]> git.sesse.net Git - ffmpeg/blob - libavcodec/aaccoder.c
Replace int_fast integer types with their sized standard posix counterparts.
[ffmpeg] / libavcodec / aaccoder.c
1 /*
2  * AAC coefficients encoder
3  * Copyright (C) 2008-2009 Konstantin Shishkov
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC coefficients encoder
25  */
26
27 /***********************************
28  *              TODOs:
29  * speedup quantizer selection
30  * add sane pulse detection
31  ***********************************/
32
33 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
35 #include <float.h>
36 #include "avcodec.h"
37 #include "put_bits.h"
38 #include "aac.h"
39 #include "aacenc.h"
40 #include "aactab.h"
41
42 /** bits needed to code codebook run value for long windows */
43 static const uint8_t run_value_bits_long[64] = {
44      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
45      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
46     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
47     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
48 };
49
50 /** bits needed to code codebook run value for short windows */
51 static const uint8_t run_value_bits_short[16] = {
52     3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
53 };
54
55 static const uint8_t *run_value_bits[2] = {
56     run_value_bits_long, run_value_bits_short
57 };
58
59
60 /**
61  * Quantize one coefficient.
62  * @return absolute value of the quantized coefficient
63  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
64  */
65 static av_always_inline int quant(float coef, const float Q)
66 {
67     float a = coef * Q;
68     return sqrtf(a * sqrtf(a)) + 0.4054;
69 }
70
71 static void quantize_bands(int *out, const float *in, const float *scaled,
72                            int size, float Q34, int is_signed, int maxval)
73 {
74     int i;
75     double qc;
76     for (i = 0; i < size; i++) {
77         qc = scaled[i] * Q34;
78         out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
79         if (is_signed && in[i] < 0.0f) {
80             out[i] = -out[i];
81         }
82     }
83 }
84
85 static void abs_pow34_v(float *out, const float *in, const int size)
86 {
87 #ifndef USE_REALLY_FULL_SEARCH
88     int i;
89     for (i = 0; i < size; i++) {
90         float a = fabsf(in[i]);
91         out[i] = sqrtf(a * sqrtf(a));
92     }
93 #endif /* USE_REALLY_FULL_SEARCH */
94 }
95
96 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
97 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
98
99 /**
100  * Calculate rate distortion cost for quantizing with given codebook
101  *
102  * @return quantization distortion
103  */
104 static av_always_inline float quantize_and_encode_band_cost_template(
105                                 struct AACEncContext *s,
106                                 PutBitContext *pb, const float *in,
107                                 const float *scaled, int size, int scale_idx,
108                                 int cb, const float lambda, const float uplim,
109                                 int *bits, int BT_ZERO, int BT_UNSIGNED,
110                                 int BT_PAIR, int BT_ESC)
111 {
112     const float IQ = ff_aac_pow2sf_tab[POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
113     const float  Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
114     const float CLIPPED_ESCAPE = 165140.0f*IQ;
115     int i, j;
116     float cost = 0;
117     const int dim = BT_PAIR ? 2 : 4;
118     int resbits = 0;
119     const float  Q34 = sqrtf(Q * sqrtf(Q));
120     const int range  = aac_cb_range[cb];
121     const int maxval = aac_cb_maxval[cb];
122     int off;
123
124     if (BT_ZERO) {
125         for (i = 0; i < size; i++)
126             cost += in[i]*in[i];
127         if (bits)
128             *bits = 0;
129         return cost * lambda;
130     }
131     if (!scaled) {
132         abs_pow34_v(s->scoefs, in, size);
133         scaled = s->scoefs;
134     }
135     quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
136     if (BT_UNSIGNED) {
137         off = 0;
138     } else {
139         off = maxval;
140     }
141     for (i = 0; i < size; i += dim) {
142         const float *vec;
143         int *quants = s->qcoefs + i;
144         int curidx = 0;
145         int curbits;
146         float rd = 0.0f;
147         for (j = 0; j < dim; j++) {
148             curidx *= range;
149             curidx += quants[j] + off;
150         }
151         curbits =  ff_aac_spectral_bits[cb-1][curidx];
152         vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
153         if (BT_UNSIGNED) {
154             for (j = 0; j < dim; j++) {
155                 float t = fabsf(in[i+j]);
156                 float di;
157                 if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
158                     if (t >= CLIPPED_ESCAPE) {
159                         di = t - CLIPPED_ESCAPE;
160                         curbits += 21;
161                     } else {
162                         int c = av_clip(quant(t, Q), 0, 8191);
163                         di = t - c*cbrtf(c)*IQ;
164                         curbits += av_log2(c)*2 - 4 + 1;
165                     }
166                 } else {
167                     di = t - vec[j]*IQ;
168                 }
169                 if (vec[j] != 0.0f)
170                     curbits++;
171                 rd += di*di;
172             }
173         } else {
174             for (j = 0; j < dim; j++) {
175                 float di = in[i+j] - vec[j]*IQ;
176                 rd += di*di;
177             }
178         }
179         cost    += rd * lambda + curbits;
180         resbits += curbits;
181         if (cost >= uplim)
182             return uplim;
183         if (pb) {
184             put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
185             if (BT_UNSIGNED)
186                 for (j = 0; j < dim; j++)
187                     if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
188                         put_bits(pb, 1, in[i+j] < 0.0f);
189             if (BT_ESC) {
190                 for (j = 0; j < 2; j++) {
191                     if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
192                         int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
193                         int len = av_log2(coef);
194
195                         put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
196                         put_bits(pb, len, coef & ((1 << len) - 1));
197                     }
198                 }
199             }
200         }
201     }
202
203     if (bits)
204         *bits = resbits;
205     return cost;
206 }
207
208 #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
209 static float quantize_and_encode_band_cost_ ## NAME(                                        \
210                                 struct AACEncContext *s,                                \
211                                 PutBitContext *pb, const float *in,                     \
212                                 const float *scaled, int size, int scale_idx,           \
213                                 int cb, const float lambda, const float uplim,          \
214                                 int *bits) {                                            \
215     return quantize_and_encode_band_cost_template(                                      \
216                                 s, pb, in, scaled, size, scale_idx,                     \
217                                 BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
218                                 BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
219 }
220
221 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
222 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
223 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
224 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
225 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
226 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
227
228 static float (*const quantize_and_encode_band_cost_arr[])(
229                                 struct AACEncContext *s,
230                                 PutBitContext *pb, const float *in,
231                                 const float *scaled, int size, int scale_idx,
232                                 int cb, const float lambda, const float uplim,
233                                 int *bits) = {
234     quantize_and_encode_band_cost_ZERO,
235     quantize_and_encode_band_cost_SQUAD,
236     quantize_and_encode_band_cost_SQUAD,
237     quantize_and_encode_band_cost_UQUAD,
238     quantize_and_encode_band_cost_UQUAD,
239     quantize_and_encode_band_cost_SPAIR,
240     quantize_and_encode_band_cost_SPAIR,
241     quantize_and_encode_band_cost_UPAIR,
242     quantize_and_encode_band_cost_UPAIR,
243     quantize_and_encode_band_cost_UPAIR,
244     quantize_and_encode_band_cost_UPAIR,
245     quantize_and_encode_band_cost_ESC,
246 };
247
248 #define quantize_and_encode_band_cost(                                  \
249                                 s, pb, in, scaled, size, scale_idx, cb, \
250                                 lambda, uplim, bits)                    \
251     quantize_and_encode_band_cost_arr[cb](                              \
252                                 s, pb, in, scaled, size, scale_idx, cb, \
253                                 lambda, uplim, bits)
254
255 static float quantize_band_cost(struct AACEncContext *s, const float *in,
256                                 const float *scaled, int size, int scale_idx,
257                                 int cb, const float lambda, const float uplim,
258                                 int *bits)
259 {
260     return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
261                                          cb, lambda, uplim, bits);
262 }
263
264 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
265                                      const float *in, int size, int scale_idx,
266                                      int cb, const float lambda)
267 {
268     quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
269                                   INFINITY, NULL);
270 }
271
272 static float find_max_val(int group_len, int swb_size, const float *scaled) {
273     float maxval = 0.0f;
274     int w2, i;
275     for (w2 = 0; w2 < group_len; w2++) {
276         for (i = 0; i < swb_size; i++) {
277             maxval = FFMAX(maxval, scaled[w2*128+i]);
278         }
279     }
280     return maxval;
281 }
282
283 static int find_min_book(float maxval, int sf) {
284     float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
285     float Q34 = sqrtf(Q * sqrtf(Q));
286     int qmaxval, cb;
287     qmaxval = maxval * Q34 + 0.4054f;
288     if      (qmaxval ==  0) cb = 0;
289     else if (qmaxval ==  1) cb = 1;
290     else if (qmaxval ==  2) cb = 3;
291     else if (qmaxval <=  4) cb = 5;
292     else if (qmaxval <=  7) cb = 7;
293     else if (qmaxval <= 12) cb = 9;
294     else                    cb = 11;
295     return cb;
296 }
297
298 /**
299  * structure used in optimal codebook search
300  */
301 typedef struct BandCodingPath {
302     int prev_idx; ///< pointer to the previous path point
303     float cost;   ///< path cost
304     int run;
305 } BandCodingPath;
306
307 /**
308  * Encode band info for single window group bands.
309  */
310 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
311                                      int win, int group_len, const float lambda)
312 {
313     BandCodingPath path[120][12];
314     int w, swb, cb, start, start2, size;
315     int i, j;
316     const int max_sfb  = sce->ics.max_sfb;
317     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
318     const int run_esc  = (1 << run_bits) - 1;
319     int idx, ppos, count;
320     int stackrun[120], stackcb[120], stack_len;
321     float next_minrd = INFINITY;
322     int next_mincb = 0;
323
324     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
325     start = win*128;
326     for (cb = 0; cb < 12; cb++) {
327         path[0][cb].cost     = 0.0f;
328         path[0][cb].prev_idx = -1;
329         path[0][cb].run      = 0;
330     }
331     for (swb = 0; swb < max_sfb; swb++) {
332         start2 = start;
333         size = sce->ics.swb_sizes[swb];
334         if (sce->zeroes[win*16 + swb]) {
335             for (cb = 0; cb < 12; cb++) {
336                 path[swb+1][cb].prev_idx = cb;
337                 path[swb+1][cb].cost     = path[swb][cb].cost;
338                 path[swb+1][cb].run      = path[swb][cb].run + 1;
339             }
340         } else {
341             float minrd = next_minrd;
342             int mincb = next_mincb;
343             next_minrd = INFINITY;
344             next_mincb = 0;
345             for (cb = 0; cb < 12; cb++) {
346                 float cost_stay_here, cost_get_here;
347                 float rd = 0.0f;
348                 for (w = 0; w < group_len; w++) {
349                     FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
350                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
351                                              s->scoefs + start + w*128, size,
352                                              sce->sf_idx[(win+w)*16+swb], cb,
353                                              lambda / band->threshold, INFINITY, NULL);
354                 }
355                 cost_stay_here = path[swb][cb].cost + rd;
356                 cost_get_here  = minrd              + rd + run_bits + 4;
357                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
358                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
359                     cost_stay_here += run_bits;
360                 if (cost_get_here < cost_stay_here) {
361                     path[swb+1][cb].prev_idx = mincb;
362                     path[swb+1][cb].cost     = cost_get_here;
363                     path[swb+1][cb].run      = 1;
364                 } else {
365                     path[swb+1][cb].prev_idx = cb;
366                     path[swb+1][cb].cost     = cost_stay_here;
367                     path[swb+1][cb].run      = path[swb][cb].run + 1;
368                 }
369                 if (path[swb+1][cb].cost < next_minrd) {
370                     next_minrd = path[swb+1][cb].cost;
371                     next_mincb = cb;
372                 }
373             }
374         }
375         start += sce->ics.swb_sizes[swb];
376     }
377
378     //convert resulting path from backward-linked list
379     stack_len = 0;
380     idx       = 0;
381     for (cb = 1; cb < 12; cb++)
382         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
383             idx = cb;
384     ppos = max_sfb;
385     while (ppos > 0) {
386         cb = idx;
387         stackrun[stack_len] = path[ppos][cb].run;
388         stackcb [stack_len] = cb;
389         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
390         ppos -= path[ppos][cb].run;
391         stack_len++;
392     }
393     //perform actual band info encoding
394     start = 0;
395     for (i = stack_len - 1; i >= 0; i--) {
396         put_bits(&s->pb, 4, stackcb[i]);
397         count = stackrun[i];
398         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
399         //XXX: memset when band_type is also uint8_t
400         for (j = 0; j < count; j++) {
401             sce->band_type[win*16 + start] =  stackcb[i];
402             start++;
403         }
404         while (count >= run_esc) {
405             put_bits(&s->pb, run_bits, run_esc);
406             count -= run_esc;
407         }
408         put_bits(&s->pb, run_bits, count);
409     }
410 }
411
412 static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
413                                   int win, int group_len, const float lambda)
414 {
415     BandCodingPath path[120][12];
416     int w, swb, cb, start, start2, size;
417     int i, j;
418     const int max_sfb  = sce->ics.max_sfb;
419     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
420     const int run_esc  = (1 << run_bits) - 1;
421     int idx, ppos, count;
422     int stackrun[120], stackcb[120], stack_len;
423     float next_minrd = INFINITY;
424     int next_mincb = 0;
425
426     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
427     start = win*128;
428     for (cb = 0; cb < 12; cb++) {
429         path[0][cb].cost     = run_bits+4;
430         path[0][cb].prev_idx = -1;
431         path[0][cb].run      = 0;
432     }
433     for (swb = 0; swb < max_sfb; swb++) {
434         start2 = start;
435         size = sce->ics.swb_sizes[swb];
436         if (sce->zeroes[win*16 + swb]) {
437             for (cb = 0; cb < 12; cb++) {
438                 path[swb+1][cb].prev_idx = cb;
439                 path[swb+1][cb].cost     = path[swb][cb].cost;
440                 path[swb+1][cb].run      = path[swb][cb].run + 1;
441             }
442         } else {
443             float minrd = next_minrd;
444             int mincb = next_mincb;
445             int startcb = sce->band_type[win*16+swb];
446             next_minrd = INFINITY;
447             next_mincb = 0;
448             for (cb = 0; cb < startcb; cb++) {
449                 path[swb+1][cb].cost = 61450;
450                 path[swb+1][cb].prev_idx = -1;
451                 path[swb+1][cb].run = 0;
452             }
453             for (cb = startcb; cb < 12; cb++) {
454                 float cost_stay_here, cost_get_here;
455                 float rd = 0.0f;
456                 for (w = 0; w < group_len; w++) {
457                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
458                                              s->scoefs + start + w*128, size,
459                                              sce->sf_idx[(win+w)*16+swb], cb,
460                                              0, INFINITY, NULL);
461                 }
462                 cost_stay_here = path[swb][cb].cost + rd;
463                 cost_get_here  = minrd              + rd + run_bits + 4;
464                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
465                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
466                     cost_stay_here += run_bits;
467                 if (cost_get_here < cost_stay_here) {
468                     path[swb+1][cb].prev_idx = mincb;
469                     path[swb+1][cb].cost     = cost_get_here;
470                     path[swb+1][cb].run      = 1;
471                 } else {
472                     path[swb+1][cb].prev_idx = cb;
473                     path[swb+1][cb].cost     = cost_stay_here;
474                     path[swb+1][cb].run      = path[swb][cb].run + 1;
475                 }
476                 if (path[swb+1][cb].cost < next_minrd) {
477                     next_minrd = path[swb+1][cb].cost;
478                     next_mincb = cb;
479                 }
480             }
481         }
482         start += sce->ics.swb_sizes[swb];
483     }
484
485     //convert resulting path from backward-linked list
486     stack_len = 0;
487     idx       = 0;
488     for (cb = 1; cb < 12; cb++)
489         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
490             idx = cb;
491     ppos = max_sfb;
492     while (ppos > 0) {
493         assert(idx >= 0);
494         cb = idx;
495         stackrun[stack_len] = path[ppos][cb].run;
496         stackcb [stack_len] = cb;
497         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
498         ppos -= path[ppos][cb].run;
499         stack_len++;
500     }
501     //perform actual band info encoding
502     start = 0;
503     for (i = stack_len - 1; i >= 0; i--) {
504         put_bits(&s->pb, 4, stackcb[i]);
505         count = stackrun[i];
506         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
507         //XXX: memset when band_type is also uint8_t
508         for (j = 0; j < count; j++) {
509             sce->band_type[win*16 + start] =  stackcb[i];
510             start++;
511         }
512         while (count >= run_esc) {
513             put_bits(&s->pb, run_bits, run_esc);
514             count -= run_esc;
515         }
516         put_bits(&s->pb, run_bits, count);
517     }
518 }
519
520 /** Return the minimum scalefactor where the quantized coef does not clip. */
521 static av_always_inline uint8_t coef2minsf(float coef) {
522     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
523 }
524
525 /** Return the maximum scalefactor where the quantized coef is not zero. */
526 static av_always_inline uint8_t coef2maxsf(float coef) {
527     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
528 }
529
530 typedef struct TrellisPath {
531     float cost;
532     int prev;
533 } TrellisPath;
534
535 #define TRELLIS_STAGES 121
536 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
537
538 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
539                                        SingleChannelElement *sce,
540                                        const float lambda)
541 {
542     int q, w, w2, g, start = 0;
543     int i, j;
544     int idx;
545     TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
546     int bandaddr[TRELLIS_STAGES];
547     int minq;
548     float mincost;
549     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
550     int q0, q1, qcnt = 0;
551
552     for (i = 0; i < 1024; i++) {
553         float t = fabsf(sce->coeffs[i]);
554         if (t > 0.0f) {
555             q0f = FFMIN(q0f, t);
556             q1f = FFMAX(q1f, t);
557             qnrgf += t*t;
558             qcnt++;
559         }
560     }
561
562     if (!qcnt) {
563         memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
564         memset(sce->zeroes, 1, sizeof(sce->zeroes));
565         return;
566     }
567
568     //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
569     q0 = coef2minsf(q0f);
570     //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
571     q1 = coef2maxsf(q1f);
572     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
573     if (q1 - q0 > 60) {
574         int q0low  = q0;
575         int q1high = q1;
576         //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
577         int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
578         q1 = qnrg + 30;
579         q0 = qnrg - 30;
580         //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
581         if (q0 < q0low) {
582             q1 += q0low - q0;
583             q0  = q0low;
584         } else if (q1 > q1high) {
585             q0 -= q1 - q1high;
586             q1  = q1high;
587         }
588     }
589     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
590
591     for (i = 0; i < TRELLIS_STATES; i++) {
592         paths[0][i].cost    = 0.0f;
593         paths[0][i].prev    = -1;
594     }
595     for (j = 1; j < TRELLIS_STAGES; j++) {
596         for (i = 0; i < TRELLIS_STATES; i++) {
597             paths[j][i].cost    = INFINITY;
598             paths[j][i].prev    = -2;
599         }
600     }
601     idx = 1;
602     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
603     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
604         start = w*128;
605         for (g = 0; g < sce->ics.num_swb; g++) {
606             const float *coefs = sce->coeffs + start;
607             float qmin, qmax;
608             int nz = 0;
609
610             bandaddr[idx] = w * 16 + g;
611             qmin = INT_MAX;
612             qmax = 0.0f;
613             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
614                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
615                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
616                     sce->zeroes[(w+w2)*16+g] = 1;
617                     continue;
618                 }
619                 sce->zeroes[(w+w2)*16+g] = 0;
620                 nz = 1;
621                 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
622                     float t = fabsf(coefs[w2*128+i]);
623                     if (t > 0.0f)
624                         qmin = FFMIN(qmin, t);
625                     qmax = FFMAX(qmax, t);
626                 }
627             }
628             if (nz) {
629                 int minscale, maxscale;
630                 float minrd = INFINITY;
631                 float maxval;
632                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
633                 minscale = coef2minsf(qmin);
634                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
635                 maxscale = coef2maxsf(qmax);
636                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
637                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
638                 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
639                 for (q = minscale; q < maxscale; q++) {
640                     float dist = 0;
641                     int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
642                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
643                         FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
644                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
645                                                    q + q0, cb, lambda / band->threshold, INFINITY, NULL);
646                     }
647                     minrd = FFMIN(minrd, dist);
648
649                     for (i = 0; i < q1 - q0; i++) {
650                         float cost;
651                         cost = paths[idx - 1][i].cost + dist
652                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
653                         if (cost < paths[idx][q].cost) {
654                             paths[idx][q].cost    = cost;
655                             paths[idx][q].prev    = i;
656                         }
657                     }
658                 }
659             } else {
660                 for (q = 0; q < q1 - q0; q++) {
661                     paths[idx][q].cost = paths[idx - 1][q].cost + 1;
662                     paths[idx][q].prev = q;
663                 }
664             }
665             sce->zeroes[w*16+g] = !nz;
666             start += sce->ics.swb_sizes[g];
667             idx++;
668         }
669     }
670     idx--;
671     mincost = paths[idx][0].cost;
672     minq    = 0;
673     for (i = 1; i < TRELLIS_STATES; i++) {
674         if (paths[idx][i].cost < mincost) {
675             mincost = paths[idx][i].cost;
676             minq = i;
677         }
678     }
679     while (idx) {
680         sce->sf_idx[bandaddr[idx]] = minq + q0;
681         minq = paths[idx][minq].prev;
682         idx--;
683     }
684     //set the same quantizers inside window groups
685     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
686         for (g = 0;  g < sce->ics.num_swb; g++)
687             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
688                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
689 }
690
691 /**
692  * two-loop quantizers search taken from ISO 13818-7 Appendix C
693  */
694 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
695                                           AACEncContext *s,
696                                           SingleChannelElement *sce,
697                                           const float lambda)
698 {
699     int start = 0, i, w, w2, g;
700     int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
701     float dists[128], uplims[128];
702     float maxvals[128];
703     int fflag, minscaler;
704     int its  = 0;
705     int allz = 0;
706     float minthr = INFINITY;
707
708     //XXX: some heuristic to determine initial quantizers will reduce search time
709     memset(dists, 0, sizeof(dists));
710     //determine zero bands and upper limits
711     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
712         for (g = 0;  g < sce->ics.num_swb; g++) {
713             int nz = 0;
714             float uplim = 0.0f;
715             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
716                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
717                 uplim += band->threshold;
718                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
719                     sce->zeroes[(w+w2)*16+g] = 1;
720                     continue;
721                 }
722                 nz = 1;
723             }
724             uplims[w*16+g] = uplim *512;
725             sce->zeroes[w*16+g] = !nz;
726             if (nz)
727                 minthr = FFMIN(minthr, uplim);
728             allz |= nz;
729         }
730     }
731     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
732         for (g = 0;  g < sce->ics.num_swb; g++) {
733             if (sce->zeroes[w*16+g]) {
734                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
735                 continue;
736             }
737             sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
738         }
739     }
740
741     if (!allz)
742         return;
743     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
744
745     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
746         start = w*128;
747         for (g = 0;  g < sce->ics.num_swb; g++) {
748             const float *scaled = s->scoefs + start;
749             maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
750             start += sce->ics.swb_sizes[g];
751         }
752     }
753
754     //perform two-loop search
755     //outer loop - improve quality
756     do {
757         int tbits, qstep;
758         minscaler = sce->sf_idx[0];
759         //inner loop - quantize spectrum to fit into given number of bits
760         qstep = its ? 1 : 32;
761         do {
762             int prev = -1;
763             tbits = 0;
764             fflag = 0;
765             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
766                 start = w*128;
767                 for (g = 0;  g < sce->ics.num_swb; g++) {
768                     const float *coefs = sce->coeffs + start;
769                     const float *scaled = s->scoefs + start;
770                     int bits = 0;
771                     int cb;
772                     float dist = 0.0f;
773
774                     if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
775                         start += sce->ics.swb_sizes[g];
776                         continue;
777                     }
778                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
779                     cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
780                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
781                         int b;
782                         dist += quantize_band_cost(s, coefs + w2*128,
783                                                    scaled + w2*128,
784                                                    sce->ics.swb_sizes[g],
785                                                    sce->sf_idx[w*16+g],
786                                                    cb,
787                                                    1.0f,
788                                                    INFINITY,
789                                                    &b);
790                         bits += b;
791                     }
792                     dists[w*16+g] = dist - bits;
793                     if (prev != -1) {
794                         bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
795                     }
796                     tbits += bits;
797                     start += sce->ics.swb_sizes[g];
798                     prev = sce->sf_idx[w*16+g];
799                 }
800             }
801             if (tbits > destbits) {
802                 for (i = 0; i < 128; i++)
803                     if (sce->sf_idx[i] < 218 - qstep)
804                         sce->sf_idx[i] += qstep;
805             } else {
806                 for (i = 0; i < 128; i++)
807                     if (sce->sf_idx[i] > 60 - qstep)
808                         sce->sf_idx[i] -= qstep;
809             }
810             qstep >>= 1;
811             if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
812                 qstep = 1;
813         } while (qstep);
814
815         fflag = 0;
816         minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
817         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
818             for (g = 0; g < sce->ics.num_swb; g++) {
819                 int prevsc = sce->sf_idx[w*16+g];
820                 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
821                     if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
822                         sce->sf_idx[w*16+g]--;
823                     else //Try to make sure there is some energy in every band
824                         sce->sf_idx[w*16+g]-=2;
825                 }
826                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
827                 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
828                 if (sce->sf_idx[w*16+g] != prevsc)
829                     fflag = 1;
830                 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
831             }
832         }
833         its++;
834     } while (fflag && its < 10);
835 }
836
837 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
838                                        SingleChannelElement *sce,
839                                        const float lambda)
840 {
841     int start = 0, i, w, w2, g;
842     float uplim[128], maxq[128];
843     int minq, maxsf;
844     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
845     int last = 0, lastband = 0, curband = 0;
846     float avg_energy = 0.0;
847     if (sce->ics.num_windows == 1) {
848         start = 0;
849         for (i = 0; i < 1024; i++) {
850             if (i - start >= sce->ics.swb_sizes[curband]) {
851                 start += sce->ics.swb_sizes[curband];
852                 curband++;
853             }
854             if (sce->coeffs[i]) {
855                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
856                 last = i;
857                 lastband = curband;
858             }
859         }
860     } else {
861         for (w = 0; w < 8; w++) {
862             const float *coeffs = sce->coeffs + w*128;
863             start = 0;
864             for (i = 0; i < 128; i++) {
865                 if (i - start >= sce->ics.swb_sizes[curband]) {
866                     start += sce->ics.swb_sizes[curband];
867                     curband++;
868                 }
869                 if (coeffs[i]) {
870                     avg_energy += coeffs[i] * coeffs[i];
871                     last = FFMAX(last, i);
872                     lastband = FFMAX(lastband, curband);
873                 }
874             }
875         }
876     }
877     last++;
878     avg_energy /= last;
879     if (avg_energy == 0.0f) {
880         for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
881             sce->sf_idx[i] = SCALE_ONE_POS;
882         return;
883     }
884     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
885         start = w*128;
886         for (g = 0; g < sce->ics.num_swb; g++) {
887             float *coefs   = sce->coeffs + start;
888             const int size = sce->ics.swb_sizes[g];
889             int start2 = start, end2 = start + size, peakpos = start;
890             float maxval = -1, thr = 0.0f, t;
891             maxq[w*16+g] = 0.0f;
892             if (g > lastband) {
893                 maxq[w*16+g] = 0.0f;
894                 start += size;
895                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
896                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
897                 continue;
898             }
899             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
900                 for (i = 0; i < size; i++) {
901                     float t = coefs[w2*128+i]*coefs[w2*128+i];
902                     maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
903                     thr += t;
904                     if (sce->ics.num_windows == 1 && maxval < t) {
905                         maxval  = t;
906                         peakpos = start+i;
907                     }
908                 }
909             }
910             if (sce->ics.num_windows == 1) {
911                 start2 = FFMAX(peakpos - 2, start2);
912                 end2   = FFMIN(peakpos + 3, end2);
913             } else {
914                 start2 -= start;
915                 end2   -= start;
916             }
917             start += size;
918             thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
919             t   = 1.0 - (1.0 * start2 / last);
920             uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
921         }
922     }
923     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
924     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
925     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
926         start = w*128;
927         for (g = 0;  g < sce->ics.num_swb; g++) {
928             const float *coefs  = sce->coeffs + start;
929             const float *scaled = s->scoefs   + start;
930             const int size      = sce->ics.swb_sizes[g];
931             int scf, prev_scf, step;
932             int min_scf = -1, max_scf = 256;
933             float curdiff;
934             if (maxq[w*16+g] < 21.544) {
935                 sce->zeroes[w*16+g] = 1;
936                 start += size;
937                 continue;
938             }
939             sce->zeroes[w*16+g] = 0;
940             scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
941             step = 16;
942             for (;;) {
943                 float dist = 0.0f;
944                 int quant_max;
945
946                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
947                     int b;
948                     dist += quantize_band_cost(s, coefs + w2*128,
949                                                scaled + w2*128,
950                                                sce->ics.swb_sizes[g],
951                                                scf,
952                                                ESC_BT,
953                                                lambda,
954                                                INFINITY,
955                                                &b);
956                     dist -= b;
957                 }
958                 dist *= 1.0f / 512.0f / lambda;
959                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
960                 if (quant_max >= 8191) { // too much, return to the previous quantizer
961                     sce->sf_idx[w*16+g] = prev_scf;
962                     break;
963                 }
964                 prev_scf = scf;
965                 curdiff = fabsf(dist - uplim[w*16+g]);
966                 if (curdiff <= 1.0f)
967                     step = 0;
968                 else
969                     step = log2f(curdiff);
970                 if (dist > uplim[w*16+g])
971                     step = -step;
972                 scf += step;
973                 scf = av_clip_uint8(scf);
974                 step = scf - prev_scf;
975                 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
976                     sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
977                     break;
978                 }
979                 if (step > 0)
980                     min_scf = prev_scf;
981                 else
982                     max_scf = prev_scf;
983             }
984             start += size;
985         }
986     }
987     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
988     for (i = 1; i < 128; i++) {
989         if (!sce->sf_idx[i])
990             sce->sf_idx[i] = sce->sf_idx[i-1];
991         else
992             minq = FFMIN(minq, sce->sf_idx[i]);
993     }
994     if (minq == INT_MAX)
995         minq = 0;
996     minq = FFMIN(minq, SCALE_MAX_POS);
997     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
998     for (i = 126; i >= 0; i--) {
999         if (!sce->sf_idx[i])
1000             sce->sf_idx[i] = sce->sf_idx[i+1];
1001         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1002     }
1003 }
1004
1005 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1006                                        SingleChannelElement *sce,
1007                                        const float lambda)
1008 {
1009     int start = 0, i, w, w2, g;
1010     int minq = 255;
1011
1012     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1013     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1014         start = w*128;
1015         for (g = 0; g < sce->ics.num_swb; g++) {
1016             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1017                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
1018                 if (band->energy <= band->threshold) {
1019                     sce->sf_idx[(w+w2)*16+g] = 218;
1020                     sce->zeroes[(w+w2)*16+g] = 1;
1021                 } else {
1022                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1023                     sce->zeroes[(w+w2)*16+g] = 0;
1024                 }
1025                 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1026             }
1027         }
1028     }
1029     for (i = 0; i < 128; i++) {
1030         sce->sf_idx[i] = 140;
1031         //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1032     }
1033     //set the same quantizers inside window groups
1034     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1035         for (g = 0;  g < sce->ics.num_swb; g++)
1036             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1037                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1038 }
1039
1040 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1041                           const float lambda)
1042 {
1043     int start = 0, i, w, w2, g;
1044     float M[128], S[128];
1045     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1046     SingleChannelElement *sce0 = &cpe->ch[0];
1047     SingleChannelElement *sce1 = &cpe->ch[1];
1048     if (!cpe->common_window)
1049         return;
1050     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1051         for (g = 0;  g < sce0->ics.num_swb; g++) {
1052             if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1053                 float dist1 = 0.0f, dist2 = 0.0f;
1054                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1055                     FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
1056                     FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
1057                     float minthr = FFMIN(band0->threshold, band1->threshold);
1058                     float maxthr = FFMAX(band0->threshold, band1->threshold);
1059                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1060                         M[i] = (sce0->coeffs[start+w2*128+i]
1061                               + sce1->coeffs[start+w2*128+i]) * 0.5;
1062                         S[i] =  M[i]
1063                               - sce1->coeffs[start+w2*128+i];
1064                     }
1065                     abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1066                     abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1067                     abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1068                     abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1069                     dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1070                                                 L34,
1071                                                 sce0->ics.swb_sizes[g],
1072                                                 sce0->sf_idx[(w+w2)*16+g],
1073                                                 sce0->band_type[(w+w2)*16+g],
1074                                                 lambda / band0->threshold, INFINITY, NULL);
1075                     dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1076                                                 R34,
1077                                                 sce1->ics.swb_sizes[g],
1078                                                 sce1->sf_idx[(w+w2)*16+g],
1079                                                 sce1->band_type[(w+w2)*16+g],
1080                                                 lambda / band1->threshold, INFINITY, NULL);
1081                     dist2 += quantize_band_cost(s, M,
1082                                                 M34,
1083                                                 sce0->ics.swb_sizes[g],
1084                                                 sce0->sf_idx[(w+w2)*16+g],
1085                                                 sce0->band_type[(w+w2)*16+g],
1086                                                 lambda / maxthr, INFINITY, NULL);
1087                     dist2 += quantize_band_cost(s, S,
1088                                                 S34,
1089                                                 sce1->ics.swb_sizes[g],
1090                                                 sce1->sf_idx[(w+w2)*16+g],
1091                                                 sce1->band_type[(w+w2)*16+g],
1092                                                 lambda / minthr, INFINITY, NULL);
1093                 }
1094                 cpe->ms_mask[w*16+g] = dist2 < dist1;
1095             }
1096             start += sce0->ics.swb_sizes[g];
1097         }
1098     }
1099 }
1100
1101 AACCoefficientsEncoder ff_aac_coders[] = {
1102     {
1103         search_for_quantizers_faac,
1104         encode_window_bands_info,
1105         quantize_and_encode_band,
1106         search_for_ms,
1107     },
1108     {
1109         search_for_quantizers_anmr,
1110         encode_window_bands_info,
1111         quantize_and_encode_band,
1112         search_for_ms,
1113     },
1114     {
1115         search_for_quantizers_twoloop,
1116         codebook_trellis_rate,
1117         quantize_and_encode_band,
1118         search_for_ms,
1119     },
1120     {
1121         search_for_quantizers_fast,
1122         encode_window_bands_info,
1123         quantize_and_encode_band,
1124         search_for_ms,
1125     },
1126 };