]> git.sesse.net Git - ffmpeg/blob - libavcodec/aacsbr_fixed.c
avformat/avio: Add Metacube support
[ffmpeg] / libavcodec / aacsbr_fixed.c
1 /*
2  * Copyright (c) 2013
3  *      MIPS Technologies, Inc., California.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the MIPS Technologies, Inc., nor the names of its
14  *    contributors may be used to endorse or promote products derived from
15  *    this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE MIPS TECHNOLOGIES, INC. ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE MIPS TECHNOLOGIES, INC. BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * AAC Spectral Band Replication decoding functions (fixed-point)
30  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
31  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
32  *
33  * This file is part of FFmpeg.
34  *
35  * FFmpeg is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU Lesser General Public
37  * License as published by the Free Software Foundation; either
38  * version 2.1 of the License, or (at your option) any later version.
39  *
40  * FFmpeg is distributed in the hope that it will be useful,
41  * but WITHOUT ANY WARRANTY; without even the implied warranty of
42  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
43  * Lesser General Public License for more details.
44  *
45  * You should have received a copy of the GNU Lesser General Public
46  * License along with FFmpeg; if not, write to the Free Software
47  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
48  */
49
50 /**
51  * @file
52  * AAC Spectral Band Replication decoding functions (fixed-point)
53  * Note: Rounding-to-nearest used unless otherwise stated
54  * @author Robert Swain ( rob opendot cl )
55  * @author Stanislav Ocovaj ( stanislav.ocovaj imgtec com )
56  */
57 #define USE_FIXED 1
58
59 #include "aac.h"
60 #include "sbr.h"
61 #include "aacsbr.h"
62 #include "aacsbrdata.h"
63 #include "fft.h"
64 #include "aacps.h"
65 #include "sbrdsp.h"
66 #include "libavutil/internal.h"
67 #include "libavutil/libm.h"
68 #include "libavutil/avassert.h"
69
70 #include <stdint.h>
71 #include <float.h>
72 #include <math.h>
73
74 static VLC vlc_sbr[10];
75 static void aacsbr_func_ptr_init(AACSBRContext *c);
76 static const int CONST_LN2       = Q31(0.6931471806/256);  // ln(2)/256
77 static const int CONST_RECIP_LN2 = Q31(0.7213475204);      // 0.5/ln(2)
78 static const int CONST_076923    = Q31(0.76923076923076923077f);
79
80 static const int fixed_log_table[10] =
81 {
82     Q31(1.0/2), Q31(1.0/3), Q31(1.0/4), Q31(1.0/5), Q31(1.0/6),
83     Q31(1.0/7), Q31(1.0/8), Q31(1.0/9), Q31(1.0/10), Q31(1.0/11)
84 };
85
86 static int fixed_log(int x)
87 {
88     int i, ret, xpow, tmp;
89
90     ret = x;
91     xpow = x;
92     for (i=0; i<10; i+=2){
93         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
94         tmp = (int)(((int64_t)xpow * fixed_log_table[i] + 0x40000000) >> 31);
95         ret -= tmp;
96
97         xpow = (int)(((int64_t)xpow * x + 0x40000000) >> 31);
98         tmp = (int)(((int64_t)xpow * fixed_log_table[i+1] + 0x40000000) >> 31);
99         ret += tmp;
100     }
101
102     return ret;
103 }
104
105 static const int fixed_exp_table[7] =
106 {
107     Q31(1.0/2), Q31(1.0/6), Q31(1.0/24), Q31(1.0/120),
108     Q31(1.0/720), Q31(1.0/5040), Q31(1.0/40320)
109 };
110
111 static int fixed_exp(int x)
112 {
113     int i, ret, xpow, tmp;
114
115     ret = 0x800000 + x;
116     xpow = x;
117     for (i=0; i<7; i++){
118         xpow = (int)(((int64_t)xpow * x + 0x400000) >> 23);
119         tmp = (int)(((int64_t)xpow * fixed_exp_table[i] + 0x40000000) >> 31);
120         ret += tmp;
121     }
122
123     return ret;
124 }
125
126 static void make_bands(int16_t* bands, int start, int stop, int num_bands)
127 {
128     int k, previous, present;
129     int base, prod, nz = 0;
130
131     base = (stop << 23) / start;
132     while (base < 0x40000000){
133         base <<= 1;
134         nz++;
135     }
136     base = fixed_log(base - 0x80000000);
137     base = (((base + 0x80) >> 8) + (8-nz)*CONST_LN2) / num_bands;
138     base = fixed_exp(base);
139
140     previous = start;
141     prod = start << 23;
142
143     for (k = 0; k < num_bands-1; k++) {
144         prod = (int)(((int64_t)prod * base + 0x400000) >> 23);
145         present = (prod + 0x400000) >> 23;
146         bands[k] = present - previous;
147         previous = present;
148     }
149     bands[num_bands-1] = stop - previous;
150 }
151
152 /// Dequantization and stereo decoding (14496-3 sp04 p203)
153 static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
154 {
155     int k, e;
156     int ch;
157
158     if (id_aac == TYPE_CPE && sbr->bs_coupling) {
159         int alpha      = sbr->data[0].bs_amp_res ?  2 :  1;
160         int pan_offset = sbr->data[0].bs_amp_res ? 12 : 24;
161         for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
162             for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
163                 SoftFloat temp1, temp2, fac;
164
165                 temp1.exp = sbr->data[0].env_facs_q[e][k] * alpha + 14;
166                 if (temp1.exp & 1)
167                   temp1.mant = 759250125;
168                 else
169                   temp1.mant = 0x20000000;
170                 temp1.exp = (temp1.exp >> 1) + 1;
171                 if (temp1.exp > 66) { // temp1 > 1E20
172                     av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
173                     temp1 = FLOAT_1;
174                 }
175
176                 temp2.exp = (pan_offset - sbr->data[1].env_facs_q[e][k]) * alpha;
177                 if (temp2.exp & 1)
178                   temp2.mant = 759250125;
179                 else
180                   temp2.mant = 0x20000000;
181                 temp2.exp = (temp2.exp >> 1) + 1;
182                 fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
183                 sbr->data[0].env_facs[e][k] = fac;
184                 sbr->data[1].env_facs[e][k] = av_mul_sf(fac, temp2);
185             }
186         }
187         for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
188             for (k = 0; k < sbr->n_q; k++) {
189                 SoftFloat temp1, temp2, fac;
190
191                 temp1.exp = NOISE_FLOOR_OFFSET - \
192                     sbr->data[0].noise_facs_q[e][k] + 2;
193                 temp1.mant = 0x20000000;
194                 av_assert0(temp1.exp <= 66);
195                 temp2.exp = 12 - sbr->data[1].noise_facs_q[e][k] + 1;
196                 temp2.mant = 0x20000000;
197                 fac   = av_div_sf(temp1, av_add_sf(FLOAT_1, temp2));
198                 sbr->data[0].noise_facs[e][k] = fac;
199                 sbr->data[1].noise_facs[e][k] = av_mul_sf(fac, temp2);
200             }
201         }
202     } else { // SCE or one non-coupled CPE
203         for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
204             int alpha = sbr->data[ch].bs_amp_res ? 2 : 1;
205             for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
206                 for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++){
207                     SoftFloat temp1;
208
209                     temp1.exp = alpha * sbr->data[ch].env_facs_q[e][k] + 12;
210                     if (temp1.exp & 1)
211                         temp1.mant = 759250125;
212                     else
213                         temp1.mant = 0x20000000;
214                     temp1.exp = (temp1.exp >> 1) + 1;
215                     if (temp1.exp > 66) { // temp1 > 1E20
216                         av_log(NULL, AV_LOG_ERROR, "envelope scalefactor overflow in dequant\n");
217                         temp1 = FLOAT_1;
218                     }
219                     sbr->data[ch].env_facs[e][k] = temp1;
220                 }
221             for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
222                 for (k = 0; k < sbr->n_q; k++){
223                     sbr->data[ch].noise_facs[e][k].exp = NOISE_FLOOR_OFFSET - \
224                         sbr->data[ch].noise_facs_q[e][k] + 1;
225                     sbr->data[ch].noise_facs[e][k].mant = 0x20000000;
226                 }
227         }
228     }
229 }
230
231 /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
232  * (14496-3 sp04 p214)
233  * Warning: This routine does not seem numerically stable.
234  */
235 static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
236                                   int (*alpha0)[2], int (*alpha1)[2],
237                                   const int X_low[32][40][2], int k0)
238 {
239     int k;
240     int shift, round;
241
242     for (k = 0; k < k0; k++) {
243         SoftFloat phi[3][2][2];
244         SoftFloat a00, a01, a10, a11;
245         SoftFloat dk;
246
247         dsp->autocorrelate(X_low[k], phi);
248
249         dk = av_sub_sf(av_mul_sf(phi[2][1][0], phi[1][0][0]),
250              av_mul_sf(av_add_sf(av_mul_sf(phi[1][1][0], phi[1][1][0]),
251              av_mul_sf(phi[1][1][1], phi[1][1][1])), FLOAT_0999999));
252
253         if (!dk.mant) {
254             a10 = FLOAT_0;
255             a11 = FLOAT_0;
256         } else {
257             SoftFloat temp_real, temp_im;
258             temp_real = av_sub_sf(av_sub_sf(av_mul_sf(phi[0][0][0], phi[1][1][0]),
259                                             av_mul_sf(phi[0][0][1], phi[1][1][1])),
260                                   av_mul_sf(phi[0][1][0], phi[1][0][0]));
261             temp_im   = av_sub_sf(av_add_sf(av_mul_sf(phi[0][0][0], phi[1][1][1]),
262                                             av_mul_sf(phi[0][0][1], phi[1][1][0])),
263                                   av_mul_sf(phi[0][1][1], phi[1][0][0]));
264
265             a10 = av_div_sf(temp_real, dk);
266             a11 = av_div_sf(temp_im,   dk);
267         }
268
269         if (!phi[1][0][0].mant) {
270             a00 = FLOAT_0;
271             a01 = FLOAT_0;
272         } else {
273             SoftFloat temp_real, temp_im;
274             temp_real = av_add_sf(phi[0][0][0],
275                                   av_add_sf(av_mul_sf(a10, phi[1][1][0]),
276                                             av_mul_sf(a11, phi[1][1][1])));
277             temp_im   = av_add_sf(phi[0][0][1],
278                                   av_sub_sf(av_mul_sf(a11, phi[1][1][0]),
279                                             av_mul_sf(a10, phi[1][1][1])));
280
281             temp_real.mant = -temp_real.mant;
282             temp_im.mant   = -temp_im.mant;
283             a00 = av_div_sf(temp_real, phi[1][0][0]);
284             a01 = av_div_sf(temp_im,   phi[1][0][0]);
285         }
286
287         shift = a00.exp;
288         if (shift >= 3)
289             alpha0[k][0] = 0x7fffffff;
290         else if (shift <= -30)
291             alpha0[k][0] = 0;
292         else {
293             shift = 1-shift;
294             if (shift <= 0)
295                 alpha0[k][0] = a00.mant * (1<<-shift);
296             else {
297                 round = 1 << (shift-1);
298                 alpha0[k][0] = (a00.mant + round) >> shift;
299             }
300         }
301
302         shift = a01.exp;
303         if (shift >= 3)
304             alpha0[k][1] = 0x7fffffff;
305         else if (shift <= -30)
306             alpha0[k][1] = 0;
307         else {
308             shift = 1-shift;
309             if (shift <= 0)
310                 alpha0[k][1] = a01.mant * (1<<-shift);
311             else {
312                 round = 1 << (shift-1);
313                 alpha0[k][1] = (a01.mant + round) >> shift;
314             }
315         }
316         shift = a10.exp;
317         if (shift >= 3)
318             alpha1[k][0] = 0x7fffffff;
319         else if (shift <= -30)
320             alpha1[k][0] = 0;
321         else {
322             shift = 1-shift;
323             if (shift <= 0)
324                 alpha1[k][0] = a10.mant * (1<<-shift);
325             else {
326                 round = 1 << (shift-1);
327                 alpha1[k][0] = (a10.mant + round) >> shift;
328             }
329         }
330
331         shift = a11.exp;
332         if (shift >= 3)
333             alpha1[k][1] = 0x7fffffff;
334         else if (shift <= -30)
335             alpha1[k][1] = 0;
336         else {
337             shift = 1-shift;
338             if (shift <= 0)
339                 alpha1[k][1] = a11.mant * (1<<-shift);
340             else {
341                 round = 1 << (shift-1);
342                 alpha1[k][1] = (a11.mant + round) >> shift;
343             }
344         }
345
346         shift = (int)(((int64_t)(alpha1[k][0]>>1) * (alpha1[k][0]>>1) + \
347                        (int64_t)(alpha1[k][1]>>1) * (alpha1[k][1]>>1) + \
348                        0x40000000) >> 31);
349         if (shift >= 0x20000000){
350             alpha1[k][0] = 0;
351             alpha1[k][1] = 0;
352             alpha0[k][0] = 0;
353             alpha0[k][1] = 0;
354         }
355
356         shift = (int)(((int64_t)(alpha0[k][0]>>1) * (alpha0[k][0]>>1) + \
357                        (int64_t)(alpha0[k][1]>>1) * (alpha0[k][1]>>1) + \
358                        0x40000000) >> 31);
359         if (shift >= 0x20000000){
360             alpha1[k][0] = 0;
361             alpha1[k][1] = 0;
362             alpha0[k][0] = 0;
363             alpha0[k][1] = 0;
364         }
365     }
366 }
367
368 /// Chirp Factors (14496-3 sp04 p214)
369 static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
370 {
371     int i;
372     int new_bw;
373     static const int bw_tab[] = { 0, 1610612736, 1932735283, 2104533975 };
374     int64_t accu;
375
376     for (i = 0; i < sbr->n_q; i++) {
377         if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1)
378             new_bw = 1288490189;
379         else
380             new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
381
382         if (new_bw < ch_data->bw_array[i]){
383             accu  = (int64_t)new_bw * 1610612736;
384             accu += (int64_t)ch_data->bw_array[i] * 0x20000000;
385             new_bw = (int)((accu + 0x40000000) >> 31);
386         } else {
387             accu  = (int64_t)new_bw * 1946157056;
388             accu += (int64_t)ch_data->bw_array[i] * 201326592;
389             new_bw = (int)((accu + 0x40000000) >> 31);
390         }
391         ch_data->bw_array[i] = new_bw < 0x2000000 ? 0 : new_bw;
392     }
393 }
394
395 /**
396  * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
397  * and Calculation of gain (14496-3 sp04 p219)
398  */
399 static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
400                           SBRData *ch_data, const int e_a[2])
401 {
402     int e, k, m;
403     // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
404     static const SoftFloat limgain[4] = { { 760155524,  0 }, { 0x20000000,  1 },
405                                             { 758351638,  1 }, { 625000000, 34 } };
406
407     for (e = 0; e < ch_data->bs_num_env; e++) {
408         int delta = !((e == e_a[1]) || (e == e_a[0]));
409         for (k = 0; k < sbr->n_lim; k++) {
410             SoftFloat gain_boost, gain_max;
411             SoftFloat sum[2];
412             sum[0] = sum[1] = FLOAT_0;
413             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
414                 const SoftFloat temp = av_div_sf(sbr->e_origmapped[e][m],
415                                             av_add_sf(FLOAT_1, sbr->q_mapped[e][m]));
416                 sbr->q_m[e][m] = av_sqrt_sf(av_mul_sf(temp, sbr->q_mapped[e][m]));
417                 sbr->s_m[e][m] = av_sqrt_sf(av_mul_sf(temp, av_int2sf(ch_data->s_indexmapped[e + 1][m], 0)));
418                 if (!sbr->s_mapped[e][m]) {
419                     if (delta) {
420                       sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
421                                             av_mul_sf(av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
422                                             av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
423                     } else {
424                       sbr->gain[e][m] = av_sqrt_sf(av_div_sf(sbr->e_origmapped[e][m],
425                                             av_add_sf(FLOAT_1, sbr->e_curr[e][m])));
426                     }
427                 } else {
428                     sbr->gain[e][m] = av_sqrt_sf(
429                                         av_div_sf(
430                                             av_mul_sf(sbr->e_origmapped[e][m], sbr->q_mapped[e][m]),
431                                             av_mul_sf(
432                                                 av_add_sf(FLOAT_1, sbr->e_curr[e][m]),
433                                                 av_add_sf(FLOAT_1, sbr->q_mapped[e][m]))));
434                 }
435                 sbr->gain[e][m] = av_add_sf(sbr->gain[e][m], FLOAT_MIN);
436             }
437             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
438                 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
439                 sum[1] = av_add_sf(sum[1], sbr->e_curr[e][m]);
440             }
441             gain_max = av_mul_sf(limgain[sbr->bs_limiter_gains],
442                             av_sqrt_sf(
443                                 av_div_sf(
444                                     av_add_sf(FLOAT_EPSILON, sum[0]),
445                                     av_add_sf(FLOAT_EPSILON, sum[1]))));
446             if (av_gt_sf(gain_max, FLOAT_100000))
447               gain_max = FLOAT_100000;
448             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
449                 SoftFloat q_m_max = av_div_sf(
450                                         av_mul_sf(sbr->q_m[e][m], gain_max),
451                                         sbr->gain[e][m]);
452                 if (av_gt_sf(sbr->q_m[e][m], q_m_max))
453                   sbr->q_m[e][m] = q_m_max;
454                 if (av_gt_sf(sbr->gain[e][m], gain_max))
455                   sbr->gain[e][m] = gain_max;
456             }
457             sum[0] = sum[1] = FLOAT_0;
458             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
459                 sum[0] = av_add_sf(sum[0], sbr->e_origmapped[e][m]);
460                 sum[1] = av_add_sf(sum[1],
461                             av_mul_sf(
462                                 av_mul_sf(sbr->e_curr[e][m],
463                                           sbr->gain[e][m]),
464                                 sbr->gain[e][m]));
465                 sum[1] = av_add_sf(sum[1],
466                             av_mul_sf(sbr->s_m[e][m], sbr->s_m[e][m]));
467                 if (delta && !sbr->s_m[e][m].mant)
468                   sum[1] = av_add_sf(sum[1],
469                                 av_mul_sf(sbr->q_m[e][m], sbr->q_m[e][m]));
470             }
471             gain_boost = av_sqrt_sf(
472                             av_div_sf(
473                                 av_add_sf(FLOAT_EPSILON, sum[0]),
474                                 av_add_sf(FLOAT_EPSILON, sum[1])));
475             if (av_gt_sf(gain_boost, FLOAT_1584893192))
476               gain_boost = FLOAT_1584893192;
477
478             for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
479                 sbr->gain[e][m] = av_mul_sf(sbr->gain[e][m], gain_boost);
480                 sbr->q_m[e][m]  = av_mul_sf(sbr->q_m[e][m], gain_boost);
481                 sbr->s_m[e][m]  = av_mul_sf(sbr->s_m[e][m], gain_boost);
482             }
483         }
484     }
485 }
486
487 /// Assembling HF Signals (14496-3 sp04 p220)
488 static void sbr_hf_assemble(int Y1[38][64][2],
489                             const int X_high[64][40][2],
490                             SpectralBandReplication *sbr, SBRData *ch_data,
491                             const int e_a[2])
492 {
493     int e, i, j, m;
494     const int h_SL = 4 * !sbr->bs_smoothing_mode;
495     const int kx = sbr->kx[1];
496     const int m_max = sbr->m[1];
497     static const SoftFloat h_smooth[5] = {
498       { 715827883, -1 },
499       { 647472402, -1 },
500       { 937030863, -2 },
501       { 989249804, -3 },
502       { 546843842, -4 },
503     };
504     SoftFloat (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
505     int indexnoise = ch_data->f_indexnoise;
506     int indexsine  = ch_data->f_indexsine;
507
508     if (sbr->reset) {
509         for (i = 0; i < h_SL; i++) {
510             memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
511             memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
512         }
513     } else if (h_SL) {
514         for (i = 0; i < 4; i++) {
515             memcpy(g_temp[i + 2 * ch_data->t_env[0]],
516                    g_temp[i + 2 * ch_data->t_env_num_env_old],
517                    sizeof(g_temp[0]));
518             memcpy(q_temp[i + 2 * ch_data->t_env[0]],
519                    q_temp[i + 2 * ch_data->t_env_num_env_old],
520                    sizeof(q_temp[0]));
521         }
522     }
523
524     for (e = 0; e < ch_data->bs_num_env; e++) {
525         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
526             memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
527             memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
528         }
529     }
530
531     for (e = 0; e < ch_data->bs_num_env; e++) {
532         for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
533             SoftFloat g_filt_tab[48];
534             SoftFloat q_filt_tab[48];
535             SoftFloat *g_filt, *q_filt;
536
537             if (h_SL && e != e_a[0] && e != e_a[1]) {
538                 g_filt = g_filt_tab;
539                 q_filt = q_filt_tab;
540                 for (m = 0; m < m_max; m++) {
541                     const int idx1 = i + h_SL;
542                     g_filt[m].mant = g_filt[m].exp = 0;
543                     q_filt[m].mant = q_filt[m].exp = 0;
544                     for (j = 0; j <= h_SL; j++) {
545                         g_filt[m] = av_add_sf(g_filt[m],
546                                         av_mul_sf(g_temp[idx1 - j][m],
547                                             h_smooth[j]));
548                         q_filt[m] = av_add_sf(q_filt[m],
549                                         av_mul_sf(q_temp[idx1 - j][m],
550                                             h_smooth[j]));
551                     }
552                 }
553             } else {
554                 g_filt = g_temp[i + h_SL];
555                 q_filt = q_temp[i];
556             }
557
558             sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
559                                i + ENVELOPE_ADJUSTMENT_OFFSET);
560
561             if (e != e_a[0] && e != e_a[1]) {
562                 sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
563                                                    q_filt, indexnoise,
564                                                    kx, m_max);
565             } else {
566                 int idx = indexsine&1;
567                 int A = (1-((indexsine+(kx & 1))&2));
568                 int B = (A^(-idx)) + idx;
569                 unsigned *out = &Y1[i][kx][idx];
570                 int shift;
571                 unsigned round;
572
573                 SoftFloat *in  = sbr->s_m[e];
574                 for (m = 0; m+1 < m_max; m+=2) {
575                     int shift2;
576                     shift = 22 - in[m  ].exp;
577                     shift2= 22 - in[m+1].exp;
578                     if (shift < 1 || shift2 < 1) {
579                         av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d,%d\n", shift, shift2);
580                         return;
581                     }
582                     if (shift < 32) {
583                         round = 1 << (shift-1);
584                         out[2*m  ] += (int)(in[m  ].mant * A + round) >> shift;
585                     }
586
587                     if (shift2 < 32) {
588                         round = 1 << (shift2-1);
589                         out[2*m+2] += (int)(in[m+1].mant * B + round) >> shift2;
590                     }
591                 }
592                 if(m_max&1)
593                 {
594                     shift = 22 - in[m  ].exp;
595                     if (shift < 1) {
596                         av_log(NULL, AV_LOG_ERROR, "Overflow in sbr_hf_assemble, shift=%d\n", shift);
597                         return;
598                     } else if (shift < 32) {
599                         round = 1 << (shift-1);
600                         out[2*m  ] += (int)(in[m  ].mant * A + round) >> shift;
601                     }
602                 }
603             }
604             indexnoise = (indexnoise + m_max) & 0x1ff;
605             indexsine = (indexsine + 1) & 3;
606         }
607     }
608     ch_data->f_indexnoise = indexnoise;
609     ch_data->f_indexsine  = indexsine;
610 }
611
612 #include "aacsbr_template.c"