]> git.sesse.net Git - ffmpeg/blob - libavcodec/aaccoder.c
Merge commit '40d43d25e76ca078e7665752e815fc8d96252f06'
[ffmpeg] / libavcodec / aaccoder.c
1 /*
2  * AAC coefficients encoder
3  * Copyright (C) 2008-2009 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC coefficients encoder
25  */
26
27 /***********************************
28  *              TODOs:
29  * speedup quantizer selection
30  * add sane pulse detection
31  ***********************************/
32
33 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
35 #include <float.h>
36
37 #include "libavutil/mathematics.h"
38 #include "mathops.h"
39 #include "avcodec.h"
40 #include "put_bits.h"
41 #include "aac.h"
42 #include "aacenc.h"
43 #include "aactab.h"
44 #include "aacenctab.h"
45 #include "aacenc_utils.h"
46 #include "aacenc_quantization.h"
47
48 #include "aacenc_is.h"
49 #include "aacenc_tns.h"
50 #include "aacenc_ltp.h"
51 #include "aacenc_pred.h"
52
53 #include "libavcodec/aaccoder_twoloop.h"
54
55 /* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
56  * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
57 #define NOISE_SPREAD_THRESHOLD 0.9f
58
59 /* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
60  * replace low energy non zero bands */
61 #define NOISE_LAMBDA_REPLACE 1.948f
62
63 #include "libavcodec/aaccoder_trellis.h"
64
65 /**
66  * structure used in optimal codebook search
67  */
68 typedef struct BandCodingPath {
69     int prev_idx; ///< pointer to the previous path point
70     float cost;   ///< path cost
71     int run;
72 } BandCodingPath;
73
74 /**
75  * Encode band info for single window group bands.
76  */
77 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
78                                      int win, int group_len, const float lambda)
79 {
80     BandCodingPath path[120][CB_TOT_ALL];
81     int w, swb, cb, start, size;
82     int i, j;
83     const int max_sfb  = sce->ics.max_sfb;
84     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
85     const int run_esc  = (1 << run_bits) - 1;
86     int idx, ppos, count;
87     int stackrun[120], stackcb[120], stack_len;
88     float next_minrd = INFINITY;
89     int next_mincb = 0;
90
91     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
92     start = win*128;
93     for (cb = 0; cb < CB_TOT_ALL; cb++) {
94         path[0][cb].cost     = 0.0f;
95         path[0][cb].prev_idx = -1;
96         path[0][cb].run      = 0;
97     }
98     for (swb = 0; swb < max_sfb; swb++) {
99         size = sce->ics.swb_sizes[swb];
100         if (sce->zeroes[win*16 + swb]) {
101             for (cb = 0; cb < CB_TOT_ALL; cb++) {
102                 path[swb+1][cb].prev_idx = cb;
103                 path[swb+1][cb].cost     = path[swb][cb].cost;
104                 path[swb+1][cb].run      = path[swb][cb].run + 1;
105             }
106         } else {
107             float minrd = next_minrd;
108             int mincb = next_mincb;
109             next_minrd = INFINITY;
110             next_mincb = 0;
111             for (cb = 0; cb < CB_TOT_ALL; cb++) {
112                 float cost_stay_here, cost_get_here;
113                 float rd = 0.0f;
114                 if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
115                     cb  < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
116                     path[swb+1][cb].prev_idx = -1;
117                     path[swb+1][cb].cost     = INFINITY;
118                     path[swb+1][cb].run      = path[swb][cb].run + 1;
119                     continue;
120                 }
121                 for (w = 0; w < group_len; w++) {
122                     FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
123                     rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
124                                              &s->scoefs[start + w*128], size,
125                                              sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
126                                              lambda / band->threshold, INFINITY, NULL, NULL, 0);
127                 }
128                 cost_stay_here = path[swb][cb].cost + rd;
129                 cost_get_here  = minrd              + rd + run_bits + 4;
130                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
131                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
132                     cost_stay_here += run_bits;
133                 if (cost_get_here < cost_stay_here) {
134                     path[swb+1][cb].prev_idx = mincb;
135                     path[swb+1][cb].cost     = cost_get_here;
136                     path[swb+1][cb].run      = 1;
137                 } else {
138                     path[swb+1][cb].prev_idx = cb;
139                     path[swb+1][cb].cost     = cost_stay_here;
140                     path[swb+1][cb].run      = path[swb][cb].run + 1;
141                 }
142                 if (path[swb+1][cb].cost < next_minrd) {
143                     next_minrd = path[swb+1][cb].cost;
144                     next_mincb = cb;
145                 }
146             }
147         }
148         start += sce->ics.swb_sizes[swb];
149     }
150
151     //convert resulting path from backward-linked list
152     stack_len = 0;
153     idx       = 0;
154     for (cb = 1; cb < CB_TOT_ALL; cb++)
155         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
156             idx = cb;
157     ppos = max_sfb;
158     while (ppos > 0) {
159         av_assert1(idx >= 0);
160         cb = idx;
161         stackrun[stack_len] = path[ppos][cb].run;
162         stackcb [stack_len] = cb;
163         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
164         ppos -= path[ppos][cb].run;
165         stack_len++;
166     }
167     //perform actual band info encoding
168     start = 0;
169     for (i = stack_len - 1; i >= 0; i--) {
170         cb = aac_cb_out_map[stackcb[i]];
171         put_bits(&s->pb, 4, cb);
172         count = stackrun[i];
173         memset(sce->zeroes + win*16 + start, !cb, count);
174         //XXX: memset when band_type is also uint8_t
175         for (j = 0; j < count; j++) {
176             sce->band_type[win*16 + start] = cb;
177             start++;
178         }
179         while (count >= run_esc) {
180             put_bits(&s->pb, run_bits, run_esc);
181             count -= run_esc;
182         }
183         put_bits(&s->pb, run_bits, count);
184     }
185 }
186
187
188 typedef struct TrellisPath {
189     float cost;
190     int prev;
191 } TrellisPath;
192
193 #define TRELLIS_STAGES 121
194 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
195
196 static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
197 {
198     int w, g;
199     int prevscaler_n = -255, prevscaler_i = 0;
200     int bands = 0;
201
202     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
203         for (g = 0;  g < sce->ics.num_swb; g++) {
204             if (sce->zeroes[w*16+g])
205                 continue;
206             if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
207                 sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
208                 bands++;
209             } else if (sce->band_type[w*16+g] == NOISE_BT) {
210                 sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
211                 if (prevscaler_n == -255)
212                     prevscaler_n = sce->sf_idx[w*16+g];
213                 bands++;
214             }
215         }
216     }
217
218     if (!bands)
219         return;
220
221     /* Clip the scalefactor indices */
222     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223         for (g = 0;  g < sce->ics.num_swb; g++) {
224             if (sce->zeroes[w*16+g])
225                 continue;
226             if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
227                 sce->sf_idx[w*16+g] = prevscaler_i = av_clip(sce->sf_idx[w*16+g], prevscaler_i - SCALE_MAX_DIFF, prevscaler_i + SCALE_MAX_DIFF);
228             } else if (sce->band_type[w*16+g] == NOISE_BT) {
229                 sce->sf_idx[w*16+g] = prevscaler_n = av_clip(sce->sf_idx[w*16+g], prevscaler_n - SCALE_MAX_DIFF, prevscaler_n + SCALE_MAX_DIFF);
230             }
231         }
232     }
233 }
234
235 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
236                                        SingleChannelElement *sce,
237                                        const float lambda)
238 {
239     int q, w, w2, g, start = 0;
240     int i, j;
241     int idx;
242     TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
243     int bandaddr[TRELLIS_STAGES];
244     int minq;
245     float mincost;
246     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
247     int q0, q1, qcnt = 0;
248
249     for (i = 0; i < 1024; i++) {
250         float t = fabsf(sce->coeffs[i]);
251         if (t > 0.0f) {
252             q0f = FFMIN(q0f, t);
253             q1f = FFMAX(q1f, t);
254             qnrgf += t*t;
255             qcnt++;
256         }
257     }
258
259     if (!qcnt) {
260         memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
261         memset(sce->zeroes, 1, sizeof(sce->zeroes));
262         return;
263     }
264
265     //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
266     q0 = av_clip(coef2minsf(q0f), 0, SCALE_MAX_POS-1);
267     //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
268     q1 = av_clip(coef2maxsf(q1f), 1, SCALE_MAX_POS);
269     if (q1 - q0 > 60) {
270         int q0low  = q0;
271         int q1high = q1;
272         //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
273         int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
274         q1 = qnrg + 30;
275         q0 = qnrg - 30;
276         if (q0 < q0low) {
277             q1 += q0low - q0;
278             q0  = q0low;
279         } else if (q1 > q1high) {
280             q0 -= q1 - q1high;
281             q1  = q1high;
282         }
283     }
284     // q0 == q1 isn't really a legal situation
285     if (q0 == q1) {
286         // the following is indirect but guarantees q1 != q0 && q1 near q0
287         q1 = av_clip(q0+1, 1, SCALE_MAX_POS);
288         q0 = av_clip(q1-1, 0, SCALE_MAX_POS - 1);
289     }
290
291     for (i = 0; i < TRELLIS_STATES; i++) {
292         paths[0][i].cost    = 0.0f;
293         paths[0][i].prev    = -1;
294     }
295     for (j = 1; j < TRELLIS_STAGES; j++) {
296         for (i = 0; i < TRELLIS_STATES; i++) {
297             paths[j][i].cost    = INFINITY;
298             paths[j][i].prev    = -2;
299         }
300     }
301     idx = 1;
302     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
303     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
304         start = w*128;
305         for (g = 0; g < sce->ics.num_swb; g++) {
306             const float *coefs = &sce->coeffs[start];
307             float qmin, qmax;
308             int nz = 0;
309
310             bandaddr[idx] = w * 16 + g;
311             qmin = INT_MAX;
312             qmax = 0.0f;
313             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
314                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
315                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
316                     sce->zeroes[(w+w2)*16+g] = 1;
317                     continue;
318                 }
319                 sce->zeroes[(w+w2)*16+g] = 0;
320                 nz = 1;
321                 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
322                     float t = fabsf(coefs[w2*128+i]);
323                     if (t > 0.0f)
324                         qmin = FFMIN(qmin, t);
325                     qmax = FFMAX(qmax, t);
326                 }
327             }
328             if (nz) {
329                 int minscale, maxscale;
330                 float minrd = INFINITY;
331                 float maxval;
332                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
333                 minscale = coef2minsf(qmin);
334                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
335                 maxscale = coef2maxsf(qmax);
336                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
337                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
338                 if (minscale == maxscale) {
339                     maxscale = av_clip(minscale+1, 1, TRELLIS_STATES);
340                     minscale = av_clip(maxscale-1, 0, TRELLIS_STATES - 1);
341                 }
342                 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
343                 for (q = minscale; q < maxscale; q++) {
344                     float dist = 0;
345                     int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
346                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
347                         FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
348                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
349                                                    q + q0, cb, lambda / band->threshold, INFINITY, NULL, NULL, 0);
350                     }
351                     minrd = FFMIN(minrd, dist);
352
353                     for (i = 0; i < q1 - q0; i++) {
354                         float cost;
355                         cost = paths[idx - 1][i].cost + dist
356                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
357                         if (cost < paths[idx][q].cost) {
358                             paths[idx][q].cost    = cost;
359                             paths[idx][q].prev    = i;
360                         }
361                     }
362                 }
363             } else {
364                 for (q = 0; q < q1 - q0; q++) {
365                     paths[idx][q].cost = paths[idx - 1][q].cost + 1;
366                     paths[idx][q].prev = q;
367                 }
368             }
369             sce->zeroes[w*16+g] = !nz;
370             start += sce->ics.swb_sizes[g];
371             idx++;
372         }
373     }
374     idx--;
375     mincost = paths[idx][0].cost;
376     minq    = 0;
377     for (i = 1; i < TRELLIS_STATES; i++) {
378         if (paths[idx][i].cost < mincost) {
379             mincost = paths[idx][i].cost;
380             minq = i;
381         }
382     }
383     while (idx) {
384         sce->sf_idx[bandaddr[idx]] = minq + q0;
385         minq = FFMAX(paths[idx][minq].prev, 0);
386         idx--;
387     }
388     //set the same quantizers inside window groups
389     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
390         for (g = 0;  g < sce->ics.num_swb; g++)
391             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
392                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
393 }
394
395
396 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
397                                        SingleChannelElement *sce,
398                                        const float lambda)
399 {
400     int start = 0, i, w, w2, g;
401     float uplim[128], maxq[128];
402     int minq, maxsf;
403     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
404     int last = 0, lastband = 0, curband = 0;
405     float avg_energy = 0.0;
406     if (sce->ics.num_windows == 1) {
407         start = 0;
408         for (i = 0; i < 1024; i++) {
409             if (i - start >= sce->ics.swb_sizes[curband]) {
410                 start += sce->ics.swb_sizes[curband];
411                 curband++;
412             }
413             if (sce->coeffs[i]) {
414                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
415                 last = i;
416                 lastband = curband;
417             }
418         }
419     } else {
420         for (w = 0; w < 8; w++) {
421             const float *coeffs = &sce->coeffs[w*128];
422             curband = start = 0;
423             for (i = 0; i < 128; i++) {
424                 if (i - start >= sce->ics.swb_sizes[curband]) {
425                     start += sce->ics.swb_sizes[curband];
426                     curband++;
427                 }
428                 if (coeffs[i]) {
429                     avg_energy += coeffs[i] * coeffs[i];
430                     last = FFMAX(last, i);
431                     lastband = FFMAX(lastband, curband);
432                 }
433             }
434         }
435     }
436     last++;
437     avg_energy /= last;
438     if (avg_energy == 0.0f) {
439         for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
440             sce->sf_idx[i] = SCALE_ONE_POS;
441         return;
442     }
443     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
444         start = w*128;
445         for (g = 0; g < sce->ics.num_swb; g++) {
446             float *coefs   = &sce->coeffs[start];
447             const int size = sce->ics.swb_sizes[g];
448             int start2 = start, end2 = start + size, peakpos = start;
449             float maxval = -1, thr = 0.0f, t;
450             maxq[w*16+g] = 0.0f;
451             if (g > lastband) {
452                 maxq[w*16+g] = 0.0f;
453                 start += size;
454                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
455                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
456                 continue;
457             }
458             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
459                 for (i = 0; i < size; i++) {
460                     float t = coefs[w2*128+i]*coefs[w2*128+i];
461                     maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
462                     thr += t;
463                     if (sce->ics.num_windows == 1 && maxval < t) {
464                         maxval  = t;
465                         peakpos = start+i;
466                     }
467                 }
468             }
469             if (sce->ics.num_windows == 1) {
470                 start2 = FFMAX(peakpos - 2, start2);
471                 end2   = FFMIN(peakpos + 3, end2);
472             } else {
473                 start2 -= start;
474                 end2   -= start;
475             }
476             start += size;
477             thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
478             t   = 1.0 - (1.0 * start2 / last);
479             uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
480         }
481     }
482     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
483     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
484     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
485         start = w*128;
486         for (g = 0;  g < sce->ics.num_swb; g++) {
487             const float *coefs  = &sce->coeffs[start];
488             const float *scaled = &s->scoefs[start];
489             const int size      = sce->ics.swb_sizes[g];
490             int scf, prev_scf, step;
491             int min_scf = -1, max_scf = 256;
492             float curdiff;
493             if (maxq[w*16+g] < 21.544) {
494                 sce->zeroes[w*16+g] = 1;
495                 start += size;
496                 continue;
497             }
498             sce->zeroes[w*16+g] = 0;
499             scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
500             for (;;) {
501                 float dist = 0.0f;
502                 int quant_max;
503
504                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
505                     int b;
506                     dist += quantize_band_cost(s, coefs + w2*128,
507                                                scaled + w2*128,
508                                                sce->ics.swb_sizes[g],
509                                                scf,
510                                                ESC_BT,
511                                                lambda,
512                                                INFINITY,
513                                                &b, NULL,
514                                                0);
515                     dist -= b;
516                 }
517                 dist *= 1.0f / 512.0f / lambda;
518                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
519                 if (quant_max >= 8191) { // too much, return to the previous quantizer
520                     sce->sf_idx[w*16+g] = prev_scf;
521                     break;
522                 }
523                 prev_scf = scf;
524                 curdiff = fabsf(dist - uplim[w*16+g]);
525                 if (curdiff <= 1.0f)
526                     step = 0;
527                 else
528                     step = log2f(curdiff);
529                 if (dist > uplim[w*16+g])
530                     step = -step;
531                 scf += step;
532                 scf = av_clip_uint8(scf);
533                 step = scf - prev_scf;
534                 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
535                     sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
536                     break;
537                 }
538                 if (step > 0)
539                     min_scf = prev_scf;
540                 else
541                     max_scf = prev_scf;
542             }
543             start += size;
544         }
545     }
546     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
547     for (i = 1; i < 128; i++) {
548         if (!sce->sf_idx[i])
549             sce->sf_idx[i] = sce->sf_idx[i-1];
550         else
551             minq = FFMIN(minq, sce->sf_idx[i]);
552     }
553     if (minq == INT_MAX)
554         minq = 0;
555     minq = FFMIN(minq, SCALE_MAX_POS);
556     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
557     for (i = 126; i >= 0; i--) {
558         if (!sce->sf_idx[i])
559             sce->sf_idx[i] = sce->sf_idx[i+1];
560         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
561     }
562 }
563
564 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
565                                        SingleChannelElement *sce,
566                                        const float lambda)
567 {
568     int i, w, w2, g;
569     int minq = 255;
570
571     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
572     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
573         for (g = 0; g < sce->ics.num_swb; g++) {
574             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
575                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
576                 if (band->energy <= band->threshold) {
577                     sce->sf_idx[(w+w2)*16+g] = 218;
578                     sce->zeroes[(w+w2)*16+g] = 1;
579                 } else {
580                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
581                     sce->zeroes[(w+w2)*16+g] = 0;
582                 }
583                 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
584             }
585         }
586     }
587     for (i = 0; i < 128; i++) {
588         sce->sf_idx[i] = 140;
589         //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
590     }
591     //set the same quantizers inside window groups
592     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
593         for (g = 0;  g < sce->ics.num_swb; g++)
594             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
595                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
596 }
597
598 static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
599 {
600     FFPsyBand *band;
601     int w, g, w2, i;
602     int wlen = 1024 / sce->ics.num_windows;
603     int bandwidth, cutoff;
604     float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
605     float *NOR34 = &s->scoefs[3*128];
606     uint8_t nextband[128];
607     const float lambda = s->lambda;
608     const float freq_mult = avctx->sample_rate*0.5f/wlen;
609     const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
610     const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
611     const float dist_bias = av_clipf(4.f * 120 / lambda, 0.25f, 4.0f);
612     const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
613
614     int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
615         / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
616         * (lambda / 120.f);
617
618     /** Keep this in sync with twoloop's cutoff selection */
619     float rate_bandwidth_multiplier = 1.5f;
620     int prev = -1000, prev_sf = -1;
621     int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
622         ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
623         : (avctx->bit_rate / avctx->channels);
624
625     frame_bit_rate *= 1.15f;
626
627     if (avctx->cutoff > 0) {
628         bandwidth = avctx->cutoff;
629     } else {
630         bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
631     }
632
633     cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
634
635     memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
636     ff_init_nextband_map(sce, nextband);
637     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
638         int wstart = w*128;
639         for (g = 0;  g < sce->ics.num_swb; g++) {
640             int noise_sfi;
641             float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
642             float pns_energy = 0.0f, pns_tgt_energy, energy_ratio, dist_thresh;
643             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
644             float min_energy = -1.0f, max_energy = 0.0f;
645             const int start = wstart+sce->ics.swb_offset[g];
646             const float freq = (start-wstart)*freq_mult;
647             const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
648             if (freq < NOISE_LOW_LIMIT || (start-wstart) >= cutoff) {
649                 if (!sce->zeroes[w*16+g])
650                     prev_sf = sce->sf_idx[w*16+g];
651                 continue;
652             }
653             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
654                 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
655                 sfb_energy += band->energy;
656                 spread     = FFMIN(spread, band->spread);
657                 threshold  += band->threshold;
658                 if (!w2) {
659                     min_energy = max_energy = band->energy;
660                 } else {
661                     min_energy = FFMIN(min_energy, band->energy);
662                     max_energy = FFMAX(max_energy, band->energy);
663                 }
664             }
665
666             /* Ramps down at ~8000Hz and loosens the dist threshold */
667             dist_thresh = av_clipf(2.5f*NOISE_LOW_LIMIT/freq, 0.5f, 2.5f) * dist_bias;
668
669             /* PNS is acceptable when all of these are true:
670              * 1. high spread energy (noise-like band)
671              * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
672              * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
673              *
674              * At this stage, point 2 is relaxed for zeroed bands near the noise threshold (hole avoidance is more important)
675              */
676             if ((!sce->zeroes[w*16+g] && !ff_sfdelta_can_remove_band(sce, nextband, prev_sf, w*16+g)) ||
677                 ((sce->zeroes[w*16+g] || !sce->band_alt[w*16+g]) && sfb_energy < threshold*sqrtf(1.0f/freq_boost)) || spread < spread_threshold ||
678                 (!sce->zeroes[w*16+g] && sce->band_alt[w*16+g] && sfb_energy > threshold*thr_mult*freq_boost) ||
679                 min_energy < pns_transient_energy_r * max_energy ) {
680                 sce->pns_ener[w*16+g] = sfb_energy;
681                 if (!sce->zeroes[w*16+g])
682                     prev_sf = sce->sf_idx[w*16+g];
683                 continue;
684             }
685
686             pns_tgt_energy = sfb_energy*FFMIN(1.0f, spread*spread);
687             noise_sfi = av_clip(roundf(log2f(pns_tgt_energy)*2), -100, 155); /* Quantize */
688             noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO];    /* Dequantize */
689             if (prev != -1000) {
690                 int noise_sfdiff = noise_sfi - prev + SCALE_DIFF_ZERO;
691                 if (noise_sfdiff < 0 || noise_sfdiff > 2*SCALE_MAX_DIFF) {
692                     if (!sce->zeroes[w*16+g])
693                         prev_sf = sce->sf_idx[w*16+g];
694                     continue;
695                 }
696             }
697             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
698                 float band_energy, scale, pns_senergy;
699                 const int start_c = (w+w2)*128+sce->ics.swb_offset[g];
700                 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
701                 for (i = 0; i < sce->ics.swb_sizes[g]; i+=2) {
702                     double rnd[2];
703                     av_bmg_get(&s->lfg, rnd);
704                     PNS[i+0] = (float)rnd[0];
705                     PNS[i+1] = (float)rnd[1];
706                 }
707                 band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
708                 scale = noise_amp/sqrtf(band_energy);
709                 s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
710                 pns_senergy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
711                 pns_energy += pns_senergy;
712                 abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
713                 abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
714                 dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
715                                             NOR34,
716                                             sce->ics.swb_sizes[g],
717                                             sce->sf_idx[(w+w2)*16+g],
718                                             sce->band_alt[(w+w2)*16+g],
719                                             lambda/band->threshold, INFINITY, NULL, NULL, 0);
720                 /* Estimate rd on average as 5 bits for SF, 4 for the CB, plus spread energy * lambda/thr */
721                 dist2 += band->energy/(band->spread*band->spread)*lambda*dist_thresh/band->threshold;
722             }
723             if (g && sce->band_type[w*16+g-1] == NOISE_BT) {
724                 dist2 += 5;
725             } else {
726                 dist2 += 9;
727             }
728             energy_ratio = pns_tgt_energy/pns_energy; /* Compensates for quantization error */
729             sce->pns_ener[w*16+g] = energy_ratio*pns_tgt_energy;
730             if (sce->zeroes[w*16+g] || !sce->band_alt[w*16+g] || (energy_ratio > 0.85f && energy_ratio < 1.25f && dist2 < dist1)) {
731                 sce->band_type[w*16+g] = NOISE_BT;
732                 sce->zeroes[w*16+g] = 0;
733                 prev = noise_sfi;
734             } else {
735                 if (!sce->zeroes[w*16+g])
736                     prev_sf = sce->sf_idx[w*16+g];
737             }
738         }
739     }
740 }
741
742 static void mark_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
743 {
744     FFPsyBand *band;
745     int w, g, w2;
746     int wlen = 1024 / sce->ics.num_windows;
747     int bandwidth, cutoff;
748     const float lambda = s->lambda;
749     const float freq_mult = avctx->sample_rate*0.5f/wlen;
750     const float spread_threshold = FFMIN(0.75f, NOISE_SPREAD_THRESHOLD*FFMAX(0.5f, lambda/100.f));
751     const float pns_transient_energy_r = FFMIN(0.7f, lambda / 140.f);
752
753     int refbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
754         / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
755         * (lambda / 120.f);
756
757     /** Keep this in sync with twoloop's cutoff selection */
758     float rate_bandwidth_multiplier = 1.5f;
759     int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
760         ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
761         : (avctx->bit_rate / avctx->channels);
762
763     frame_bit_rate *= 1.15f;
764
765     if (avctx->cutoff > 0) {
766         bandwidth = avctx->cutoff;
767     } else {
768         bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
769     }
770
771     cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
772
773     memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type));
774     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
775         for (g = 0;  g < sce->ics.num_swb; g++) {
776             float sfb_energy = 0.0f, threshold = 0.0f, spread = 2.0f;
777             float min_energy = -1.0f, max_energy = 0.0f;
778             const int start = sce->ics.swb_offset[g];
779             const float freq = start*freq_mult;
780             const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
781             if (freq < NOISE_LOW_LIMIT || start >= cutoff) {
782                 sce->can_pns[w*16+g] = 0;
783                 continue;
784             }
785             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
786                 band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
787                 sfb_energy += band->energy;
788                 spread     = FFMIN(spread, band->spread);
789                 threshold  += band->threshold;
790                 if (!w2) {
791                     min_energy = max_energy = band->energy;
792                 } else {
793                     min_energy = FFMIN(min_energy, band->energy);
794                     max_energy = FFMAX(max_energy, band->energy);
795                 }
796             }
797
798             /* PNS is acceptable when all of these are true:
799              * 1. high spread energy (noise-like band)
800              * 2. near-threshold energy (high PE means the random nature of PNS content will be noticed)
801              * 3. on short window groups, all windows have similar energy (variations in energy would be destroyed by PNS)
802              */
803             sce->pns_ener[w*16+g] = sfb_energy;
804             if (sfb_energy < threshold*sqrtf(1.5f/freq_boost) || spread < spread_threshold || min_energy < pns_transient_energy_r * max_energy) {
805                 sce->can_pns[w*16+g] = 0;
806             } else {
807                 sce->can_pns[w*16+g] = 1;
808             }
809         }
810     }
811 }
812
813 static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
814 {
815     int start = 0, i, w, w2, g, sid_sf_boost, prev_mid, prev_side;
816     uint8_t nextband0[128], nextband1[128];
817     float M[128], S[128];
818     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
819     const float lambda = s->lambda;
820     const float mslambda = FFMIN(1.0f, lambda / 120.f);
821     SingleChannelElement *sce0 = &cpe->ch[0];
822     SingleChannelElement *sce1 = &cpe->ch[1];
823     if (!cpe->common_window)
824         return;
825
826     /** Scout out next nonzero bands */
827     ff_init_nextband_map(sce0, nextband0);
828     ff_init_nextband_map(sce1, nextband1);
829
830     prev_mid = sce0->sf_idx[0];
831     prev_side = sce1->sf_idx[0];
832     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
833         start = 0;
834         for (g = 0;  g < sce0->ics.num_swb; g++) {
835             float bmax = bval2bmax(g * 17.0f / sce0->ics.num_swb) / 0.0045f;
836             if (!cpe->is_mask[w*16+g])
837                 cpe->ms_mask[w*16+g] = 0;
838             if (!sce0->zeroes[w*16+g] && !sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g]) {
839                 float Mmax = 0.0f, Smax = 0.0f;
840
841                 /* Must compute mid/side SF and book for the whole window group */
842                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
843                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
844                         M[i] = (sce0->coeffs[start+(w+w2)*128+i]
845                               + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
846                         S[i] =  M[i]
847                               - sce1->coeffs[start+(w+w2)*128+i];
848                     }
849                     abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
850                     abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
851                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++ ) {
852                         Mmax = FFMAX(Mmax, M34[i]);
853                         Smax = FFMAX(Smax, S34[i]);
854                     }
855                 }
856
857                 for (sid_sf_boost = 0; sid_sf_boost < 4; sid_sf_boost++) {
858                     float dist1 = 0.0f, dist2 = 0.0f;
859                     int B0 = 0, B1 = 0;
860                     int minidx;
861                     int mididx, sididx;
862                     int midcb, sidcb;
863
864                     minidx = FFMIN(sce0->sf_idx[w*16+g], sce1->sf_idx[w*16+g]);
865                     mididx = av_clip(minidx, 0, SCALE_MAX_POS - SCALE_DIV_512);
866                     sididx = av_clip(minidx - sid_sf_boost * 3, 0, SCALE_MAX_POS - SCALE_DIV_512);
867                     if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT
868                         && (   !ff_sfdelta_can_replace(sce0, nextband0, prev_mid, mididx, w*16+g)
869                             || !ff_sfdelta_can_replace(sce1, nextband1, prev_side, sididx, w*16+g))) {
870                         /* scalefactor range violation, bad stuff, will decrease quality unacceptably */
871                         continue;
872                     }
873
874                     midcb = find_min_book(Mmax, mididx);
875                     sidcb = find_min_book(Smax, sididx);
876
877                     /* No CB can be zero */
878                     midcb = FFMAX(1,midcb);
879                     sidcb = FFMAX(1,sidcb);
880
881                     for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
882                         FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
883                         FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
884                         float minthr = FFMIN(band0->threshold, band1->threshold);
885                         int b1,b2,b3,b4;
886                         for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
887                             M[i] = (sce0->coeffs[start+(w+w2)*128+i]
888                                   + sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
889                             S[i] =  M[i]
890                                   - sce1->coeffs[start+(w+w2)*128+i];
891                         }
892
893                         abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
894                         abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
895                         abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
896                         abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
897                         dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
898                                                     L34,
899                                                     sce0->ics.swb_sizes[g],
900                                                     sce0->sf_idx[w*16+g],
901                                                     sce0->band_type[w*16+g],
902                                                     lambda / band0->threshold, INFINITY, &b1, NULL, 0);
903                         dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
904                                                     R34,
905                                                     sce1->ics.swb_sizes[g],
906                                                     sce1->sf_idx[w*16+g],
907                                                     sce1->band_type[w*16+g],
908                                                     lambda / band1->threshold, INFINITY, &b2, NULL, 0);
909                         dist2 += quantize_band_cost(s, M,
910                                                     M34,
911                                                     sce0->ics.swb_sizes[g],
912                                                     mididx,
913                                                     midcb,
914                                                     lambda / minthr, INFINITY, &b3, NULL, 0);
915                         dist2 += quantize_band_cost(s, S,
916                                                     S34,
917                                                     sce1->ics.swb_sizes[g],
918                                                     sididx,
919                                                     sidcb,
920                                                     mslambda / (minthr * bmax), INFINITY, &b4, NULL, 0);
921                         B0 += b1+b2;
922                         B1 += b3+b4;
923                         dist1 -= b1+b2;
924                         dist2 -= b3+b4;
925                     }
926                     cpe->ms_mask[w*16+g] = dist2 <= dist1 && B1 < B0;
927                     if (cpe->ms_mask[w*16+g]) {
928                         if (sce0->band_type[w*16+g] != NOISE_BT && sce1->band_type[w*16+g] != NOISE_BT) {
929                             sce0->sf_idx[w*16+g] = mididx;
930                             sce1->sf_idx[w*16+g] = sididx;
931                             sce0->band_type[w*16+g] = midcb;
932                             sce1->band_type[w*16+g] = sidcb;
933                         } else if ((sce0->band_type[w*16+g] != NOISE_BT) ^ (sce1->band_type[w*16+g] != NOISE_BT)) {
934                             /* ms_mask unneeded, and it confuses some decoders */
935                             cpe->ms_mask[w*16+g] = 0;
936                         }
937                         break;
938                     } else if (B1 > B0) {
939                         /* More boost won't fix this */
940                         break;
941                     }
942                 }
943             }
944             if (!sce0->zeroes[w*16+g] && sce0->band_type[w*16+g] < RESERVED_BT)
945                 prev_mid = sce0->sf_idx[w*16+g];
946             if (!sce1->zeroes[w*16+g] && !cpe->is_mask[w*16+g] && sce1->band_type[w*16+g] < RESERVED_BT)
947                 prev_side = sce1->sf_idx[w*16+g];
948             start += sce0->ics.swb_sizes[g];
949         }
950     }
951 }
952
953 AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
954     [AAC_CODER_FAAC] = {
955         search_for_quantizers_faac,
956         encode_window_bands_info,
957         quantize_and_encode_band,
958         ff_aac_encode_tns_info,
959         ff_aac_encode_ltp_info,
960         ff_aac_encode_main_pred,
961         ff_aac_adjust_common_pred,
962         ff_aac_adjust_common_ltp,
963         ff_aac_apply_main_pred,
964         ff_aac_apply_tns,
965         ff_aac_update_ltp,
966         ff_aac_ltp_insert_new_frame,
967         set_special_band_scalefactors,
968         search_for_pns,
969         mark_pns,
970         ff_aac_search_for_tns,
971         ff_aac_search_for_ltp,
972         search_for_ms,
973         ff_aac_search_for_is,
974         ff_aac_search_for_pred,
975     },
976     [AAC_CODER_ANMR] = {
977         search_for_quantizers_anmr,
978         encode_window_bands_info,
979         quantize_and_encode_band,
980         ff_aac_encode_tns_info,
981         ff_aac_encode_ltp_info,
982         ff_aac_encode_main_pred,
983         ff_aac_adjust_common_pred,
984         ff_aac_adjust_common_ltp,
985         ff_aac_apply_main_pred,
986         ff_aac_apply_tns,
987         ff_aac_update_ltp,
988         ff_aac_ltp_insert_new_frame,
989         set_special_band_scalefactors,
990         search_for_pns,
991         mark_pns,
992         ff_aac_search_for_tns,
993         ff_aac_search_for_ltp,
994         search_for_ms,
995         ff_aac_search_for_is,
996         ff_aac_search_for_pred,
997     },
998     [AAC_CODER_TWOLOOP] = {
999         search_for_quantizers_twoloop,
1000         codebook_trellis_rate,
1001         quantize_and_encode_band,
1002         ff_aac_encode_tns_info,
1003         ff_aac_encode_ltp_info,
1004         ff_aac_encode_main_pred,
1005         ff_aac_adjust_common_pred,
1006         ff_aac_adjust_common_ltp,
1007         ff_aac_apply_main_pred,
1008         ff_aac_apply_tns,
1009         ff_aac_update_ltp,
1010         ff_aac_ltp_insert_new_frame,
1011         set_special_band_scalefactors,
1012         search_for_pns,
1013         mark_pns,
1014         ff_aac_search_for_tns,
1015         ff_aac_search_for_ltp,
1016         search_for_ms,
1017         ff_aac_search_for_is,
1018         ff_aac_search_for_pred,
1019     },
1020     [AAC_CODER_FAST] = {
1021         search_for_quantizers_fast,
1022         encode_window_bands_info,
1023         quantize_and_encode_band,
1024         ff_aac_encode_tns_info,
1025         ff_aac_encode_ltp_info,
1026         ff_aac_encode_main_pred,
1027         ff_aac_adjust_common_pred,
1028         ff_aac_adjust_common_ltp,
1029         ff_aac_apply_main_pred,
1030         ff_aac_apply_tns,
1031         ff_aac_update_ltp,
1032         ff_aac_ltp_insert_new_frame,
1033         set_special_band_scalefactors,
1034         search_for_pns,
1035         mark_pns,
1036         ff_aac_search_for_tns,
1037         ff_aac_search_for_ltp,
1038         search_for_ms,
1039         ff_aac_search_for_is,
1040         ff_aac_search_for_pred,
1041     },
1042 };