]> git.sesse.net Git - ffmpeg/blob - libavcodec/aacsbr.c
avcodec/wmv2dec: Check end of bitstream in parse_mb_skip() and ff_wmv2_decode_mb()
[ffmpeg] / libavcodec / aacsbr.c
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 /**
24  * @file
25  * AAC Spectral Band Replication decoding functions
26  * @author Robert Swain ( rob opendot cl )
27  */
28 #define USE_FIXED 0
29
30 #include "aac.h"
31 #include "sbr.h"
32 #include "aacsbr.h"
33 #include "aacsbrdata.h"
34 #include "aacsbr_tablegen.h"
35 #include "fft.h"
36 #include "internal.h"
37 #include "aacps.h"
38 #include "sbrdsp.h"
39 #include "libavutil/internal.h"
40 #include "libavutil/libm.h"
41 #include "libavutil/avassert.h"
42
43 #include <stdint.h>
44 #include <float.h>
45 #include <math.h>
46
47 #if ARCH_MIPS
48 #include "mips/aacsbr_mips.h"
49 #endif /* ARCH_MIPS */
50
51 static VLC vlc_sbr[10];
52 static void aacsbr_func_ptr_init(AACSBRContext *c);
53
54 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
55 {
56     int k, previous, present;
57     float base, prod;
58
59     base = powf((float)stop / start, 1.0f / num_bands);
60     prod = start;
61     previous = start;
62
63     for (k = 0; k < num_bands-1; k++) {
64         prod *= base;
65         present  = lrintf(prod);
66         bands[k] = present - previous;
67         previous = present;
68     }
69     bands[num_bands-1] = stop - previous;
70 }
71
72 /// Dequantization and stereo decoding (14496-3 sp04 p203)
73 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
74 {
75     int k, e;
76     int ch;
77     static const double exp2_tab[2] = {1, M_SQRT2};
78     if (id_aac == TYPE_CPE && sbr->bs_coupling) {
79         int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
80         for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
81             for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
82                 float temp1, temp2, fac;
83                 if (sbr->data[0].bs_amp_res) {
84                     temp1 = ff_exp2fi(sbr->data[0].env_facs_q[e][k] + 7);
85                     temp2 = ff_exp2fi(pan_offset - sbr->data[1].env_facs_q[e][k]);
86                 }
87                 else {
88                     temp1 = ff_exp2fi((sbr->data[0].env_facs_q[e][k]>>1) + 7) *
89                             exp2_tab[sbr->data[0].env_facs_q[e][k] & 1];
90                     temp2 = ff_exp2fi((pan_offset - sbr->data[1].env_facs_q[e][k])>>1) *
91                             exp2_tab[(pan_offset - sbr->data[1].env_facs_q[e][k]) & 1];
92                 }
93                 if (temp1 > 1E20) {
94                     av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
95                     temp1 = 1;
96                 }
97                 fac   = temp1 / (1.0f + temp2);
98                 sbr->data[0].env_facs[e][k] = fac;
99                 sbr->data[1].env_facs[e][k] = fac * temp2;
100             }
101         }
102         for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
103             for (k = 0; k < sbr->n_q; k++) {
104                 float temp1 = ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs_q[e][k] + 1);
105                 float temp2 = ff_exp2fi(12 - sbr->data[1].noise_facs_q[e][k]);
106                 float fac;
107                 av_assert0(temp1 <= 1E20);
108                 fac = temp1 / (1.0f + temp2);
109                 sbr->data[0].noise_facs[e][k] = fac;
110                 sbr->data[1].noise_facs[e][k] = fac * temp2;
111             }
112         }
113     } else { // SCE or one non-coupled CPE
114         for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
115             for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
116                 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
117                     if (sbr->data[ch].bs_amp_res)
118                         sbr->data[ch].env_facs[e][k] = ff_exp2fi(sbr->data[ch].env_facs_q[e][k] + 6);
119                     else
120                         sbr->data[ch].env_facs[e][k] = ff_exp2fi((sbr->data[ch].env_facs_q[e][k]>>1) + 6)
121                                                        * exp2_tab[sbr->data[ch].env_facs_q[e][k] & 1];
122                     if (sbr->data[ch].env_facs[e][k] > 1E20) {
123                         av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
124                         sbr->data[ch].env_facs[e][k] = 1;
125                     }
126                 }
127
128             for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
129                 for (k = 0; k < sbr->n_q; k++)
130                     sbr->data[ch].noise_facs[e][k] =
131                         ff_exp2fi(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs_q[e][k]);
132         }
133     }
134 }
135
136 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
137  * (14496-3 sp04 p214)
138  * Warning: This routine does not seem numerically stable.
139  */
140 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
141                                   float (*alpha0)[2], float (*alpha1)[2],
142                                   const float X_low[32][40][2], int k0)
143 {
144     int k;
145     for (k = 0; k < k0; k++) {
146         LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
147         float dk;
148
149         dsp->autocorrelate(X_low[k], phi);
150
151         dk =  phi[2][1][0] * phi[1][0][0] -
152              (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
153
154         if (!dk) {
155             alpha1[k][0] = 0;
156             alpha1[k][1] = 0;
157         } else {
158             float temp_real, temp_im;
159             temp_real = phi[0][0][0] * phi[1][1][0] -
160                         phi[0][0][1] * phi[1][1][1] -
161                         phi[0][1][0] * phi[1][0][0];
162             temp_im   = phi[0][0][0] * phi[1][1][1] +
163                         phi[0][0][1] * phi[1][1][0] -
164                         phi[0][1][1] * phi[1][0][0];
165
166             alpha1[k][0] = temp_real / dk;
167             alpha1[k][1] = temp_im   / dk;
168         }
169
170         if (!phi[1][0][0]) {
171             alpha0[k][0] = 0;
172             alpha0[k][1] = 0;
173         } else {
174             float temp_real, temp_im;
175             temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
176                                        alpha1[k][1] * phi[1][1][1];
177             temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
178                                        alpha1[k][0] * phi[1][1][1];
179
180             alpha0[k][0] = -temp_real / phi[1][0][0];
181             alpha0[k][1] = -temp_im   / phi[1][0][0];
182         }
183
184         if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
185            alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
186             alpha1[k][0] = 0;
187             alpha1[k][1] = 0;
188             alpha0[k][0] = 0;
189             alpha0[k][1] = 0;
190         }
191     }
192 }
193
194 /// Chirp Factors (14496-3 sp04 p214)
195 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
196 {
197     int i;
198     float new_bw;
199     static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
200
201     for (i = 0; i < sbr->n_q; i++) {
202         if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
203             new_bw = 0.6f;
204         } else
205             new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
206
207         if (new_bw < ch_data->bw_array[i]) {
208             new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
209         } else
210             new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
211         ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
212     }
213 }
214
215 /**
216  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
217  * and Calculation of gain (14496-3 sp04 p219)
218  */
219 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
220                           SBRData *ch_data, const int e_a[2])
221 {
222     int e, k, m;
223     // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
224     static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
225
226     for (e = 0; e < ch_data->bs_num_env; e++) {
227         int delta = !((e == e_a[1]) || (e == e_a[0]));
228         for (k = 0; k < sbr->n_lim; k++) {
229             float gain_boost, gain_max;
230             float sum[2] = { 0.0f, 0.0f };
231             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
232                 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
233                 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
234                 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
235                 if (!sbr->s_mapped[e][m]) {
236                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
237                                             ((1.0f + sbr->e_curr[e][m]) *
238                                              (1.0f + sbr->q_mapped[e][m] * delta)));
239                 } else {
240                     sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
241                                             ((1.0f + sbr->e_curr[e][m]) *
242                                              (1.0f + sbr->q_mapped[e][m])));
243                 }
244                 sbr->gain[e][m] += FLT_MIN;
245             }
246             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
247                 sum[0] += sbr->e_origmapped[e][m];
248                 sum[1] += sbr->e_curr[e][m];
249             }
250             gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
251             gain_max = FFMIN(100000.f, gain_max);
252             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
253                 float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
254                 sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
255                 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
256             }
257             sum[0] = sum[1] = 0.0f;
258             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
259                 sum[0] += sbr->e_origmapped[e][m];
260                 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
261                           + sbr->s_m[e][m] * sbr->s_m[e][m]
262                           + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
263             }
264             gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
265             gain_boost = FFMIN(1.584893192f, gain_boost);
266             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
267                 sbr->gain[e][m] *= gain_boost;
268                 sbr->q_m[e][m]  *= gain_boost;
269                 sbr->s_m[e][m]  *= gain_boost;
270             }
271         }
272     }
273 }
274
275 /// Assembling HF Signals (14496-3 sp04 p220)
276 static void sbr_hf_assemble(float Y1[38][64][2],
277                             const float X_high[64][40][2],
278                             SpectralBandReplication *sbr, SBRData *ch_data,
279                             const int e_a[2])
280 {
281     int e, i, j, m;
282     const int h_SL = 4 * !sbr->bs_smoothing_mode;
283     const int kx = sbr->kx[1];
284     const int m_max = sbr->m[1];
285     static const float h_smooth[5] = {
286         0.33333333333333,
287         0.30150283239582,
288         0.21816949906249,
289         0.11516383427084,
290         0.03183050093751,
291     };
292     float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
293     int indexnoise = ch_data->f_indexnoise;
294     int indexsine  = ch_data->f_indexsine;
295
296     if (sbr->reset) {
297         for (i = 0; i < h_SL; i++) {
298             memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
299             memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
300         }
301     } else if (h_SL) {
302         for (i = 0; i < 4; i++) {
303             memcpy(g_temp[i + 2 * ch_data->t_env[0]],
304                    g_temp[i + 2 * ch_data->t_env_num_env_old],
305                    sizeof(g_temp[0]));
306             memcpy(q_temp[i + 2 * ch_data->t_env[0]],
307                    q_temp[i + 2 * ch_data->t_env_num_env_old],
308                    sizeof(q_temp[0]));
309         }
310     }
311
312     for (e = 0; e < ch_data->bs_num_env; e++) {
313         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
314             memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
315             memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
316         }
317     }
318
319     for (e = 0; e < ch_data->bs_num_env; e++) {
320         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
321             LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
322             LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
323             float *g_filt, *q_filt;
324
325             if (h_SL && e != e_a[0] && e != e_a[1]) {
326                 g_filt = g_filt_tab;
327                 q_filt = q_filt_tab;
328                 for (m = 0; m < m_max; m++) {
329                     const int idx1 = i + h_SL;
330                     g_filt[m] = 0.0f;
331                     q_filt[m] = 0.0f;
332                     for (j = 0; j <= h_SL; j++) {
333                         g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
334                         q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
335                     }
336                 }
337             } else {
338                 g_filt = g_temp[i + h_SL];
339                 q_filt = q_temp[i];
340             }
341
342             sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
343                                i + ENVELOPE_ADJUSTMENT_OFFSET);
344
345             if (e != e_a[0] && e != e_a[1]) {
346                 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
347                                                    q_filt, indexnoise,
348                                                    kx, m_max);
349             } else {
350                 int idx = indexsine&1;
351                 int A = (1-((indexsine+(kx & 1))&2));
352                 int B = (A^(-idx)) + idx;
353                 float *out = &Y1[i][kx][idx];
354                 float *in  = sbr->s_m[e];
355                 for (m = 0; m+1 < m_max; m+=2) {
356                     out[2*m  ] += in[m  ] * A;
357                     out[2*m+2] += in[m+1] * B;
358                 }
359                 if(m_max&1)
360                     out[2*m  ] += in[m  ] * A;
361             }
362             indexnoise = (indexnoise + m_max) & 0x1ff;
363             indexsine = (indexsine + 1) & 3;
364         }
365     }
366     ch_data->f_indexnoise = indexnoise;
367     ch_data->f_indexsine  = indexsine;
368 }
369
370 #include "aacsbr_template.c"