1.0/12.0);
24 // The nudge term in the square root in the DeepFlow paper is ζ² = 0.1² = 0.01.
25 // But this is assuming a 0..255 level. Given the nonlinearities in the expression
26 // where β_0 appears, there's no 100% equivalent way to adjust this
27 // constant that I can see, but taking it to (0.1/255)² ~= 1.53e-7 ~=
28 // 1e-7 ought to be good enough. I guess the basic idea is that it
29 // will only matter for near-zero derivatives anyway. I am a tiny
30 // bit worried about fp16 precision when storing these numbers, but OK.
31 beta_0 = 1.0 / (derivatives.x * derivatives.x + derivatives.y * derivatives.y + 1e-7);