2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * AAC Spectral Band Replication decoding functions
26 * @author Robert Swain ( rob opendot cl )
32 #include "aacsbrdata.h"
33 #include "aacsbr_tablegen.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/libm.h"
39 #include "libavutil/avassert.h"
45 #define ENVELOPE_ADJUSTMENT_OFFSET 2
46 #define NOISE_FLOOR_OFFSET 6.0f
49 #include "mips/aacsbr_mips.h"
50 #endif /* ARCH_MIPS */
58 T_HUFFMAN_ENV_BAL_1_5DB,
59 F_HUFFMAN_ENV_BAL_1_5DB,
62 T_HUFFMAN_ENV_BAL_3_0DB,
63 F_HUFFMAN_ENV_BAL_3_0DB,
64 T_HUFFMAN_NOISE_3_0DB,
65 T_HUFFMAN_NOISE_BAL_3_0DB,
69 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
82 static VLC vlc_sbr[10];
83 static const int8_t vlc_sbr_lav[10] =
84 { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
86 #define SBR_INIT_VLC_STATIC(num, size) \
87 INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
88 sbr_tmp[num].sbr_bits , 1, 1, \
89 sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
92 #define SBR_VLC_ROW(name) \
93 { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
95 static void aacsbr_func_ptr_init(AACSBRContext *c);
97 av_cold void ff_aac_sbr_init(void)
100 const void *sbr_codes, *sbr_bits;
101 const unsigned int table_size, elem_size;
103 SBR_VLC_ROW(t_huffman_env_1_5dB),
104 SBR_VLC_ROW(f_huffman_env_1_5dB),
105 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
106 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
107 SBR_VLC_ROW(t_huffman_env_3_0dB),
108 SBR_VLC_ROW(f_huffman_env_3_0dB),
109 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
110 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
111 SBR_VLC_ROW(t_huffman_noise_3_0dB),
112 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
115 // SBR VLC table initialization
116 SBR_INIT_VLC_STATIC(0, 1098);
117 SBR_INIT_VLC_STATIC(1, 1092);
118 SBR_INIT_VLC_STATIC(2, 768);
119 SBR_INIT_VLC_STATIC(3, 1026);
120 SBR_INIT_VLC_STATIC(4, 1058);
121 SBR_INIT_VLC_STATIC(5, 1052);
122 SBR_INIT_VLC_STATIC(6, 544);
123 SBR_INIT_VLC_STATIC(7, 544);
124 SBR_INIT_VLC_STATIC(8, 592);
125 SBR_INIT_VLC_STATIC(9, 512);
132 /** Places SBR in pure upsampling mode. */
133 static void sbr_turnoff(SpectralBandReplication *sbr) {
135 // Init defults used in pure upsampling mode
136 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
138 // Reset values for first SBR header
139 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
140 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
143 av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
145 if(sbr->mdct.mdct_bits)
147 sbr->kx[0] = sbr->kx[1];
149 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
150 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
151 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
152 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
153 * and scale back down at synthesis. */
154 ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
155 ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
156 ff_ps_ctx_init(&sbr->ps);
157 ff_sbrdsp_init(&sbr->dsp);
158 aacsbr_func_ptr_init(&sbr->c);
161 av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
163 ff_mdct_end(&sbr->mdct);
164 ff_mdct_end(&sbr->mdct_ana);
167 static int qsort_comparison_function_int16(const void *a, const void *b)
169 return *(const int16_t *)a - *(const int16_t *)b;
172 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
175 for (i = 0; i <= last_el; i++)
176 if (table[i] == needle)
181 /// Limiter Frequency Band Table (14496-3 sp04 p198)
182 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
185 if (sbr->bs_limiter_bands > 0) {
186 static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
187 1.18509277094158210129f, //2^(0.49/2)
188 1.11987160404675912501f }; //2^(0.49/3)
189 const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
190 int16_t patch_borders[7];
191 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
193 patch_borders[0] = sbr->kx[1];
194 for (k = 1; k <= sbr->num_patches; k++)
195 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
197 memcpy(sbr->f_tablelim, sbr->f_tablelow,
198 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
199 if (sbr->num_patches > 1)
200 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
201 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
203 qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
204 sizeof(sbr->f_tablelim[0]),
205 qsort_comparison_function_int16);
207 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
208 while (out < sbr->f_tablelim + sbr->n_lim) {
209 if (*in >= *out * lim_bands_per_octave_warped) {
211 } else if (*in == *out ||
212 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
215 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
223 sbr->f_tablelim[0] = sbr->f_tablelow[0];
224 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
229 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
231 unsigned int cnt = get_bits_count(gb);
232 uint8_t bs_header_extra_1;
233 uint8_t bs_header_extra_2;
234 int old_bs_limiter_bands = sbr->bs_limiter_bands;
235 SpectrumParameters old_spectrum_params;
239 // Save last spectrum parameters variables to compare to new ones
240 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
242 sbr->bs_amp_res_header = get_bits1(gb);
243 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
244 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
245 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
246 skip_bits(gb, 2); // bs_reserved
248 bs_header_extra_1 = get_bits1(gb);
249 bs_header_extra_2 = get_bits1(gb);
251 if (bs_header_extra_1) {
252 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
253 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
254 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
256 sbr->spectrum_params.bs_freq_scale = 2;
257 sbr->spectrum_params.bs_alter_scale = 1;
258 sbr->spectrum_params.bs_noise_bands = 2;
261 // Check if spectrum parameters changed
262 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
265 if (bs_header_extra_2) {
266 sbr->bs_limiter_bands = get_bits(gb, 2);
267 sbr->bs_limiter_gains = get_bits(gb, 2);
268 sbr->bs_interpol_freq = get_bits1(gb);
269 sbr->bs_smoothing_mode = get_bits1(gb);
271 sbr->bs_limiter_bands = 2;
272 sbr->bs_limiter_gains = 2;
273 sbr->bs_interpol_freq = 1;
274 sbr->bs_smoothing_mode = 1;
277 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
278 sbr_make_f_tablelim(sbr);
280 return get_bits_count(gb) - cnt;
283 static int array_min_int16(const int16_t *array, int nel)
285 int i, min = array[0];
286 for (i = 1; i < nel; i++)
287 min = FFMIN(array[i], min);
291 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
293 int k, previous, present;
296 base = powf((float)stop / start, 1.0f / num_bands);
300 for (k = 0; k < num_bands-1; k++) {
302 present = lrintf(prod);
303 bands[k] = present - previous;
306 bands[num_bands-1] = stop - previous;
309 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
311 // Requirements (14496-3 sp04 p205)
313 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
316 if (bs_xover_band >= n_master) {
317 av_log(avctx, AV_LOG_ERROR,
318 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
325 /// Master Frequency Band Table (14496-3 sp04 p194)
326 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
327 SpectrumParameters *spectrum)
329 unsigned int temp, max_qmf_subbands = 0;
330 unsigned int start_min, stop_min;
332 const int8_t *sbr_offset_ptr;
335 if (sbr->sample_rate < 32000) {
337 } else if (sbr->sample_rate < 64000) {
342 switch (sbr->sample_rate) {
344 sbr_offset_ptr = sbr_offset[0];
347 sbr_offset_ptr = sbr_offset[1];
350 sbr_offset_ptr = sbr_offset[2];
353 sbr_offset_ptr = sbr_offset[3];
355 case 44100: case 48000: case 64000:
356 sbr_offset_ptr = sbr_offset[4];
358 case 88200: case 96000: case 128000: case 176400: case 192000:
359 sbr_offset_ptr = sbr_offset[5];
362 av_log(ac->avctx, AV_LOG_ERROR,
363 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
367 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
368 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
370 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
372 if (spectrum->bs_stop_freq < 14) {
373 sbr->k[2] = stop_min;
374 make_bands(stop_dk, stop_min, 64, 13);
375 qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
376 for (k = 0; k < spectrum->bs_stop_freq; k++)
377 sbr->k[2] += stop_dk[k];
378 } else if (spectrum->bs_stop_freq == 14) {
379 sbr->k[2] = 2*sbr->k[0];
380 } else if (spectrum->bs_stop_freq == 15) {
381 sbr->k[2] = 3*sbr->k[0];
383 av_log(ac->avctx, AV_LOG_ERROR,
384 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
387 sbr->k[2] = FFMIN(64, sbr->k[2]);
389 // Requirements (14496-3 sp04 p205)
390 if (sbr->sample_rate <= 32000) {
391 max_qmf_subbands = 48;
392 } else if (sbr->sample_rate == 44100) {
393 max_qmf_subbands = 35;
394 } else if (sbr->sample_rate >= 48000)
395 max_qmf_subbands = 32;
399 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
400 av_log(ac->avctx, AV_LOG_ERROR,
401 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
405 if (!spectrum->bs_freq_scale) {
408 dk = spectrum->bs_alter_scale + 1;
409 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
410 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
413 for (k = 1; k <= sbr->n_master; k++)
414 sbr->f_master[k] = dk;
416 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
419 sbr->f_master[2]-= (k2diff < -1);
421 sbr->f_master[sbr->n_master]++;
424 sbr->f_master[0] = sbr->k[0];
425 for (k = 1; k <= sbr->n_master; k++)
426 sbr->f_master[k] += sbr->f_master[k - 1];
429 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
430 int two_regions, num_bands_0;
431 int vdk0_max, vdk1_min;
434 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
436 sbr->k[1] = 2 * sbr->k[0];
439 sbr->k[1] = sbr->k[2];
442 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
444 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
445 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
451 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
453 qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
454 vdk0_max = vk0[num_bands_0];
457 for (k = 1; k <= num_bands_0; k++) {
458 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
459 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
467 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
468 : 1.0f; // bs_alter_scale = {0,1}
469 int num_bands_1 = lrintf(half_bands * invwarp *
470 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
472 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
474 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
476 if (vdk1_min < vdk0_max) {
478 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
479 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
481 vk1[num_bands_1] -= change;
484 qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
487 for (k = 1; k <= num_bands_1; k++) {
488 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
489 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
495 sbr->n_master = num_bands_0 + num_bands_1;
496 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
498 memcpy(&sbr->f_master[0], vk0,
499 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
500 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
501 num_bands_1 * sizeof(sbr->f_master[0]));
504 sbr->n_master = num_bands_0;
505 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
507 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
514 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
515 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
517 int i, k, last_k = -1, last_msb = -1, sb = 0;
519 int usb = sbr->kx[1];
520 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
522 sbr->num_patches = 0;
524 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
525 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
531 if (k == last_k && msb == last_msb) {
532 av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
533 return AVERROR_INVALIDDATA;
537 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
538 sb = sbr->f_master[i];
539 odd = (sb + sbr->k[0]) & 1;
542 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
543 // After this check the final number of patches can still be six which is
544 // illegal however the Coding Technologies decoder check stream has a final
545 // count of 6 patches
546 if (sbr->num_patches > 5) {
547 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
551 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
552 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
554 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
561 if (sbr->f_master[k] - sb < 3)
563 } while (sb != sbr->kx[1] + sbr->m[1]);
565 if (sbr->num_patches > 1 &&
566 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
572 /// Derived Frequency Band Tables (14496-3 sp04 p197)
573 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
577 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
578 sbr->n[0] = (sbr->n[1] + 1) >> 1;
580 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
581 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
582 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
583 sbr->kx[1] = sbr->f_tablehigh[0];
585 // Requirements (14496-3 sp04 p205)
586 if (sbr->kx[1] + sbr->m[1] > 64) {
587 av_log(ac->avctx, AV_LOG_ERROR,
588 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
591 if (sbr->kx[1] > 32) {
592 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
596 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
597 temp = sbr->n[1] & 1;
598 for (k = 1; k <= sbr->n[0]; k++)
599 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
601 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
602 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
604 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
608 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
610 for (k = 1; k <= sbr->n_q; k++) {
611 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
612 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
615 if (sbr_hf_calc_npatches(ac, sbr) < 0)
618 sbr_make_f_tablelim(sbr);
620 sbr->data[0].f_indexnoise = 0;
621 sbr->data[1].f_indexnoise = 0;
626 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
630 for (i = 0; i < elements; i++) {
631 vec[i] = get_bits1(gb);
635 /** ceil(log2(index+1)) */
636 static const int8_t ceil_log2[] = {
640 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
641 GetBitContext *gb, SBRData *ch_data)
645 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
646 int abs_bord_trail = 16;
647 int num_rel_lead, num_rel_trail;
648 unsigned bs_num_env_old = ch_data->bs_num_env;
650 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
651 ch_data->bs_amp_res = sbr->bs_amp_res_header;
652 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
654 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
656 ch_data->bs_num_env = 1 << get_bits(gb, 2);
657 num_rel_lead = ch_data->bs_num_env - 1;
658 if (ch_data->bs_num_env == 1)
659 ch_data->bs_amp_res = 0;
661 if (ch_data->bs_num_env > 4) {
662 av_log(ac->avctx, AV_LOG_ERROR,
663 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
664 ch_data->bs_num_env);
668 ch_data->t_env[0] = 0;
669 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
671 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
673 for (i = 0; i < num_rel_lead; i++)
674 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
676 ch_data->bs_freq_res[1] = get_bits1(gb);
677 for (i = 1; i < ch_data->bs_num_env; i++)
678 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
681 abs_bord_trail += get_bits(gb, 2);
682 num_rel_trail = get_bits(gb, 2);
683 ch_data->bs_num_env = num_rel_trail + 1;
684 ch_data->t_env[0] = 0;
685 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
687 for (i = 0; i < num_rel_trail; i++)
688 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
689 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
691 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
693 for (i = 0; i < ch_data->bs_num_env; i++)
694 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
697 ch_data->t_env[0] = get_bits(gb, 2);
698 num_rel_lead = get_bits(gb, 2);
699 ch_data->bs_num_env = num_rel_lead + 1;
700 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
702 for (i = 0; i < num_rel_lead; i++)
703 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
705 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
707 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
710 ch_data->t_env[0] = get_bits(gb, 2);
711 abs_bord_trail += get_bits(gb, 2);
712 num_rel_lead = get_bits(gb, 2);
713 num_rel_trail = get_bits(gb, 2);
714 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
716 if (ch_data->bs_num_env > 5) {
717 av_log(ac->avctx, AV_LOG_ERROR,
718 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
719 ch_data->bs_num_env);
723 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
725 for (i = 0; i < num_rel_lead; i++)
726 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
727 for (i = 0; i < num_rel_trail; i++)
728 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
729 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
731 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
733 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
737 av_assert0(bs_pointer >= 0);
738 if (bs_pointer > ch_data->bs_num_env + 1) {
739 av_log(ac->avctx, AV_LOG_ERROR,
740 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
745 for (i = 1; i <= ch_data->bs_num_env; i++) {
746 if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
747 av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
752 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
754 ch_data->t_q[0] = ch_data->t_env[0];
755 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
756 if (ch_data->bs_num_noise > 1) {
758 if (ch_data->bs_frame_class == FIXFIX) {
759 idx = ch_data->bs_num_env >> 1;
760 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
761 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
765 else if (bs_pointer == 1)
766 idx = ch_data->bs_num_env - 1;
767 else // bs_pointer > 1
768 idx = bs_pointer - 1;
770 ch_data->t_q[1] = ch_data->t_env[idx];
773 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
774 ch_data->e_a[1] = -1;
775 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
776 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
777 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
778 ch_data->e_a[1] = bs_pointer - 1;
783 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
784 //These variables are saved from the previous frame rather than copied
785 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
786 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
787 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
789 //These variables are read from the bitstream and therefore copied
790 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
791 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
792 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
793 dst->bs_num_env = src->bs_num_env;
794 dst->bs_amp_res = src->bs_amp_res;
795 dst->bs_num_noise = src->bs_num_noise;
796 dst->bs_frame_class = src->bs_frame_class;
797 dst->e_a[1] = src->e_a[1];
800 /// Read how the envelope and noise floor data is delta coded
801 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
804 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
805 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
808 /// Read inverse filtering data
809 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
814 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
815 for (i = 0; i < sbr->n_q; i++)
816 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
819 static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
820 SBRData *ch_data, int ch)
824 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
826 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
827 const int odd = sbr->n[1] & 1;
829 if (sbr->bs_coupling && ch) {
830 if (ch_data->bs_amp_res) {
832 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
833 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
834 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
835 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
838 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
839 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
840 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
841 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
844 if (ch_data->bs_amp_res) {
846 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
847 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
848 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
849 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
852 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
853 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
854 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
855 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
859 for (i = 0; i < ch_data->bs_num_env; i++) {
860 if (ch_data->bs_df_env[i]) {
861 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
862 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
863 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
864 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
865 } else if (ch_data->bs_freq_res[i + 1]) {
866 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
867 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
868 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
871 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
872 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
873 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
877 ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
878 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
879 ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
883 //assign 0th elements of env_facs from last elements
884 memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
885 sizeof(ch_data->env_facs[0]));
888 static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
889 SBRData *ch_data, int ch)
892 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
894 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
896 if (sbr->bs_coupling && ch) {
897 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
898 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
899 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
900 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
902 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
903 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
904 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
905 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
908 for (i = 0; i < ch_data->bs_num_noise; i++) {
909 if (ch_data->bs_df_noise[i]) {
910 for (j = 0; j < sbr->n_q; j++)
911 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
913 ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
914 for (j = 1; j < sbr->n_q; j++)
915 ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
919 //assign 0th elements of noise_facs from last elements
920 memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
921 sizeof(ch_data->noise_facs[0]));
924 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
926 int bs_extension_id, int *num_bits_left)
928 switch (bs_extension_id) {
929 case EXTENSION_ID_PS:
930 if (!ac->oc[1].m4ac.ps) {
931 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
932 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
936 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
937 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
939 avpriv_report_missing_feature(ac->avctx, "Parametric Stereo");
940 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
946 // some files contain 0-padding
947 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
948 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
949 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
955 static int read_sbr_single_channel_element(AACContext *ac,
956 SpectralBandReplication *sbr,
959 if (get_bits1(gb)) // bs_data_extra
960 skip_bits(gb, 4); // bs_reserved
962 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
964 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
965 read_sbr_invf(sbr, gb, &sbr->data[0]);
966 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
967 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
969 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
970 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
975 static int read_sbr_channel_pair_element(AACContext *ac,
976 SpectralBandReplication *sbr,
979 if (get_bits1(gb)) // bs_data_extra
980 skip_bits(gb, 8); // bs_reserved
982 if ((sbr->bs_coupling = get_bits1(gb))) {
983 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
985 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
986 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
987 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
988 read_sbr_invf(sbr, gb, &sbr->data[0]);
989 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
990 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
991 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
992 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
993 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
994 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
996 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
997 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
999 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1000 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1001 read_sbr_invf(sbr, gb, &sbr->data[0]);
1002 read_sbr_invf(sbr, gb, &sbr->data[1]);
1003 read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
1004 read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
1005 read_sbr_noise(sbr, gb, &sbr->data[0], 0);
1006 read_sbr_noise(sbr, gb, &sbr->data[1], 1);
1009 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1010 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1011 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1012 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1017 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1018 GetBitContext *gb, int id_aac)
1020 unsigned int cnt = get_bits_count(gb);
1022 sbr->id_aac = id_aac;
1024 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1025 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1027 return get_bits_count(gb) - cnt;
1029 } else if (id_aac == TYPE_CPE) {
1030 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1032 return get_bits_count(gb) - cnt;
1035 av_log(ac->avctx, AV_LOG_ERROR,
1036 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1038 return get_bits_count(gb) - cnt;
1040 if (get_bits1(gb)) { // bs_extended_data
1041 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1042 if (num_bits_left == 15)
1043 num_bits_left += get_bits(gb, 8); // bs_esc_count
1045 num_bits_left <<= 3;
1046 while (num_bits_left > 7) {
1048 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1050 if (num_bits_left < 0) {
1051 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1053 if (num_bits_left > 0)
1054 skip_bits(gb, num_bits_left);
1057 return get_bits_count(gb) - cnt;
1060 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1063 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1065 err = sbr_make_f_derived(ac, sbr);
1067 av_log(ac->avctx, AV_LOG_ERROR,
1068 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1074 * Decode Spectral Band Replication extension data; reference: table 4.55.
1076 * @param crc flag indicating the presence of CRC checksum
1077 * @param cnt length of TYPE_FIL syntactic element in bytes
1079 * @return Returns number of bytes consumed from the TYPE_FIL element.
1081 int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1082 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1084 unsigned int num_sbr_bits = 0, num_align_bits;
1085 unsigned bytes_read;
1086 GetBitContext gbc = *gb_host, *gb = &gbc;
1087 skip_bits_long(gb_host, cnt*8 - 4);
1091 if (!sbr->sample_rate)
1092 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1093 if (!ac->oc[1].m4ac.ext_sample_rate)
1094 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1097 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1101 //Save some state from the previous frame.
1102 sbr->kx[0] = sbr->kx[1];
1103 sbr->m[0] = sbr->m[1];
1104 sbr->kx_and_m_pushed = 1;
1107 if (get_bits1(gb)) // bs_header_flag
1108 num_sbr_bits += read_sbr_header(sbr, gb);
1114 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1116 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1117 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1119 if (bytes_read > cnt) {
1120 av_log(ac->avctx, AV_LOG_ERROR,
1121 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1126 /// Dequantization and stereo decoding (14496-3 sp04 p203)
1127 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1132 if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1133 float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
1134 float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1135 for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1136 for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1137 float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1138 float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1141 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1144 fac = temp1 / (1.0f + temp2);
1145 sbr->data[0].env_facs[e][k] = fac;
1146 sbr->data[1].env_facs[e][k] = fac * temp2;
1149 for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1150 for (k = 0; k < sbr->n_q; k++) {
1151 float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1152 float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1155 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1158 fac = temp1 / (1.0f + temp2);
1159 sbr->data[0].noise_facs[e][k] = fac;
1160 sbr->data[1].noise_facs[e][k] = fac * temp2;
1163 } else { // SCE or one non-coupled CPE
1164 for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1165 float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1166 for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1167 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
1168 sbr->data[ch].env_facs[e][k] =
1169 exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1170 if (sbr->data[ch].env_facs[e][k] > 1E20) {
1171 av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
1172 sbr->data[ch].env_facs[e][k] = 1;
1176 for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1177 for (k = 0; k < sbr->n_q; k++)
1178 sbr->data[ch].noise_facs[e][k] =
1179 exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1185 * Analysis QMF Bank (14496-3 sp04 p206)
1187 * @param x pointer to the beginning of the first sample window
1188 * @param W array of complex-valued samples split into subbands
1190 #ifndef sbr_qmf_analysis
1191 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1192 SBRDSPContext *sbrdsp, const float *in, float *x,
1193 float z[320], float W[2][32][32][2], int buf_idx)
1196 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1197 memcpy(x+288, in, 1024*sizeof(x[0]));
1198 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1199 // are not supported
1200 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1202 sbrdsp->qmf_pre_shuffle(z);
1203 mdct->imdct_half(mdct, z, z+64);
1204 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1211 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1212 * (14496-3 sp04 p206)
1214 #ifndef sbr_qmf_synthesis
1215 static void sbr_qmf_synthesis(FFTContext *mdct,
1216 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1217 float *out, float X[2][38][64],
1218 float mdct_buf[2][64],
1219 float *v0, int *v_off, const unsigned int div)
1222 const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1223 const int step = 128 >> div;
1225 for (i = 0; i < 32; i++) {
1226 if (*v_off < step) {
1227 int saved_samples = (1280 - 128) >> div;
1228 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1229 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1235 for (n = 0; n < 32; n++) {
1236 X[0][i][ n] = -X[0][i][n];
1237 X[0][i][32+n] = X[1][i][31-n];
1239 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1240 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1242 sbrdsp->neg_odd_64(X[1][i]);
1243 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1244 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1245 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1247 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1248 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1249 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1250 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1251 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1252 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1253 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1254 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1255 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1256 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1262 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1263 * (14496-3 sp04 p214)
1264 * Warning: This routine does not seem numerically stable.
1266 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
1267 float (*alpha0)[2], float (*alpha1)[2],
1268 const float X_low[32][40][2], int k0)
1271 for (k = 0; k < k0; k++) {
1272 LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
1275 dsp->autocorrelate(X_low[k], phi);
1277 dk = phi[2][1][0] * phi[1][0][0] -
1278 (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1284 float temp_real, temp_im;
1285 temp_real = phi[0][0][0] * phi[1][1][0] -
1286 phi[0][0][1] * phi[1][1][1] -
1287 phi[0][1][0] * phi[1][0][0];
1288 temp_im = phi[0][0][0] * phi[1][1][1] +
1289 phi[0][0][1] * phi[1][1][0] -
1290 phi[0][1][1] * phi[1][0][0];
1292 alpha1[k][0] = temp_real / dk;
1293 alpha1[k][1] = temp_im / dk;
1296 if (!phi[1][0][0]) {
1300 float temp_real, temp_im;
1301 temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1302 alpha1[k][1] * phi[1][1][1];
1303 temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1304 alpha1[k][0] * phi[1][1][1];
1306 alpha0[k][0] = -temp_real / phi[1][0][0];
1307 alpha0[k][1] = -temp_im / phi[1][0][0];
1310 if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1311 alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1320 /// Chirp Factors (14496-3 sp04 p214)
1321 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1325 static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1327 for (i = 0; i < sbr->n_q; i++) {
1328 if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1331 new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1333 if (new_bw < ch_data->bw_array[i]) {
1334 new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
1336 new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1337 ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1341 /// Generate the subband filtered lowband
1342 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1343 float X_low[32][40][2], const float W[2][32][32][2],
1347 const int t_HFGen = 8;
1349 memset(X_low, 0, 32*sizeof(*X_low));
1350 for (k = 0; k < sbr->kx[1]; k++) {
1351 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1352 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1353 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1356 buf_idx = 1-buf_idx;
1357 for (k = 0; k < sbr->kx[0]; k++) {
1358 for (i = 0; i < t_HFGen; i++) {
1359 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1360 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1366 /// High Frequency Generator (14496-3 sp04 p215)
1367 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1368 float X_high[64][40][2], const float X_low[32][40][2],
1369 const float (*alpha0)[2], const float (*alpha1)[2],
1370 const float bw_array[5], const uint8_t *t_env,
1376 for (j = 0; j < sbr->num_patches; j++) {
1377 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1378 const int p = sbr->patch_start_subband[j] + x;
1379 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1384 av_log(ac->avctx, AV_LOG_ERROR,
1385 "ERROR : no subband found for frequency %d\n", k);
1389 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1390 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1391 alpha0[p], alpha1[p], bw_array[g],
1392 2 * t_env[0], 2 * t_env[bs_num_env]);
1395 if (k < sbr->m[1] + sbr->kx[1])
1396 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1401 /// Generate the subband filtered lowband
1402 static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
1403 const float Y0[38][64][2], const float Y1[38][64][2],
1404 const float X_low[32][40][2], int ch)
1408 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1409 memset(X, 0, 2*sizeof(*X));
1410 for (k = 0; k < sbr->kx[0]; k++) {
1411 for (i = 0; i < i_Temp; i++) {
1412 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1413 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1416 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1417 for (i = 0; i < i_Temp; i++) {
1418 X[0][i][k] = Y0[i + i_f][k][0];
1419 X[1][i][k] = Y0[i + i_f][k][1];
1423 for (k = 0; k < sbr->kx[1]; k++) {
1424 for (i = i_Temp; i < 38; i++) {
1425 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1426 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1429 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1430 for (i = i_Temp; i < i_f; i++) {
1431 X[0][i][k] = Y1[i][k][0];
1432 X[1][i][k] = Y1[i][k][1];
1438 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1439 * (14496-3 sp04 p217)
1441 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1442 SBRData *ch_data, int e_a[2])
1446 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1447 for (e = 0; e < ch_data->bs_num_env; e++) {
1448 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1449 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1452 if (sbr->kx[1] != table[0]) {
1453 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1454 "Derived frequency tables were not regenerated.\n");
1458 for (i = 0; i < ilim; i++)
1459 for (m = table[i]; m < table[i + 1]; m++)
1460 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1462 // ch_data->bs_num_noise > 1 => 2 noise floors
1463 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1464 for (i = 0; i < sbr->n_q; i++)
1465 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1466 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1468 for (i = 0; i < sbr->n[1]; i++) {
1469 if (ch_data->bs_add_harmonic_flag) {
1470 const unsigned int m_midpoint =
1471 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1473 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1474 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1478 for (i = 0; i < ilim; i++) {
1479 int additional_sinusoid_present = 0;
1480 for (m = table[i]; m < table[i + 1]; m++) {
1481 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1482 additional_sinusoid_present = 1;
1486 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1487 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1491 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1495 /// Estimation of current envelope (14496-3 sp04 p218)
1496 static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1497 SpectralBandReplication *sbr, SBRData *ch_data)
1500 int kx1 = sbr->kx[1];
1502 if (sbr->bs_interpol_freq) {
1503 for (e = 0; e < ch_data->bs_num_env; e++) {
1504 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1505 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1506 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1508 for (m = 0; m < sbr->m[1]; m++) {
1509 float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1510 e_curr[e][m] = sum * recip_env_size;
1516 for (e = 0; e < ch_data->bs_num_env; e++) {
1517 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1518 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1519 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1520 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1522 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1524 const int den = env_size * (table[p + 1] - table[p]);
1526 for (k = table[p]; k < table[p + 1]; k++) {
1527 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1530 for (k = table[p]; k < table[p + 1]; k++) {
1531 e_curr[e][k - kx1] = sum;
1539 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1540 * and Calculation of gain (14496-3 sp04 p219)
1542 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1543 SBRData *ch_data, const int e_a[2])
1546 // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1547 static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1549 for (e = 0; e < ch_data->bs_num_env; e++) {
1550 int delta = !((e == e_a[1]) || (e == e_a[0]));
1551 for (k = 0; k < sbr->n_lim; k++) {
1552 float gain_boost, gain_max;
1553 float sum[2] = { 0.0f, 0.0f };
1554 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1555 const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1556 sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1557 sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1558 if (!sbr->s_mapped[e][m]) {
1559 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1560 ((1.0f + sbr->e_curr[e][m]) *
1561 (1.0f + sbr->q_mapped[e][m] * delta)));
1563 sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1564 ((1.0f + sbr->e_curr[e][m]) *
1565 (1.0f + sbr->q_mapped[e][m])));
1568 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1569 sum[0] += sbr->e_origmapped[e][m];
1570 sum[1] += sbr->e_curr[e][m];
1572 gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1573 gain_max = FFMIN(100000.f, gain_max);
1574 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1575 float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1576 sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
1577 sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1579 sum[0] = sum[1] = 0.0f;
1580 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1581 sum[0] += sbr->e_origmapped[e][m];
1582 sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1583 + sbr->s_m[e][m] * sbr->s_m[e][m]
1584 + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1586 gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1587 gain_boost = FFMIN(1.584893192f, gain_boost);
1588 for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1589 sbr->gain[e][m] *= gain_boost;
1590 sbr->q_m[e][m] *= gain_boost;
1591 sbr->s_m[e][m] *= gain_boost;
1597 /// Assembling HF Signals (14496-3 sp04 p220)
1598 static void sbr_hf_assemble(float Y1[38][64][2],
1599 const float X_high[64][40][2],
1600 SpectralBandReplication *sbr, SBRData *ch_data,
1604 const int h_SL = 4 * !sbr->bs_smoothing_mode;
1605 const int kx = sbr->kx[1];
1606 const int m_max = sbr->m[1];
1607 static const float h_smooth[5] = {
1614 float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1615 int indexnoise = ch_data->f_indexnoise;
1616 int indexsine = ch_data->f_indexsine;
1619 for (i = 0; i < h_SL; i++) {
1620 memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1621 memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
1624 for (i = 0; i < 4; i++) {
1625 memcpy(g_temp[i + 2 * ch_data->t_env[0]],
1626 g_temp[i + 2 * ch_data->t_env_num_env_old],
1628 memcpy(q_temp[i + 2 * ch_data->t_env[0]],
1629 q_temp[i + 2 * ch_data->t_env_num_env_old],
1634 for (e = 0; e < ch_data->bs_num_env; e++) {
1635 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1636 memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1637 memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
1641 for (e = 0; e < ch_data->bs_num_env; e++) {
1642 for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1643 LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
1644 LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
1645 float *g_filt, *q_filt;
1647 if (h_SL && e != e_a[0] && e != e_a[1]) {
1648 g_filt = g_filt_tab;
1649 q_filt = q_filt_tab;
1650 for (m = 0; m < m_max; m++) {
1651 const int idx1 = i + h_SL;
1654 for (j = 0; j <= h_SL; j++) {
1655 g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
1656 q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
1660 g_filt = g_temp[i + h_SL];
1664 sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
1665 i + ENVELOPE_ADJUSTMENT_OFFSET);
1667 if (e != e_a[0] && e != e_a[1]) {
1668 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
1672 int idx = indexsine&1;
1673 int A = (1-((indexsine+(kx & 1))&2));
1674 int B = (A^(-idx)) + idx;
1675 float *out = &Y1[i][kx][idx];
1676 float *in = sbr->s_m[e];
1677 for (m = 0; m+1 < m_max; m+=2) {
1678 out[2*m ] += in[m ] * A;
1679 out[2*m+2] += in[m+1] * B;
1682 out[2*m ] += in[m ] * A;
1684 indexnoise = (indexnoise + m_max) & 0x1ff;
1685 indexsine = (indexsine + 1) & 3;
1688 ch_data->f_indexnoise = indexnoise;
1689 ch_data->f_indexsine = indexsine;
1692 void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1695 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1697 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1700 if (id_aac != sbr->id_aac) {
1701 av_log(ac->avctx, AV_LOG_ERROR,
1702 "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1706 if (!sbr->kx_and_m_pushed) {
1707 sbr->kx[0] = sbr->kx[1];
1708 sbr->m[0] = sbr->m[1];
1710 sbr->kx_and_m_pushed = 0;
1714 sbr_dequant(sbr, id_aac);
1716 for (ch = 0; ch < nch; ch++) {
1717 /* decode channel */
1718 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1719 (float*)sbr->qmf_filter_scratch,
1720 sbr->data[ch].W, sbr->data[ch].Ypos);
1721 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1722 (const float (*)[32][32][2]) sbr->data[ch].W,
1723 sbr->data[ch].Ypos);
1724 sbr->data[ch].Ypos ^= 1;
1726 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1727 (const float (*)[40][2]) sbr->X_low, sbr->k[0]);
1728 sbr_chirp(sbr, &sbr->data[ch]);
1729 av_assert0(sbr->data[ch].bs_num_env > 0);
1730 sbr_hf_gen(ac, sbr, sbr->X_high,
1731 (const float (*)[40][2]) sbr->X_low,
1732 (const float (*)[2]) sbr->alpha0,
1733 (const float (*)[2]) sbr->alpha1,
1734 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1735 sbr->data[ch].bs_num_env);
1738 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1740 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1741 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1742 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1743 (const float (*)[40][2]) sbr->X_high,
1744 sbr, &sbr->data[ch],
1750 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1751 (const float (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1752 (const float (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1753 (const float (*)[40][2]) sbr->X_low, ch);
1756 if (ac->oc[1].m4ac.ps == 1) {
1757 if (sbr->ps.start) {
1758 ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1760 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1765 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1766 L, sbr->X[0], sbr->qmf_filter_scratch,
1767 sbr->data[0].synthesis_filterbank_samples,
1768 &sbr->data[0].synthesis_filterbank_samples_offset,
1771 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1772 R, sbr->X[1], sbr->qmf_filter_scratch,
1773 sbr->data[1].synthesis_filterbank_samples,
1774 &sbr->data[1].synthesis_filterbank_samples_offset,
1778 static void aacsbr_func_ptr_init(AACSBRContext *c)
1780 c->sbr_lf_gen = sbr_lf_gen;
1781 c->sbr_hf_assemble = sbr_hf_assemble;
1782 c->sbr_x_gen = sbr_x_gen;
1783 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1786 ff_aacsbr_func_ptr_init_mips(c);