2 * AAC encoder twoloop coder
3 * Copyright (C) 2008-2009 Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * AAC encoder twoloop coder
25 * @author Konstantin Shishkov, Claudio Freire
29 * This file contains a template for the twoloop coder function.
30 * It needs to be provided, externally, as an already included declaration,
31 * the following functions from aacenc_quantization/util.h. They're not included
32 * explicitly here to make it possible to provide alternative implementations:
33 * - quantize_band_cost
40 #ifndef AVCODEC_AACCODER_TWOLOOP_H
41 #define AVCODEC_AACCODER_TWOLOOP_H
44 #include "libavutil/mathematics.h"
51 #include "aacenctab.h"
52 #include "aac_tablegen_decl.h"
54 /** Frequency in Hz for lower limit of noise substitution **/
55 #define NOISE_LOW_LIMIT 4000
57 #define sclip(x) av_clip(x,60,218)
59 /* Reflects the cost to change codebooks */
60 static inline int ff_pns_bits(SingleChannelElement *sce, int w, int g)
62 return (!g || !sce->zeroes[w*16+g-1] || !sce->can_pns[w*16+g-1]) ? 9 : 5;
66 * two-loop quantizers search taken from ISO 13818-7 Appendix C
68 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
70 SingleChannelElement *sce,
73 int start = 0, i, w, w2, g, recomprd;
74 int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate
75 / ((avctx->flags & CODEC_FLAG_QSCALE) ? 2.0f : avctx->channels)
77 int refbits = destbits;
78 int toomanybits, toofewbits;
81 float dists[128] = { 0 }, qenergies[128] = { 0 }, uplims[128], euplims[128], energies[128];
82 float maxvals[128], spread_thr_r[128];
83 float min_spread_thr_r, max_spread_thr_r;
86 * rdlambda controls the maximum tolerated distortion. Twoloop
87 * will keep iterating until it fails to lower it or it reaches
88 * ulimit * rdlambda. Keeping it low increases quality on difficult
89 * signals, but lower it too much, and bits will be taken from weak
90 * signals, creating "holes". A balance is necesary.
91 * rdmax and rdmin specify the relative deviation from rdlambda
92 * allowed for tonality compensation
94 float rdlambda = av_clipf(2.0f * 120.f / lambda, 0.0625f, 16.0f);
95 const float nzslope = 1.5f;
96 float rdmin = 0.03125f;
100 * sfoffs controls an offset of optmium allocation that will be
101 * applied based on lambda. Keep it real and modest, the loop
102 * will take care of the rest, this just accelerates convergence
104 float sfoffs = av_clipf(log2f(120.0f / lambda) * 4.0f, -5, 10);
106 int fflag, minscaler, maxscaler, nminscaler, minrdsf;
116 * zeroscale controls a multiplier of the threshold, if band energy
117 * is below this, a zero is forced. Keep it lower than 1, unless
118 * low lambda is used, because energy < threshold doesn't mean there's
119 * no audible signal outright, it's just energy. Also make it rise
120 * slower than rdlambda, as rdscale has due compensation with
121 * noisy band depriorization below, whereas zeroing logic is rather dumb
124 if (lambda > 120.f) {
125 zeroscale = av_clipf(powf(120.f / lambda, 0.25f), 0.0625f, 1.0f);
130 if (s->psy.bitres.alloc >= 0) {
132 * Psy granted us extra bits to use, from the reservoire
133 * adjust for lambda except what psy already did
135 destbits = s->psy.bitres.alloc
136 * (lambda / (avctx->global_quality ? avctx->global_quality : 120));
139 if (avctx->flags & CODEC_FLAG_QSCALE) {
141 * Constant Q-scale doesn't compensate MS coding on its own
142 * No need to be overly precise, this only controls RD
143 * adjustment CB limits when going overboard
145 if (s->options.mid_side && s->cur_type == TYPE_CPE)
149 * When using a constant Q-scale, don't adjust bits, just use RD
150 * Don't let it go overboard, though... 8x psy target is enough
153 toofewbits = destbits / 16;
155 /** Don't offset scalers, just RD */
156 sfoffs = sce->ics.num_windows - 1;
157 rdlambda = sqrtf(rdlambda);
159 /** search further */
162 /** When using ABR, be strict */
163 toomanybits = destbits + destbits/16;
164 toofewbits = destbits - destbits/4;
167 rdlambda = sqrtf(rdlambda);
170 /** and zero out above cutoff frequency */
172 int wlen = 1024 / sce->ics.num_windows;
176 * Scale, psy gives us constant quality, this LP only scales
177 * bitrate by lambda, so we save bits on subjectively unimportant HF
178 * rather than increase quantization noise. Adjust nominal bitrate
179 * to effective bitrate according to encoding parameters,
180 * AAC_CUTOFF_FROM_BITRATE is calibrated for effective bitrate.
182 float rate_bandwidth_multiplier = 1.5f;
183 int frame_bit_rate = (avctx->flags & CODEC_FLAG_QSCALE)
184 ? (refbits * rate_bandwidth_multiplier * avctx->sample_rate / 1024)
185 : (avctx->bit_rate / avctx->channels);
187 /** Compensate for extensions that increase efficiency */
188 if (s->options.pns || s->options.intensity_stereo)
189 frame_bit_rate *= 1.15f;
191 if (avctx->cutoff > 0) {
192 bandwidth = avctx->cutoff;
194 bandwidth = FFMAX(3000, AAC_CUTOFF_FROM_BITRATE(frame_bit_rate, 1, avctx->sample_rate));
197 cutoff = bandwidth * 2 * wlen / avctx->sample_rate;
198 pns_start_pos = NOISE_LOW_LIMIT * 2 * wlen / avctx->sample_rate;
202 * for values above this the decoder might end up in an endless loop
203 * due to always having more bits than what can be encoded.
205 destbits = FFMIN(destbits, 5800);
206 toomanybits = FFMIN(toomanybits, 5800);
207 toofewbits = FFMIN(toofewbits, 5800);
209 * XXX: some heuristic to determine initial quantizers will reduce search time
210 * determine zero bands and upper distortion limits
212 min_spread_thr_r = -1;
213 max_spread_thr_r = -1;
214 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
215 for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
217 float uplim = 0.0f, energy = 0.0f, spread = 0.0f;
218 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
219 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
220 if (start >= cutoff || band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f) {
221 sce->zeroes[(w+w2)*16+g] = 1;
230 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
231 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
232 if (band->energy <= (band->threshold * zeroscale) || band->threshold == 0.0f)
234 uplim += band->threshold;
235 energy += band->energy;
236 spread += band->spread;
240 uplims[w*16+g] = uplim;
241 energies[w*16+g] = energy;
243 sce->zeroes[w*16+g] = !nz;
246 spread_thr_r[w*16+g] = energy * nz / (uplim * spread);
247 if (min_spread_thr_r < 0) {
248 min_spread_thr_r = max_spread_thr_r = spread_thr_r[w*16+g];
250 min_spread_thr_r = FFMIN(min_spread_thr_r, spread_thr_r[w*16+g]);
251 max_spread_thr_r = FFMAX(max_spread_thr_r, spread_thr_r[w*16+g]);
257 /** Compute initial scalers */
259 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
260 for (g = 0; g < sce->ics.num_swb; g++) {
261 if (sce->zeroes[w*16+g]) {
262 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
266 * log2f-to-distortion ratio is, technically, 2 (1.5db = 4, but it's power vs level so it's 2).
267 * But, as offsets are applied, low-frequency signals are too sensitive to the induced distortion,
268 * so we make scaling more conservative by choosing a lower log2f-to-distortion ratio, and thus
271 sce->sf_idx[w*16+g] = av_clip(
273 + 1.75*log2f(FFMAX(0.00125f,uplims[w*16+g]) / sce->ics.swb_sizes[g])
276 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
281 minscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
282 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
283 for (g = 0; g < sce->ics.num_swb; g++)
284 if (!sce->zeroes[w*16+g])
285 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF - 1);
289 abs_pow34_v(s->scoefs, sce->coeffs, 1024);
290 ff_quantize_band_cost_cache_init(s);
292 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
294 for (g = 0; g < sce->ics.num_swb; g++) {
295 const float *scaled = s->scoefs + start;
296 maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
297 start += sce->ics.swb_sizes[g];
302 * Scale uplims to match rate distortion to quality
303 * bu applying noisy band depriorization and tonal band priorization.
304 * Maxval-energy ratio gives us an idea of how noisy/tonal the band is.
305 * If maxval^2 ~ energy, then that band is mostly noise, and we can relax
306 * rate distortion requirements.
308 memcpy(euplims, uplims, sizeof(euplims));
309 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
310 /** psy already priorizes transients to some extent */
311 float de_psy_factor = (sce->ics.num_windows > 1) ? 8.0f / sce->ics.group_len[w] : 1.0f;
313 for (g = 0; g < sce->ics.num_swb; g++) {
315 float cleanup_factor = ff_sqrf(av_clipf(start / (cutoff * 0.75f), 1.0f, 2.0f));
316 float energy2uplim = find_form_factor(
317 sce->ics.group_len[w], sce->ics.swb_sizes[g],
318 uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
320 nzslope * cleanup_factor);
321 energy2uplim *= de_psy_factor;
322 if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
323 /** In ABR, we need to priorize less and let rate control do its thing */
324 energy2uplim = sqrtf(energy2uplim);
326 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
327 uplims[w*16+g] *= av_clipf(rdlambda * energy2uplim, rdmin, rdmax)
328 * sce->ics.group_len[w];
330 energy2uplim = find_form_factor(
331 sce->ics.group_len[w], sce->ics.swb_sizes[g],
332 uplims[w*16+g] / (nzs[g] * sce->ics.swb_sizes[w]),
335 energy2uplim *= de_psy_factor;
336 if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
337 /** In ABR, we need to priorize less and let rate control do its thing */
338 energy2uplim = sqrtf(energy2uplim);
340 energy2uplim = FFMAX(0.015625f, FFMIN(1.0f, energy2uplim));
341 euplims[w*16+g] *= av_clipf(rdlambda * energy2uplim * sce->ics.group_len[w],
344 start += sce->ics.swb_sizes[g];
348 for (i = 0; i < sizeof(maxsf) / sizeof(maxsf[0]); ++i)
349 maxsf[i] = SCALE_MAX_POS;
351 //perform two-loop search
352 //outer loop - improve quality
354 //inner loop - quantize spectrum to fit into given number of bits
356 int qstep = its ? 1 : 32;
362 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
364 for (g = 0; g < sce->ics.num_swb; g++) {
365 const float *coefs = &sce->coeffs[start];
366 const float *scaled = &s->scoefs[start];
370 float qenergy = 0.0f;
372 if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
373 start += sce->ics.swb_sizes[g];
374 if (sce->can_pns[w*16+g]) {
375 /** PNS isn't free */
376 tbits += ff_pns_bits(sce, w, g);
380 cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
381 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
384 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
386 sce->ics.swb_sizes[g],
396 dists[w*16+g] = dist - bits;
397 qenergies[w*16+g] = qenergy;
399 int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
400 bits += ff_aac_scalefactor_bits[sfdiff];
403 start += sce->ics.swb_sizes[g];
404 prev = sce->sf_idx[w*16+g];
407 if (tbits > toomanybits) {
409 for (i = 0; i < 128; i++) {
410 if (sce->sf_idx[i] < (SCALE_MAX_POS - SCALE_DIV_512)) {
411 int maxsf_i = (tbits > 5800) ? SCALE_MAX_POS : maxsf[i];
412 int new_sf = FFMIN(maxsf_i, sce->sf_idx[i] + qstep);
413 if (new_sf != sce->sf_idx[i]) {
414 sce->sf_idx[i] = new_sf;
419 } else if (tbits < toofewbits) {
421 for (i = 0; i < 128; i++) {
422 if (sce->sf_idx[i] > SCALE_ONE_POS) {
423 int new_sf = FFMAX(SCALE_ONE_POS, sce->sf_idx[i] - qstep);
424 if (new_sf != sce->sf_idx[i]) {
425 sce->sf_idx[i] = new_sf;
432 if (!qstep && tbits > toomanybits && sce->sf_idx[0] < 217 && changed)
437 for (i = 0; i < 2 && (overdist || recomprd); ++i) {
439 /** Must recompute distortion */
442 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
444 for (g = 0; g < sce->ics.num_swb; g++) {
445 const float *coefs = sce->coeffs + start;
446 const float *scaled = s->scoefs + start;
450 float qenergy = 0.0f;
452 if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
453 start += sce->ics.swb_sizes[g];
454 if (sce->can_pns[w*16+g]) {
455 /** PNS isn't free */
456 tbits += ff_pns_bits(sce, w, g);
460 cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
461 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
464 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
466 sce->ics.swb_sizes[g],
476 dists[w*16+g] = dist - bits;
477 qenergies[w*16+g] = qenergy;
479 int sfdiff = av_clip(sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO, 0, 2*SCALE_MAX_DIFF);
480 bits += ff_aac_scalefactor_bits[sfdiff];
483 start += sce->ics.swb_sizes[g];
484 prev = sce->sf_idx[w*16+g];
488 if (!i && s->options.pns && its > maxits/2) {
489 float maxoverdist = 0.0f;
490 overdist = recomprd = 0;
491 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
492 float ovrfactor = 2.f+(maxits-its)*16.f/maxits;
493 for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
494 if (!sce->zeroes[w*16+g] && dists[w*16+g] > uplims[w*16+g]*ovrfactor) {
495 float ovrdist = dists[w*16+g] / FFMAX(uplims[w*16+g],euplims[w*16+g]);
496 maxoverdist = FFMAX(maxoverdist, ovrdist);
502 /* We have overdistorted bands, trade for zeroes (that can be noise)
503 * Zero the bands in the lowest 1.25% spread-energy-threshold ranking
505 float minspread = max_spread_thr_r;
506 float maxspread = min_spread_thr_r;
511 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
512 for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
513 if (start >= pns_start_pos && !sce->zeroes[w*16+g] && sce->can_pns[w*16+g]) {
514 minspread = FFMIN(minspread, spread_thr_r[w*16+g]);
515 maxspread = FFMAX(maxspread, spread_thr_r[w*16+g]);
520 zspread = (maxspread-minspread) * 0.0125f + minspread;
521 zspread = FFMIN(maxoverdist, zspread);
522 maxzeroed = zeroable * its / (2 * maxits);
523 for (g = sce->ics.num_swb-1; g > 0 && zeroed < maxzeroed; g--) {
524 if (sce->ics.swb_offset[g] < pns_start_pos)
526 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
527 if (!sce->zeroes[w*16+g] && sce->can_pns[w*16+g] && spread_thr_r[w*16+g] <= zspread) {
528 sce->zeroes[w*16+g] = 1;
529 sce->band_type[w*16+g] = 0;
542 minscaler = SCALE_MAX_POS;
544 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
545 for (g = 0; g < sce->ics.num_swb; g++) {
546 if (!sce->zeroes[w*16+g]) {
547 minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
548 maxscaler = FFMAX(maxscaler, sce->sf_idx[w*16+g]);
554 minscaler = nminscaler = av_clip(minscaler, SCALE_ONE_POS - SCALE_DIV_512, SCALE_MAX_POS - SCALE_DIV_512);
555 minrdsf = FFMAX3(60, minscaler - 1, maxscaler - SCALE_MAX_DIFF - 1);
556 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
557 /** Start with big steps, end up fine-tunning */
558 int depth = (its > maxits/2) ? ((its > maxits*2/3) ? 1 : 3) : 10;
559 int edepth = depth+2;
560 float uplmax = its / (maxits*0.25f) + 1.0f;
561 uplmax *= (tbits > destbits) ? FFMIN(2.0f, tbits / (float)FFMAX(1,destbits)) : 1.0f;
563 for (g = 0; g < sce->ics.num_swb; g++) {
564 int prevsc = sce->sf_idx[w*16+g];
565 int minrdsfboost = (sce->ics.num_windows > 1) ? av_clip(g-4, -2, 0) : av_clip(g-16, -4, 0);
566 if (!sce->zeroes[w*16+g]) {
567 const float *coefs = sce->coeffs + start;
568 const float *scaled = s->scoefs + start;
569 int cmb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
570 if ((!cmb || dists[w*16+g] > uplims[w*16+g]) && sce->sf_idx[w*16+g] > minrdsf) {
571 /* Try to make sure there is some energy in every nonzero band
572 * NOTE: This algorithm must be forcibly imbalanced, pushing harder
573 * on holes or more distorted bands at first, otherwise there's
574 * no net gain (since the next iteration will offset all bands
575 * on the opposite direction to compensate for extra bits)
577 for (i = 0; i < edepth; ++i) {
580 int mb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1);
581 cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
582 dist = qenergy = 0.f;
585 maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g]-1, maxsf[w*16+g]);
586 } else if (i >= depth && dists[w*16+g] < euplims[w*16+g]) {
589 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
592 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
594 sce->ics.swb_sizes[g],
595 sce->sf_idx[w*16+g]-1,
604 sce->sf_idx[w*16+g]--;
605 dists[w*16+g] = dist - bits;
606 qenergies[w*16+g] = qenergy;
607 if (mb && (sce->sf_idx[w*16+g] < (minrdsf+minrdsfboost) || (
608 (dists[w*16+g] < FFMIN(uplmax*uplims[w*16+g], euplims[w*16+g]))
609 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
614 } else if (tbits > toofewbits && sce->sf_idx[w*16+g] < maxscaler
615 && (dists[w*16+g] < FFMIN(euplims[w*16+g], uplims[w*16+g]))
616 && (fabsf(qenergies[w*16+g]-energies[w*16+g]) < euplims[w*16+g])
618 /** Um... over target. Save bits for more important stuff. */
619 for (i = 0; i < depth; ++i) {
622 cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]+1);
624 dist = qenergy = 0.f;
626 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
629 dist += quantize_band_cost_cached(s, w + w2, g, coefs + w2*128,
631 sce->ics.swb_sizes[g],
632 sce->sf_idx[w*16+g]+1,
642 if (dist < FFMIN(euplims[w*16+g], uplims[w*16+g])) {
643 sce->sf_idx[w*16+g]++;
644 dists[w*16+g] = dist;
645 qenergies[w*16+g] = qenergy;
650 maxsf[w*16+g] = FFMIN(sce->sf_idx[w*16+g], maxsf[w*16+g]);
656 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minrdsf, minscaler + SCALE_MAX_DIFF);
657 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], SCALE_MAX_POS - SCALE_DIV_512);
658 if (sce->sf_idx[w*16+g] != prevsc)
660 nminscaler = FFMIN(nminscaler, sce->sf_idx[w*16+g]);
661 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
662 start += sce->ics.swb_sizes[g];
665 if (nminscaler < minscaler || sce->ics.num_windows > 1) {
666 /** SF difference limit violation risk. Must re-clamp. */
667 minscaler = nminscaler;
668 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
669 for (g = 0; g < sce->ics.num_swb; g++) {
670 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
671 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
676 } while (fflag && its < maxits);
679 for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
680 /** Make sure proper codebooks are set */
681 for (g = start = 0; g < sce->ics.num_swb; start += sce->ics.swb_sizes[g++]) {
682 if (!sce->zeroes[w*16+g]) {
683 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
684 if (sce->band_type[w*16+g] <= 0) {
685 sce->zeroes[w*16+g] = 1;
686 sce->band_type[w*16+g] = 0;
689 sce->band_type[w*16+g] = 0;
691 /** Check that there's no SF delta range violations */
692 if (!sce->zeroes[w*16+g]) {
694 av_unused int sfdiff = sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO;
695 av_assert1(sfdiff >= 0 && sfdiff <= 2*SCALE_MAX_DIFF);
696 } else if (sce->zeroes[0]) {
697 /** Set global gain to something useful */
698 sce->sf_idx[0] = sce->sf_idx[w*16+g];
700 prev = sce->sf_idx[w*16+g];
706 #endif /* AVCODEC_AACCODER_TWOLOOP_H */