]> git.sesse.net Git - ffmpeg/blob - libavcodec/aacenc_is.c
aacenc: reorder resetting of cpe->common_window
[ffmpeg] / libavcodec / aacenc_is.c
1 /*
2  * AAC encoder intensity stereo
3  * Copyright (C) 2015 Rostislav Pehlivanov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC encoder Intensity Stereo
25  * @author Rostislav Pehlivanov ( atomnuker gmail com )
26  */
27
28 #include "aacenc.h"
29 #include "aacenc_utils.h"
30 #include "aacenc_is.h"
31 #include "aacenc_quantization.h"
32
33 struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
34                                          int start, int w, int g, float ener0,
35                                          float ener1, float ener01, int phase)
36 {
37     int i, w2;
38     float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
39     float *IS  = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
40     float dist1 = 0.0f, dist2 = 0.0f;
41     struct AACISError is_error = {0};
42     SingleChannelElement *sce0 = &cpe->ch[0];
43     SingleChannelElement *sce1 = &cpe->ch[1];
44
45     for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
46         FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
47         FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
48         int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
49         float e01_34 = phase*pow(sqrt(ener1/ener0), 3.0/4.0);
50         float maxval, dist_spec_err = 0.0f;
51         float minthr = FFMIN(band0->threshold, band1->threshold);
52         for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
53             IS[i] = (sce0->pcoeffs[start+(w+w2)*128+i]+
54                      phase*sce1->pcoeffs[start+(w+w2)*128+i])*
55                      sqrt(ener0/ener01);
56         }
57         abs_pow34_v(L34, &sce0->coeffs[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
58         abs_pow34_v(R34, &sce1->coeffs[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
59         abs_pow34_v(I34, IS,                            sce0->ics.swb_sizes[g]);
60         maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
61         is_band_type = find_min_book(maxval, is_sf_idx);
62         dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128], L34,
63                                     sce0->ics.swb_sizes[g],
64                                     sce0->sf_idx[(w+w2)*16+g],
65                                     sce0->band_type[(w+w2)*16+g],
66                                     s->lambda / band0->threshold, INFINITY, NULL, 0);
67         dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128], R34,
68                                     sce1->ics.swb_sizes[g],
69                                     sce1->sf_idx[(w+w2)*16+g],
70                                     sce1->band_type[(w+w2)*16+g],
71                                     s->lambda / band1->threshold, INFINITY, NULL, 0);
72         dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
73                                     is_sf_idx, is_band_type,
74                                     s->lambda / minthr, INFINITY, NULL, 0);
75         for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
76             dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
77             dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
78         }
79         dist_spec_err *= s->lambda / minthr;
80         dist2 += dist_spec_err;
81     }
82
83     is_error.pass = dist2 <= dist1;
84     is_error.phase = phase;
85     is_error.error = fabsf(dist1 - dist2);
86     is_error.dist1 = dist1;
87     is_error.dist2 = dist2;
88
89     return is_error;
90 }
91
92 void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
93 {
94     SingleChannelElement *sce0 = &cpe->ch[0];
95     SingleChannelElement *sce1 = &cpe->ch[1];
96     int start = 0, count = 0, w, w2, g, i;
97     const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
98
99     if (!cpe->common_window)
100         return;
101
102     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
103         start = 0;
104         for (g = 0;  g < sce0->ics.num_swb; g++) {
105             if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
106                 cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
107                 cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) {
108                 float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
109                 struct AACISError ph_err1, ph_err2, *erf;
110                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
111                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
112                         float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
113                         float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
114                         ener0 += coef0*coef0;
115                         ener1 += coef1*coef1;
116                         ener01 += (coef0 + coef1)*(coef0 + coef1);
117                     }
118                 }
119                 ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
120                                                  ener0, ener1, ener01, -1);
121                 ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
122                                                  ener0, ener1, ener01, +1);
123                 erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
124                 if (erf->pass) {
125                     cpe->is_mask[w*16+g] = 1;
126                     cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01);
127                     cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
128                     cpe->ch[1].band_type[w*16+g] = erf->phase ? INTENSITY_BT : INTENSITY_BT2;
129                     count++;
130                 }
131             }
132             start += sce0->ics.swb_sizes[g];
133         }
134     }
135     cpe->is_mode = !!count;
136 }