]> git.sesse.net Git - ffmpeg/blob - libavcodec/aaccoder.c
qpeg: use reget_buffer() in decode_frame()
[ffmpeg] / libavcodec / aaccoder.c
1 /*
2  * AAC coefficients encoder
3  * Copyright (C) 2008-2009 Konstantin Shishkov
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC coefficients encoder
25  */
26
27 /***********************************
28  *              TODOs:
29  * speedup quantizer selection
30  * add sane pulse detection
31  ***********************************/
32
33 #include <float.h>
34 #include "avcodec.h"
35 #include "put_bits.h"
36 #include "aac.h"
37 #include "aacenc.h"
38 #include "aactab.h"
39 #include "libavutil/libm.h"
40
41 /** bits needed to code codebook run value for long windows */
42 static const uint8_t run_value_bits_long[64] = {
43      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
44      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
45     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
46     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
47 };
48
49 /** bits needed to code codebook run value for short windows */
50 static const uint8_t run_value_bits_short[16] = {
51     3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
52 };
53
54 static const uint8_t *run_value_bits[2] = {
55     run_value_bits_long, run_value_bits_short
56 };
57
58
59 /**
60  * Quantize one coefficient.
61  * @return absolute value of the quantized coefficient
62  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
63  */
64 static av_always_inline int quant(float coef, const float Q)
65 {
66     float a = coef * Q;
67     return sqrtf(a * sqrtf(a)) + 0.4054;
68 }
69
70 static void quantize_bands(int *out, const float *in, const float *scaled,
71                            int size, float Q34, int is_signed, int maxval)
72 {
73     int i;
74     double qc;
75     for (i = 0; i < size; i++) {
76         qc = scaled[i] * Q34;
77         out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
78         if (is_signed && in[i] < 0.0f) {
79             out[i] = -out[i];
80         }
81     }
82 }
83
84 static void abs_pow34_v(float *out, const float *in, const int size)
85 {
86 #ifndef USE_REALLY_FULL_SEARCH
87     int i;
88     for (i = 0; i < size; i++) {
89         float a = fabsf(in[i]);
90         out[i] = sqrtf(a * sqrtf(a));
91     }
92 #endif /* USE_REALLY_FULL_SEARCH */
93 }
94
95 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
96 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
97
98 /**
99  * Calculate rate distortion cost for quantizing with given codebook
100  *
101  * @return quantization distortion
102  */
103 static av_always_inline float quantize_and_encode_band_cost_template(
104                                 struct AACEncContext *s,
105                                 PutBitContext *pb, const float *in,
106                                 const float *scaled, int size, int scale_idx,
107                                 int cb, const float lambda, const float uplim,
108                                 int *bits, int BT_ZERO, int BT_UNSIGNED,
109                                 int BT_PAIR, int BT_ESC)
110 {
111     const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
112     const float  Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
113     const float CLIPPED_ESCAPE = 165140.0f*IQ;
114     int i, j;
115     float cost = 0;
116     const int dim = BT_PAIR ? 2 : 4;
117     int resbits = 0;
118     const float  Q34 = sqrtf(Q * sqrtf(Q));
119     const int range  = aac_cb_range[cb];
120     const int maxval = aac_cb_maxval[cb];
121     int off;
122
123     if (BT_ZERO) {
124         for (i = 0; i < size; i++)
125             cost += in[i]*in[i];
126         if (bits)
127             *bits = 0;
128         return cost * lambda;
129     }
130     if (!scaled) {
131         abs_pow34_v(s->scoefs, in, size);
132         scaled = s->scoefs;
133     }
134     quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
135     if (BT_UNSIGNED) {
136         off = 0;
137     } else {
138         off = maxval;
139     }
140     for (i = 0; i < size; i += dim) {
141         const float *vec;
142         int *quants = s->qcoefs + i;
143         int curidx = 0;
144         int curbits;
145         float rd = 0.0f;
146         for (j = 0; j < dim; j++) {
147             curidx *= range;
148             curidx += quants[j] + off;
149         }
150         curbits =  ff_aac_spectral_bits[cb-1][curidx];
151         vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
152         if (BT_UNSIGNED) {
153             for (j = 0; j < dim; j++) {
154                 float t = fabsf(in[i+j]);
155                 float di;
156                 if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
157                     if (t >= CLIPPED_ESCAPE) {
158                         di = t - CLIPPED_ESCAPE;
159                         curbits += 21;
160                     } else {
161                         int c = av_clip(quant(t, Q), 0, 8191);
162                         di = t - c*cbrtf(c)*IQ;
163                         curbits += av_log2(c)*2 - 4 + 1;
164                     }
165                 } else {
166                     di = t - vec[j]*IQ;
167                 }
168                 if (vec[j] != 0.0f)
169                     curbits++;
170                 rd += di*di;
171             }
172         } else {
173             for (j = 0; j < dim; j++) {
174                 float di = in[i+j] - vec[j]*IQ;
175                 rd += di*di;
176             }
177         }
178         cost    += rd * lambda + curbits;
179         resbits += curbits;
180         if (cost >= uplim)
181             return uplim;
182         if (pb) {
183             put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
184             if (BT_UNSIGNED)
185                 for (j = 0; j < dim; j++)
186                     if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
187                         put_bits(pb, 1, in[i+j] < 0.0f);
188             if (BT_ESC) {
189                 for (j = 0; j < 2; j++) {
190                     if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
191                         int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
192                         int len = av_log2(coef);
193
194                         put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
195                         put_bits(pb, len, coef & ((1 << len) - 1));
196                     }
197                 }
198             }
199         }
200     }
201
202     if (bits)
203         *bits = resbits;
204     return cost;
205 }
206
207 #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
208 static float quantize_and_encode_band_cost_ ## NAME(                                        \
209                                 struct AACEncContext *s,                                \
210                                 PutBitContext *pb, const float *in,                     \
211                                 const float *scaled, int size, int scale_idx,           \
212                                 int cb, const float lambda, const float uplim,          \
213                                 int *bits) {                                            \
214     return quantize_and_encode_band_cost_template(                                      \
215                                 s, pb, in, scaled, size, scale_idx,                     \
216                                 BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
217                                 BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
218 }
219
220 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
221 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
222 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
223 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
224 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
225 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
226
227 static float (*const quantize_and_encode_band_cost_arr[])(
228                                 struct AACEncContext *s,
229                                 PutBitContext *pb, const float *in,
230                                 const float *scaled, int size, int scale_idx,
231                                 int cb, const float lambda, const float uplim,
232                                 int *bits) = {
233     quantize_and_encode_band_cost_ZERO,
234     quantize_and_encode_band_cost_SQUAD,
235     quantize_and_encode_band_cost_SQUAD,
236     quantize_and_encode_band_cost_UQUAD,
237     quantize_and_encode_band_cost_UQUAD,
238     quantize_and_encode_band_cost_SPAIR,
239     quantize_and_encode_band_cost_SPAIR,
240     quantize_and_encode_band_cost_UPAIR,
241     quantize_and_encode_band_cost_UPAIR,
242     quantize_and_encode_band_cost_UPAIR,
243     quantize_and_encode_band_cost_UPAIR,
244     quantize_and_encode_band_cost_ESC,
245 };
246
247 #define quantize_and_encode_band_cost(                                  \
248                                 s, pb, in, scaled, size, scale_idx, cb, \
249                                 lambda, uplim, bits)                    \
250     quantize_and_encode_band_cost_arr[cb](                              \
251                                 s, pb, in, scaled, size, scale_idx, cb, \
252                                 lambda, uplim, bits)
253
254 static float quantize_band_cost(struct AACEncContext *s, const float *in,
255                                 const float *scaled, int size, int scale_idx,
256                                 int cb, const float lambda, const float uplim,
257                                 int *bits)
258 {
259     return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
260                                          cb, lambda, uplim, bits);
261 }
262
263 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
264                                      const float *in, int size, int scale_idx,
265                                      int cb, const float lambda)
266 {
267     quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
268                                   INFINITY, NULL);
269 }
270
271 static float find_max_val(int group_len, int swb_size, const float *scaled) {
272     float maxval = 0.0f;
273     int w2, i;
274     for (w2 = 0; w2 < group_len; w2++) {
275         for (i = 0; i < swb_size; i++) {
276             maxval = FFMAX(maxval, scaled[w2*128+i]);
277         }
278     }
279     return maxval;
280 }
281
282 static int find_min_book(float maxval, int sf) {
283     float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512];
284     float Q34 = sqrtf(Q * sqrtf(Q));
285     int qmaxval, cb;
286     qmaxval = maxval * Q34 + 0.4054f;
287     if      (qmaxval ==  0) cb = 0;
288     else if (qmaxval ==  1) cb = 1;
289     else if (qmaxval ==  2) cb = 3;
290     else if (qmaxval <=  4) cb = 5;
291     else if (qmaxval <=  7) cb = 7;
292     else if (qmaxval <= 12) cb = 9;
293     else                    cb = 11;
294     return cb;
295 }
296
297 /**
298  * structure used in optimal codebook search
299  */
300 typedef struct BandCodingPath {
301     int prev_idx; ///< pointer to the previous path point
302     float cost;   ///< path cost
303     int run;
304 } BandCodingPath;
305
306 /**
307  * Encode band info for single window group bands.
308  */
309 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
310                                      int win, int group_len, const float lambda)
311 {
312     BandCodingPath path[120][12];
313     int w, swb, cb, start, start2, size;
314     int i, j;
315     const int max_sfb  = sce->ics.max_sfb;
316     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
317     const int run_esc  = (1 << run_bits) - 1;
318     int idx, ppos, count;
319     int stackrun[120], stackcb[120], stack_len;
320     float next_minrd = INFINITY;
321     int next_mincb = 0;
322
323     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
324     start = win*128;
325     for (cb = 0; cb < 12; cb++) {
326         path[0][cb].cost     = 0.0f;
327         path[0][cb].prev_idx = -1;
328         path[0][cb].run      = 0;
329     }
330     for (swb = 0; swb < max_sfb; swb++) {
331         start2 = start;
332         size = sce->ics.swb_sizes[swb];
333         if (sce->zeroes[win*16 + swb]) {
334             for (cb = 0; cb < 12; cb++) {
335                 path[swb+1][cb].prev_idx = cb;
336                 path[swb+1][cb].cost     = path[swb][cb].cost;
337                 path[swb+1][cb].run      = path[swb][cb].run + 1;
338             }
339         } else {
340             float minrd = next_minrd;
341             int mincb = next_mincb;
342             next_minrd = INFINITY;
343             next_mincb = 0;
344             for (cb = 0; cb < 12; cb++) {
345                 float cost_stay_here, cost_get_here;
346                 float rd = 0.0f;
347                 for (w = 0; w < group_len; w++) {
348                     FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
349                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
350                                              s->scoefs + start + w*128, size,
351                                              sce->sf_idx[(win+w)*16+swb], cb,
352                                              lambda / band->threshold, INFINITY, NULL);
353                 }
354                 cost_stay_here = path[swb][cb].cost + rd;
355                 cost_get_here  = minrd              + rd + run_bits + 4;
356                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
357                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
358                     cost_stay_here += run_bits;
359                 if (cost_get_here < cost_stay_here) {
360                     path[swb+1][cb].prev_idx = mincb;
361                     path[swb+1][cb].cost     = cost_get_here;
362                     path[swb+1][cb].run      = 1;
363                 } else {
364                     path[swb+1][cb].prev_idx = cb;
365                     path[swb+1][cb].cost     = cost_stay_here;
366                     path[swb+1][cb].run      = path[swb][cb].run + 1;
367                 }
368                 if (path[swb+1][cb].cost < next_minrd) {
369                     next_minrd = path[swb+1][cb].cost;
370                     next_mincb = cb;
371                 }
372             }
373         }
374         start += sce->ics.swb_sizes[swb];
375     }
376
377     //convert resulting path from backward-linked list
378     stack_len = 0;
379     idx       = 0;
380     for (cb = 1; cb < 12; cb++)
381         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
382             idx = cb;
383     ppos = max_sfb;
384     while (ppos > 0) {
385         cb = idx;
386         stackrun[stack_len] = path[ppos][cb].run;
387         stackcb [stack_len] = cb;
388         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
389         ppos -= path[ppos][cb].run;
390         stack_len++;
391     }
392     //perform actual band info encoding
393     start = 0;
394     for (i = stack_len - 1; i >= 0; i--) {
395         put_bits(&s->pb, 4, stackcb[i]);
396         count = stackrun[i];
397         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
398         //XXX: memset when band_type is also uint8_t
399         for (j = 0; j < count; j++) {
400             sce->band_type[win*16 + start] =  stackcb[i];
401             start++;
402         }
403         while (count >= run_esc) {
404             put_bits(&s->pb, run_bits, run_esc);
405             count -= run_esc;
406         }
407         put_bits(&s->pb, run_bits, count);
408     }
409 }
410
411 static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
412                                   int win, int group_len, const float lambda)
413 {
414     BandCodingPath path[120][12];
415     int w, swb, cb, start, start2, size;
416     int i, j;
417     const int max_sfb  = sce->ics.max_sfb;
418     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
419     const int run_esc  = (1 << run_bits) - 1;
420     int idx, ppos, count;
421     int stackrun[120], stackcb[120], stack_len;
422     float next_minrd = INFINITY;
423     int next_mincb = 0;
424
425     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
426     start = win*128;
427     for (cb = 0; cb < 12; cb++) {
428         path[0][cb].cost     = run_bits+4;
429         path[0][cb].prev_idx = -1;
430         path[0][cb].run      = 0;
431     }
432     for (swb = 0; swb < max_sfb; swb++) {
433         start2 = start;
434         size = sce->ics.swb_sizes[swb];
435         if (sce->zeroes[win*16 + swb]) {
436             for (cb = 0; cb < 12; cb++) {
437                 path[swb+1][cb].prev_idx = cb;
438                 path[swb+1][cb].cost     = path[swb][cb].cost;
439                 path[swb+1][cb].run      = path[swb][cb].run + 1;
440             }
441         } else {
442             float minrd = next_minrd;
443             int mincb = next_mincb;
444             int startcb = sce->band_type[win*16+swb];
445             next_minrd = INFINITY;
446             next_mincb = 0;
447             for (cb = 0; cb < startcb; cb++) {
448                 path[swb+1][cb].cost = 61450;
449                 path[swb+1][cb].prev_idx = -1;
450                 path[swb+1][cb].run = 0;
451             }
452             for (cb = startcb; cb < 12; cb++) {
453                 float cost_stay_here, cost_get_here;
454                 float rd = 0.0f;
455                 for (w = 0; w < group_len; w++) {
456                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
457                                              s->scoefs + start + w*128, size,
458                                              sce->sf_idx[(win+w)*16+swb], cb,
459                                              0, INFINITY, NULL);
460                 }
461                 cost_stay_here = path[swb][cb].cost + rd;
462                 cost_get_here  = minrd              + rd + run_bits + 4;
463                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
464                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
465                     cost_stay_here += run_bits;
466                 if (cost_get_here < cost_stay_here) {
467                     path[swb+1][cb].prev_idx = mincb;
468                     path[swb+1][cb].cost     = cost_get_here;
469                     path[swb+1][cb].run      = 1;
470                 } else {
471                     path[swb+1][cb].prev_idx = cb;
472                     path[swb+1][cb].cost     = cost_stay_here;
473                     path[swb+1][cb].run      = path[swb][cb].run + 1;
474                 }
475                 if (path[swb+1][cb].cost < next_minrd) {
476                     next_minrd = path[swb+1][cb].cost;
477                     next_mincb = cb;
478                 }
479             }
480         }
481         start += sce->ics.swb_sizes[swb];
482     }
483
484     //convert resulting path from backward-linked list
485     stack_len = 0;
486     idx       = 0;
487     for (cb = 1; cb < 12; cb++)
488         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
489             idx = cb;
490     ppos = max_sfb;
491     while (ppos > 0) {
492         assert(idx >= 0);
493         cb = idx;
494         stackrun[stack_len] = path[ppos][cb].run;
495         stackcb [stack_len] = cb;
496         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
497         ppos -= path[ppos][cb].run;
498         stack_len++;
499     }
500     //perform actual band info encoding
501     start = 0;
502     for (i = stack_len - 1; i >= 0; i--) {
503         put_bits(&s->pb, 4, stackcb[i]);
504         count = stackrun[i];
505         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
506         //XXX: memset when band_type is also uint8_t
507         for (j = 0; j < count; j++) {
508             sce->band_type[win*16 + start] =  stackcb[i];
509             start++;
510         }
511         while (count >= run_esc) {
512             put_bits(&s->pb, run_bits, run_esc);
513             count -= run_esc;
514         }
515         put_bits(&s->pb, run_bits, count);
516     }
517 }
518
519 /** Return the minimum scalefactor where the quantized coef does not clip. */
520 static av_always_inline uint8_t coef2minsf(float coef) {
521     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
522 }
523
524 /** Return the maximum scalefactor where the quantized coef is not zero. */
525 static av_always_inline uint8_t coef2maxsf(float coef) {
526     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
527 }
528
529 typedef struct TrellisPath {
530     float cost;
531     int prev;
532 } TrellisPath;
533
534 #define TRELLIS_STAGES 121
535 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
536
537 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
538                                        SingleChannelElement *sce,
539                                        const float lambda)
540 {
541     int q, w, w2, g, start = 0;
542     int i, j;
543     int idx;
544     TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
545     int bandaddr[TRELLIS_STAGES];
546     int minq;
547     float mincost;
548     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
549     int q0, q1, qcnt = 0;
550
551     for (i = 0; i < 1024; i++) {
552         float t = fabsf(sce->coeffs[i]);
553         if (t > 0.0f) {
554             q0f = FFMIN(q0f, t);
555             q1f = FFMAX(q1f, t);
556             qnrgf += t*t;
557             qcnt++;
558         }
559     }
560
561     if (!qcnt) {
562         memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
563         memset(sce->zeroes, 1, sizeof(sce->zeroes));
564         return;
565     }
566
567     //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
568     q0 = coef2minsf(q0f);
569     //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
570     q1 = coef2maxsf(q1f);
571     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
572     if (q1 - q0 > 60) {
573         int q0low  = q0;
574         int q1high = q1;
575         //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
576         int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
577         q1 = qnrg + 30;
578         q0 = qnrg - 30;
579         //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
580         if (q0 < q0low) {
581             q1 += q0low - q0;
582             q0  = q0low;
583         } else if (q1 > q1high) {
584             q0 -= q1 - q1high;
585             q1  = q1high;
586         }
587     }
588     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
589
590     for (i = 0; i < TRELLIS_STATES; i++) {
591         paths[0][i].cost    = 0.0f;
592         paths[0][i].prev    = -1;
593     }
594     for (j = 1; j < TRELLIS_STAGES; j++) {
595         for (i = 0; i < TRELLIS_STATES; i++) {
596             paths[j][i].cost    = INFINITY;
597             paths[j][i].prev    = -2;
598         }
599     }
600     idx = 1;
601     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
602     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
603         start = w*128;
604         for (g = 0; g < sce->ics.num_swb; g++) {
605             const float *coefs = sce->coeffs + start;
606             float qmin, qmax;
607             int nz = 0;
608
609             bandaddr[idx] = w * 16 + g;
610             qmin = INT_MAX;
611             qmax = 0.0f;
612             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
613                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
614                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
615                     sce->zeroes[(w+w2)*16+g] = 1;
616                     continue;
617                 }
618                 sce->zeroes[(w+w2)*16+g] = 0;
619                 nz = 1;
620                 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
621                     float t = fabsf(coefs[w2*128+i]);
622                     if (t > 0.0f)
623                         qmin = FFMIN(qmin, t);
624                     qmax = FFMAX(qmax, t);
625                 }
626             }
627             if (nz) {
628                 int minscale, maxscale;
629                 float minrd = INFINITY;
630                 float maxval;
631                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
632                 minscale = coef2minsf(qmin);
633                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
634                 maxscale = coef2maxsf(qmax);
635                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
636                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
637                 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
638                 for (q = minscale; q < maxscale; q++) {
639                     float dist = 0;
640                     int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
641                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
642                         FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
643                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
644                                                    q + q0, cb, lambda / band->threshold, INFINITY, NULL);
645                     }
646                     minrd = FFMIN(minrd, dist);
647
648                     for (i = 0; i < q1 - q0; i++) {
649                         float cost;
650                         cost = paths[idx - 1][i].cost + dist
651                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
652                         if (cost < paths[idx][q].cost) {
653                             paths[idx][q].cost    = cost;
654                             paths[idx][q].prev    = i;
655                         }
656                     }
657                 }
658             } else {
659                 for (q = 0; q < q1 - q0; q++) {
660                     paths[idx][q].cost = paths[idx - 1][q].cost + 1;
661                     paths[idx][q].prev = q;
662                 }
663             }
664             sce->zeroes[w*16+g] = !nz;
665             start += sce->ics.swb_sizes[g];
666             idx++;
667         }
668     }
669     idx--;
670     mincost = paths[idx][0].cost;
671     minq    = 0;
672     for (i = 1; i < TRELLIS_STATES; i++) {
673         if (paths[idx][i].cost < mincost) {
674             mincost = paths[idx][i].cost;
675             minq = i;
676         }
677     }
678     while (idx) {
679         sce->sf_idx[bandaddr[idx]] = minq + q0;
680         minq = paths[idx][minq].prev;
681         idx--;
682     }
683     //set the same quantizers inside window groups
684     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
685         for (g = 0;  g < sce->ics.num_swb; g++)
686             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
687                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
688 }
689
690 /**
691  * two-loop quantizers search taken from ISO 13818-7 Appendix C
692  */
693 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
694                                           AACEncContext *s,
695                                           SingleChannelElement *sce,
696                                           const float lambda)
697 {
698     int start = 0, i, w, w2, g;
699     int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
700     float dists[128], uplims[128];
701     float maxvals[128];
702     int fflag, minscaler;
703     int its  = 0;
704     int allz = 0;
705     float minthr = INFINITY;
706
707     //XXX: some heuristic to determine initial quantizers will reduce search time
708     memset(dists, 0, sizeof(dists));
709     //determine zero bands and upper limits
710     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
711         for (g = 0;  g < sce->ics.num_swb; g++) {
712             int nz = 0;
713             float uplim = 0.0f;
714             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
715                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
716                 uplim += band->threshold;
717                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
718                     sce->zeroes[(w+w2)*16+g] = 1;
719                     continue;
720                 }
721                 nz = 1;
722             }
723             uplims[w*16+g] = uplim *512;
724             sce->zeroes[w*16+g] = !nz;
725             if (nz)
726                 minthr = FFMIN(minthr, uplim);
727             allz |= nz;
728         }
729     }
730     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
731         for (g = 0;  g < sce->ics.num_swb; g++) {
732             if (sce->zeroes[w*16+g]) {
733                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
734                 continue;
735             }
736             sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
737         }
738     }
739
740     if (!allz)
741         return;
742     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
743
744     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
745         start = w*128;
746         for (g = 0;  g < sce->ics.num_swb; g++) {
747             const float *scaled = s->scoefs + start;
748             maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
749             start += sce->ics.swb_sizes[g];
750         }
751     }
752
753     //perform two-loop search
754     //outer loop - improve quality
755     do {
756         int tbits, qstep;
757         minscaler = sce->sf_idx[0];
758         //inner loop - quantize spectrum to fit into given number of bits
759         qstep = its ? 1 : 32;
760         do {
761             int prev = -1;
762             tbits = 0;
763             fflag = 0;
764             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
765                 start = w*128;
766                 for (g = 0;  g < sce->ics.num_swb; g++) {
767                     const float *coefs = sce->coeffs + start;
768                     const float *scaled = s->scoefs + start;
769                     int bits = 0;
770                     int cb;
771                     float dist = 0.0f;
772
773                     if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
774                         start += sce->ics.swb_sizes[g];
775                         continue;
776                     }
777                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
778                     cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
779                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
780                         int b;
781                         dist += quantize_band_cost(s, coefs + w2*128,
782                                                    scaled + w2*128,
783                                                    sce->ics.swb_sizes[g],
784                                                    sce->sf_idx[w*16+g],
785                                                    cb,
786                                                    1.0f,
787                                                    INFINITY,
788                                                    &b);
789                         bits += b;
790                     }
791                     dists[w*16+g] = dist - bits;
792                     if (prev != -1) {
793                         bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
794                     }
795                     tbits += bits;
796                     start += sce->ics.swb_sizes[g];
797                     prev = sce->sf_idx[w*16+g];
798                 }
799             }
800             if (tbits > destbits) {
801                 for (i = 0; i < 128; i++)
802                     if (sce->sf_idx[i] < 218 - qstep)
803                         sce->sf_idx[i] += qstep;
804             } else {
805                 for (i = 0; i < 128; i++)
806                     if (sce->sf_idx[i] > 60 - qstep)
807                         sce->sf_idx[i] -= qstep;
808             }
809             qstep >>= 1;
810             if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
811                 qstep = 1;
812         } while (qstep);
813
814         fflag = 0;
815         minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
816         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
817             for (g = 0; g < sce->ics.num_swb; g++) {
818                 int prevsc = sce->sf_idx[w*16+g];
819                 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
820                     if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
821                         sce->sf_idx[w*16+g]--;
822                     else //Try to make sure there is some energy in every band
823                         sce->sf_idx[w*16+g]-=2;
824                 }
825                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
826                 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
827                 if (sce->sf_idx[w*16+g] != prevsc)
828                     fflag = 1;
829                 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
830             }
831         }
832         its++;
833     } while (fflag && its < 10);
834 }
835
836 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
837                                        SingleChannelElement *sce,
838                                        const float lambda)
839 {
840     int start = 0, i, w, w2, g;
841     float uplim[128], maxq[128];
842     int minq, maxsf;
843     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
844     int last = 0, lastband = 0, curband = 0;
845     float avg_energy = 0.0;
846     if (sce->ics.num_windows == 1) {
847         start = 0;
848         for (i = 0; i < 1024; i++) {
849             if (i - start >= sce->ics.swb_sizes[curband]) {
850                 start += sce->ics.swb_sizes[curband];
851                 curband++;
852             }
853             if (sce->coeffs[i]) {
854                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
855                 last = i;
856                 lastband = curband;
857             }
858         }
859     } else {
860         for (w = 0; w < 8; w++) {
861             const float *coeffs = sce->coeffs + w*128;
862             start = 0;
863             for (i = 0; i < 128; i++) {
864                 if (i - start >= sce->ics.swb_sizes[curband]) {
865                     start += sce->ics.swb_sizes[curband];
866                     curband++;
867                 }
868                 if (coeffs[i]) {
869                     avg_energy += coeffs[i] * coeffs[i];
870                     last = FFMAX(last, i);
871                     lastband = FFMAX(lastband, curband);
872                 }
873             }
874         }
875     }
876     last++;
877     avg_energy /= last;
878     if (avg_energy == 0.0f) {
879         for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
880             sce->sf_idx[i] = SCALE_ONE_POS;
881         return;
882     }
883     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
884         start = w*128;
885         for (g = 0; g < sce->ics.num_swb; g++) {
886             float *coefs   = sce->coeffs + start;
887             const int size = sce->ics.swb_sizes[g];
888             int start2 = start, end2 = start + size, peakpos = start;
889             float maxval = -1, thr = 0.0f, t;
890             maxq[w*16+g] = 0.0f;
891             if (g > lastband) {
892                 maxq[w*16+g] = 0.0f;
893                 start += size;
894                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
895                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
896                 continue;
897             }
898             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
899                 for (i = 0; i < size; i++) {
900                     float t = coefs[w2*128+i]*coefs[w2*128+i];
901                     maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
902                     thr += t;
903                     if (sce->ics.num_windows == 1 && maxval < t) {
904                         maxval  = t;
905                         peakpos = start+i;
906                     }
907                 }
908             }
909             if (sce->ics.num_windows == 1) {
910                 start2 = FFMAX(peakpos - 2, start2);
911                 end2   = FFMIN(peakpos + 3, end2);
912             } else {
913                 start2 -= start;
914                 end2   -= start;
915             }
916             start += size;
917             thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
918             t   = 1.0 - (1.0 * start2 / last);
919             uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
920         }
921     }
922     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
923     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
924     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
925         start = w*128;
926         for (g = 0;  g < sce->ics.num_swb; g++) {
927             const float *coefs  = sce->coeffs + start;
928             const float *scaled = s->scoefs   + start;
929             const int size      = sce->ics.swb_sizes[g];
930             int scf, prev_scf, step;
931             int min_scf = -1, max_scf = 256;
932             float curdiff;
933             if (maxq[w*16+g] < 21.544) {
934                 sce->zeroes[w*16+g] = 1;
935                 start += size;
936                 continue;
937             }
938             sce->zeroes[w*16+g] = 0;
939             scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
940             step = 16;
941             for (;;) {
942                 float dist = 0.0f;
943                 int quant_max;
944
945                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
946                     int b;
947                     dist += quantize_band_cost(s, coefs + w2*128,
948                                                scaled + w2*128,
949                                                sce->ics.swb_sizes[g],
950                                                scf,
951                                                ESC_BT,
952                                                lambda,
953                                                INFINITY,
954                                                &b);
955                     dist -= b;
956                 }
957                 dist *= 1.0f / 512.0f / lambda;
958                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
959                 if (quant_max >= 8191) { // too much, return to the previous quantizer
960                     sce->sf_idx[w*16+g] = prev_scf;
961                     break;
962                 }
963                 prev_scf = scf;
964                 curdiff = fabsf(dist - uplim[w*16+g]);
965                 if (curdiff <= 1.0f)
966                     step = 0;
967                 else
968                     step = log2f(curdiff);
969                 if (dist > uplim[w*16+g])
970                     step = -step;
971                 scf += step;
972                 scf = av_clip_uint8(scf);
973                 step = scf - prev_scf;
974                 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
975                     sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
976                     break;
977                 }
978                 if (step > 0)
979                     min_scf = prev_scf;
980                 else
981                     max_scf = prev_scf;
982             }
983             start += size;
984         }
985     }
986     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
987     for (i = 1; i < 128; i++) {
988         if (!sce->sf_idx[i])
989             sce->sf_idx[i] = sce->sf_idx[i-1];
990         else
991             minq = FFMIN(minq, sce->sf_idx[i]);
992     }
993     if (minq == INT_MAX)
994         minq = 0;
995     minq = FFMIN(minq, SCALE_MAX_POS);
996     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
997     for (i = 126; i >= 0; i--) {
998         if (!sce->sf_idx[i])
999             sce->sf_idx[i] = sce->sf_idx[i+1];
1000         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1001     }
1002 }
1003
1004 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1005                                        SingleChannelElement *sce,
1006                                        const float lambda)
1007 {
1008     int start = 0, i, w, w2, g;
1009     int minq = 255;
1010
1011     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1012     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1013         start = w*128;
1014         for (g = 0; g < sce->ics.num_swb; g++) {
1015             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1016                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
1017                 if (band->energy <= band->threshold) {
1018                     sce->sf_idx[(w+w2)*16+g] = 218;
1019                     sce->zeroes[(w+w2)*16+g] = 1;
1020                 } else {
1021                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1022                     sce->zeroes[(w+w2)*16+g] = 0;
1023                 }
1024                 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1025             }
1026         }
1027     }
1028     for (i = 0; i < 128; i++) {
1029         sce->sf_idx[i] = 140;
1030         //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1031     }
1032     //set the same quantizers inside window groups
1033     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1034         for (g = 0;  g < sce->ics.num_swb; g++)
1035             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1036                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1037 }
1038
1039 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1040                           const float lambda)
1041 {
1042     int start = 0, i, w, w2, g;
1043     float M[128], S[128];
1044     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1045     SingleChannelElement *sce0 = &cpe->ch[0];
1046     SingleChannelElement *sce1 = &cpe->ch[1];
1047     if (!cpe->common_window)
1048         return;
1049     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1050         for (g = 0;  g < sce0->ics.num_swb; g++) {
1051             if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1052                 float dist1 = 0.0f, dist2 = 0.0f;
1053                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1054                     FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
1055                     FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
1056                     float minthr = FFMIN(band0->threshold, band1->threshold);
1057                     float maxthr = FFMAX(band0->threshold, band1->threshold);
1058                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1059                         M[i] = (sce0->coeffs[start+w2*128+i]
1060                               + sce1->coeffs[start+w2*128+i]) * 0.5;
1061                         S[i] =  M[i]
1062                               - sce1->coeffs[start+w2*128+i];
1063                     }
1064                     abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1065                     abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1066                     abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1067                     abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1068                     dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1069                                                 L34,
1070                                                 sce0->ics.swb_sizes[g],
1071                                                 sce0->sf_idx[(w+w2)*16+g],
1072                                                 sce0->band_type[(w+w2)*16+g],
1073                                                 lambda / band0->threshold, INFINITY, NULL);
1074                     dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1075                                                 R34,
1076                                                 sce1->ics.swb_sizes[g],
1077                                                 sce1->sf_idx[(w+w2)*16+g],
1078                                                 sce1->band_type[(w+w2)*16+g],
1079                                                 lambda / band1->threshold, INFINITY, NULL);
1080                     dist2 += quantize_band_cost(s, M,
1081                                                 M34,
1082                                                 sce0->ics.swb_sizes[g],
1083                                                 sce0->sf_idx[(w+w2)*16+g],
1084                                                 sce0->band_type[(w+w2)*16+g],
1085                                                 lambda / maxthr, INFINITY, NULL);
1086                     dist2 += quantize_band_cost(s, S,
1087                                                 S34,
1088                                                 sce1->ics.swb_sizes[g],
1089                                                 sce1->sf_idx[(w+w2)*16+g],
1090                                                 sce1->band_type[(w+w2)*16+g],
1091                                                 lambda / minthr, INFINITY, NULL);
1092                 }
1093                 cpe->ms_mask[w*16+g] = dist2 < dist1;
1094             }
1095             start += sce0->ics.swb_sizes[g];
1096         }
1097     }
1098 }
1099
1100 AACCoefficientsEncoder ff_aac_coders[] = {
1101     {
1102         search_for_quantizers_faac,
1103         encode_window_bands_info,
1104         quantize_and_encode_band,
1105         search_for_ms,
1106     },
1107     {
1108         search_for_quantizers_anmr,
1109         encode_window_bands_info,
1110         quantize_and_encode_band,
1111         search_for_ms,
1112     },
1113     {
1114         search_for_quantizers_twoloop,
1115         codebook_trellis_rate,
1116         quantize_and_encode_band,
1117         search_for_ms,
1118     },
1119     {
1120         search_for_quantizers_fast,
1121         encode_window_bands_info,
1122         quantize_and_encode_band,
1123         search_for_ms,
1124     },
1125 };