2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
8 * MIPS Technologies, Inc., California.
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
29 * AAC Spectral Band Replication decoding functions
30 * @author Robert Swain ( rob opendot cl )
31 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
35 #include "libavutil/qsort.h"
37 static av_cold void aacsbr_tableinit(void)
40 for (n = 1; n < 320; n++)
41 sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
42 sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
43 sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
45 for (n = 0; n < 320; n++)
46 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
49 av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
52 const void *sbr_codes, *sbr_bits;
53 const unsigned int table_size, elem_size;
55 SBR_VLC_ROW(t_huffman_env_1_5dB),
56 SBR_VLC_ROW(f_huffman_env_1_5dB),
57 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
58 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
59 SBR_VLC_ROW(t_huffman_env_3_0dB),
60 SBR_VLC_ROW(f_huffman_env_3_0dB),
61 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
62 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
63 SBR_VLC_ROW(t_huffman_noise_3_0dB),
64 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
67 // SBR VLC table initialization
68 SBR_INIT_VLC_STATIC(0, 1098);
69 SBR_INIT_VLC_STATIC(1, 1092);
70 SBR_INIT_VLC_STATIC(2, 768);
71 SBR_INIT_VLC_STATIC(3, 1026);
72 SBR_INIT_VLC_STATIC(4, 1058);
73 SBR_INIT_VLC_STATIC(5, 1052);
74 SBR_INIT_VLC_STATIC(6, 544);
75 SBR_INIT_VLC_STATIC(7, 544);
76 SBR_INIT_VLC_STATIC(8, 592);
77 SBR_INIT_VLC_STATIC(9, 512);
81 AAC_RENAME(ff_ps_init)();
84 /** Places SBR in pure upsampling mode. */
85 static void sbr_turnoff(SpectralBandReplication *sbr) {
87 sbr->ready_for_dequant = 0;
88 // Init defults used in pure upsampling mode
89 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
91 // Reset values for first SBR header
92 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
93 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
96 av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
98 if(sbr->mdct.mdct_bits)
100 sbr->kx[0] = sbr->kx[1];
101 sbr->id_aac = id_aac;
103 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
104 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
105 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
106 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
107 * and scale back down at synthesis. */
108 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
109 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
110 AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
111 AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
112 aacsbr_func_ptr_init(&sbr->c);
115 av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
117 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
118 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
121 static int qsort_comparison_function_int16(const void *a, const void *b)
123 return *(const int16_t *)a - *(const int16_t *)b;
126 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
129 for (i = 0; i <= last_el; i++)
130 if (table[i] == needle)
135 /// Limiter Frequency Band Table (14496-3 sp04 p198)
136 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
139 if (sbr->bs_limiter_bands > 0) {
140 static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
141 Q23(1.18509277094158210129f), //2^(0.49/2)
142 Q23(1.11987160404675912501f) }; //2^(0.49/3)
143 const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
144 int16_t patch_borders[7];
145 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
147 patch_borders[0] = sbr->kx[1];
148 for (k = 1; k <= sbr->num_patches; k++)
149 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
151 memcpy(sbr->f_tablelim, sbr->f_tablelow,
152 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
153 if (sbr->num_patches > 1)
154 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
155 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
157 AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
159 qsort_comparison_function_int16);
161 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
162 while (out < sbr->f_tablelim + sbr->n_lim) {
164 if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
166 if (*in >= *out * lim_bands_per_octave_warped) {
167 #endif /* USE_FIXED */
169 } else if (*in == *out ||
170 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
173 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
181 sbr->f_tablelim[0] = sbr->f_tablelow[0];
182 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
187 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
189 unsigned int cnt = get_bits_count(gb);
190 uint8_t bs_header_extra_1;
191 uint8_t bs_header_extra_2;
192 int old_bs_limiter_bands = sbr->bs_limiter_bands;
193 SpectrumParameters old_spectrum_params;
196 sbr->ready_for_dequant = 0;
198 // Save last spectrum parameters variables to compare to new ones
199 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
201 sbr->bs_amp_res_header = get_bits1(gb);
202 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
203 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
204 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
205 skip_bits(gb, 2); // bs_reserved
207 bs_header_extra_1 = get_bits1(gb);
208 bs_header_extra_2 = get_bits1(gb);
210 if (bs_header_extra_1) {
211 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
212 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
213 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
215 sbr->spectrum_params.bs_freq_scale = 2;
216 sbr->spectrum_params.bs_alter_scale = 1;
217 sbr->spectrum_params.bs_noise_bands = 2;
220 // Check if spectrum parameters changed
221 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
224 if (bs_header_extra_2) {
225 sbr->bs_limiter_bands = get_bits(gb, 2);
226 sbr->bs_limiter_gains = get_bits(gb, 2);
227 sbr->bs_interpol_freq = get_bits1(gb);
228 sbr->bs_smoothing_mode = get_bits1(gb);
230 sbr->bs_limiter_bands = 2;
231 sbr->bs_limiter_gains = 2;
232 sbr->bs_interpol_freq = 1;
233 sbr->bs_smoothing_mode = 1;
236 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
237 sbr_make_f_tablelim(sbr);
239 return get_bits_count(gb) - cnt;
242 static int array_min_int16(const int16_t *array, int nel)
244 int i, min = array[0];
245 for (i = 1; i < nel; i++)
246 min = FFMIN(array[i], min);
250 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
252 // Requirements (14496-3 sp04 p205)
254 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
257 if (bs_xover_band >= n_master) {
258 av_log(avctx, AV_LOG_ERROR,
259 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
266 /// Master Frequency Band Table (14496-3 sp04 p194)
267 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
268 SpectrumParameters *spectrum)
270 unsigned int temp, max_qmf_subbands = 0;
271 unsigned int start_min, stop_min;
273 const int8_t *sbr_offset_ptr;
276 switch (sbr->sample_rate) {
278 sbr_offset_ptr = sbr_offset[0];
281 sbr_offset_ptr = sbr_offset[1];
284 sbr_offset_ptr = sbr_offset[2];
287 sbr_offset_ptr = sbr_offset[3];
289 case 44100: case 48000: case 64000:
290 sbr_offset_ptr = sbr_offset[4];
292 case 88200: case 96000: case 128000: case 176400: case 192000:
293 sbr_offset_ptr = sbr_offset[5];
296 av_log(ac->avctx, AV_LOG_ERROR,
297 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
301 if (sbr->sample_rate < 32000) {
303 } else if (sbr->sample_rate < 64000) {
308 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
309 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
311 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
313 if (spectrum->bs_stop_freq < 14) {
314 sbr->k[2] = stop_min;
315 make_bands(stop_dk, stop_min, 64, 13);
316 AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
317 for (k = 0; k < spectrum->bs_stop_freq; k++)
318 sbr->k[2] += stop_dk[k];
319 } else if (spectrum->bs_stop_freq == 14) {
320 sbr->k[2] = 2*sbr->k[0];
321 } else if (spectrum->bs_stop_freq == 15) {
322 sbr->k[2] = 3*sbr->k[0];
324 av_log(ac->avctx, AV_LOG_ERROR,
325 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
328 sbr->k[2] = FFMIN(64, sbr->k[2]);
330 // Requirements (14496-3 sp04 p205)
331 if (sbr->sample_rate <= 32000) {
332 max_qmf_subbands = 48;
333 } else if (sbr->sample_rate == 44100) {
334 max_qmf_subbands = 35;
335 } else if (sbr->sample_rate >= 48000)
336 max_qmf_subbands = 32;
340 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
341 av_log(ac->avctx, AV_LOG_ERROR,
342 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
346 if (!spectrum->bs_freq_scale) {
349 dk = spectrum->bs_alter_scale + 1;
350 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
351 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
354 for (k = 1; k <= sbr->n_master; k++)
355 sbr->f_master[k] = dk;
357 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
360 sbr->f_master[2]-= (k2diff < -1);
362 sbr->f_master[sbr->n_master]++;
365 sbr->f_master[0] = sbr->k[0];
366 for (k = 1; k <= sbr->n_master; k++)
367 sbr->f_master[k] += sbr->f_master[k - 1];
370 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
371 int two_regions, num_bands_0;
372 int vdk0_max, vdk1_min;
376 #endif /* USE_FIXED */
378 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
380 sbr->k[1] = 2 * sbr->k[0];
383 sbr->k[1] = sbr->k[2];
387 tmp = (sbr->k[1] << 23) / sbr->k[0];
388 while (tmp < 0x40000000) {
392 tmp = fixed_log(tmp - 0x80000000);
393 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
394 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
395 num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
397 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
398 #endif /* USE_FIXED */
400 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
401 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
407 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
409 AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
410 vdk0_max = vk0[num_bands_0];
413 for (k = 1; k <= num_bands_0; k++) {
414 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
415 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
426 tmp = (sbr->k[2] << 23) / sbr->k[1];
428 while (tmp < 0x40000000) {
432 tmp = fixed_log(tmp - 0x80000000);
433 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
434 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
435 if (spectrum->bs_alter_scale)
436 tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
437 num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
439 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
440 : 1.0f; // bs_alter_scale = {0,1}
441 int num_bands_1 = lrintf(half_bands * invwarp *
442 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
443 #endif /* USE_FIXED */
444 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
446 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
448 if (vdk1_min < vdk0_max) {
450 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
451 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
453 vk1[num_bands_1] -= change;
456 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
459 for (k = 1; k <= num_bands_1; k++) {
460 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
461 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
467 sbr->n_master = num_bands_0 + num_bands_1;
468 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
470 memcpy(&sbr->f_master[0], vk0,
471 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
472 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
473 num_bands_1 * sizeof(sbr->f_master[0]));
476 sbr->n_master = num_bands_0;
477 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
479 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
487 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
489 int i, k, last_k = -1, last_msb = -1, sb = 0;
491 int usb = sbr->kx[1];
492 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
494 sbr->num_patches = 0;
496 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
497 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
503 if (k == last_k && msb == last_msb) {
504 av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
505 return AVERROR_INVALIDDATA;
509 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
510 sb = sbr->f_master[i];
511 odd = (sb + sbr->k[0]) & 1;
514 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
515 // After this check the final number of patches can still be six which is
516 // illegal however the Coding Technologies decoder check stream has a final
517 // count of 6 patches
518 if (sbr->num_patches > 5) {
519 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
523 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
524 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
526 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
533 if (sbr->f_master[k] - sb < 3)
535 } while (sb != sbr->kx[1] + sbr->m[1]);
537 if (sbr->num_patches > 1 &&
538 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
544 /// Derived Frequency Band Tables (14496-3 sp04 p197)
545 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
550 #endif /* USE_FIXED */
552 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
553 sbr->n[0] = (sbr->n[1] + 1) >> 1;
555 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
556 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
557 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
558 sbr->kx[1] = sbr->f_tablehigh[0];
560 // Requirements (14496-3 sp04 p205)
561 if (sbr->kx[1] + sbr->m[1] > 64) {
562 av_log(ac->avctx, AV_LOG_ERROR,
563 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
566 if (sbr->kx[1] > 32) {
567 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
571 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
572 temp = sbr->n[1] & 1;
573 for (k = 1; k <= sbr->n[0]; k++)
574 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
576 temp = (sbr->k[2] << 23) / sbr->kx[1];
577 while (temp < 0x40000000) {
581 temp = fixed_log(temp - 0x80000000);
582 temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
583 temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
585 sbr->n_q = (temp + 0x400000) >> 23;
589 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
590 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
591 #endif /* USE_FIXED */
594 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
598 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
600 for (k = 1; k <= sbr->n_q; k++) {
601 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
602 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
605 if (sbr_hf_calc_npatches(ac, sbr) < 0)
608 sbr_make_f_tablelim(sbr);
610 sbr->data[0].f_indexnoise = 0;
611 sbr->data[1].f_indexnoise = 0;
616 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
620 for (i = 0; i < elements; i++) {
621 vec[i] = get_bits1(gb);
625 /** ceil(log2(index+1)) */
626 static const int8_t ceil_log2[] = {
630 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
631 GetBitContext *gb, SBRData *ch_data)
635 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
636 int abs_bord_trail = 16;
637 int num_rel_lead, num_rel_trail;
638 unsigned bs_num_env_old = ch_data->bs_num_env;
639 int bs_frame_class, bs_num_env;
641 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
642 ch_data->bs_amp_res = sbr->bs_amp_res_header;
643 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
645 switch (bs_frame_class = get_bits(gb, 2)) {
647 bs_num_env = 1 << get_bits(gb, 2);
648 if (bs_num_env > 4) {
649 av_log(ac->avctx, AV_LOG_ERROR,
650 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
654 ch_data->bs_num_env = bs_num_env;
655 num_rel_lead = ch_data->bs_num_env - 1;
656 if (ch_data->bs_num_env == 1)
657 ch_data->bs_amp_res = 0;
660 ch_data->t_env[0] = 0;
661 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
663 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
665 for (i = 0; i < num_rel_lead; i++)
666 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
668 ch_data->bs_freq_res[1] = get_bits1(gb);
669 for (i = 1; i < ch_data->bs_num_env; i++)
670 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
673 abs_bord_trail += get_bits(gb, 2);
674 num_rel_trail = get_bits(gb, 2);
675 ch_data->bs_num_env = num_rel_trail + 1;
676 ch_data->t_env[0] = 0;
677 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
679 for (i = 0; i < num_rel_trail; i++)
680 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
681 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
683 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
685 for (i = 0; i < ch_data->bs_num_env; i++)
686 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
689 ch_data->t_env[0] = get_bits(gb, 2);
690 num_rel_lead = get_bits(gb, 2);
691 ch_data->bs_num_env = num_rel_lead + 1;
692 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
694 for (i = 0; i < num_rel_lead; i++)
695 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
697 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
699 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
702 ch_data->t_env[0] = get_bits(gb, 2);
703 abs_bord_trail += get_bits(gb, 2);
704 num_rel_lead = get_bits(gb, 2);
705 num_rel_trail = get_bits(gb, 2);
706 bs_num_env = num_rel_lead + num_rel_trail + 1;
708 if (bs_num_env > 5) {
709 av_log(ac->avctx, AV_LOG_ERROR,
710 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
714 ch_data->bs_num_env = bs_num_env;
716 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
718 for (i = 0; i < num_rel_lead; i++)
719 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
720 for (i = 0; i < num_rel_trail; i++)
721 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
722 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
724 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
726 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
729 ch_data->bs_frame_class = bs_frame_class;
731 av_assert0(bs_pointer >= 0);
732 if (bs_pointer > ch_data->bs_num_env + 1) {
733 av_log(ac->avctx, AV_LOG_ERROR,
734 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
739 for (i = 1; i <= ch_data->bs_num_env; i++) {
740 if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
741 av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
746 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
748 ch_data->t_q[0] = ch_data->t_env[0];
749 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
750 if (ch_data->bs_num_noise > 1) {
752 if (ch_data->bs_frame_class == FIXFIX) {
753 idx = ch_data->bs_num_env >> 1;
754 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
755 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
759 else if (bs_pointer == 1)
760 idx = ch_data->bs_num_env - 1;
761 else // bs_pointer > 1
762 idx = bs_pointer - 1;
764 ch_data->t_q[1] = ch_data->t_env[idx];
767 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
768 ch_data->e_a[1] = -1;
769 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
770 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
771 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
772 ch_data->e_a[1] = bs_pointer - 1;
777 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
778 //These variables are saved from the previous frame rather than copied
779 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
780 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
781 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
783 //These variables are read from the bitstream and therefore copied
784 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
785 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
786 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
787 dst->bs_num_env = src->bs_num_env;
788 dst->bs_amp_res = src->bs_amp_res;
789 dst->bs_num_noise = src->bs_num_noise;
790 dst->bs_frame_class = src->bs_frame_class;
791 dst->e_a[1] = src->e_a[1];
794 /// Read how the envelope and noise floor data is delta coded
795 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
798 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
799 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
802 /// Read inverse filtering data
803 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
808 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
809 for (i = 0; i < sbr->n_q; i++)
810 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
813 static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
814 SBRData *ch_data, int ch)
818 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
820 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
821 const int odd = sbr->n[1] & 1;
823 if (sbr->bs_coupling && ch) {
824 if (ch_data->bs_amp_res) {
826 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
827 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
828 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
829 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
832 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
833 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
834 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
835 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
838 if (ch_data->bs_amp_res) {
840 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
841 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
842 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
843 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
846 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
847 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
848 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
849 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
853 for (i = 0; i < ch_data->bs_num_env; i++) {
854 if (ch_data->bs_df_env[i]) {
855 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
856 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
857 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
858 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
859 if (ch_data->env_facs_q[i + 1][j] > 127U) {
860 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
861 return AVERROR_INVALIDDATA;
864 } else if (ch_data->bs_freq_res[i + 1]) {
865 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
866 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
867 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
868 if (ch_data->env_facs_q[i + 1][j] > 127U) {
869 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
870 return AVERROR_INVALIDDATA;
874 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
875 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
876 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
877 if (ch_data->env_facs_q[i + 1][j] > 127U) {
878 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
879 return AVERROR_INVALIDDATA;
884 ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
885 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
886 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
887 if (ch_data->env_facs_q[i + 1][j] > 127U) {
888 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
889 return AVERROR_INVALIDDATA;
895 //assign 0th elements of env_facs_q from last elements
896 memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
897 sizeof(ch_data->env_facs_q[0]));
902 static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
903 SBRData *ch_data, int ch)
906 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
908 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
910 if (sbr->bs_coupling && ch) {
911 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
912 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
913 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
914 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
916 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
917 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
918 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
919 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
922 for (i = 0; i < ch_data->bs_num_noise; i++) {
923 if (ch_data->bs_df_noise[i]) {
924 for (j = 0; j < sbr->n_q; j++) {
925 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
926 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
927 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
928 return AVERROR_INVALIDDATA;
932 ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
933 for (j = 1; j < sbr->n_q; j++) {
934 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
935 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
936 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
937 return AVERROR_INVALIDDATA;
943 //assign 0th elements of noise_facs_q from last elements
944 memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
945 sizeof(ch_data->noise_facs_q[0]));
949 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
951 int bs_extension_id, int *num_bits_left)
953 switch (bs_extension_id) {
954 case EXTENSION_ID_PS:
955 if (!ac->oc[1].m4ac.ps) {
956 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
957 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
960 *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
961 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
965 // some files contain 0-padding
966 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
967 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
968 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
974 static int read_sbr_single_channel_element(AACContext *ac,
975 SpectralBandReplication *sbr,
980 if (get_bits1(gb)) // bs_data_extra
981 skip_bits(gb, 4); // bs_reserved
983 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
985 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
986 read_sbr_invf(sbr, gb, &sbr->data[0]);
987 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
989 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
992 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
993 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
998 static int read_sbr_channel_pair_element(AACContext *ac,
999 SpectralBandReplication *sbr,
1004 if (get_bits1(gb)) // bs_data_extra
1005 skip_bits(gb, 8); // bs_reserved
1007 if ((sbr->bs_coupling = get_bits1(gb))) {
1008 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1010 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1011 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1012 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1013 read_sbr_invf(sbr, gb, &sbr->data[0]);
1014 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1015 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1016 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1018 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1020 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1022 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1025 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1026 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1028 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1029 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1030 read_sbr_invf(sbr, gb, &sbr->data[0]);
1031 read_sbr_invf(sbr, gb, &sbr->data[1]);
1032 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1034 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1036 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1038 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1042 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1043 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1044 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1045 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1050 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1051 GetBitContext *gb, int id_aac)
1053 unsigned int cnt = get_bits_count(gb);
1055 sbr->id_aac = id_aac;
1056 sbr->ready_for_dequant = 1;
1058 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1059 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1061 return get_bits_count(gb) - cnt;
1063 } else if (id_aac == TYPE_CPE) {
1064 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1066 return get_bits_count(gb) - cnt;
1069 av_log(ac->avctx, AV_LOG_ERROR,
1070 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1072 return get_bits_count(gb) - cnt;
1074 if (get_bits1(gb)) { // bs_extended_data
1075 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1076 if (num_bits_left == 15)
1077 num_bits_left += get_bits(gb, 8); // bs_esc_count
1079 num_bits_left <<= 3;
1080 while (num_bits_left > 7) {
1082 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1084 if (num_bits_left < 0) {
1085 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1087 if (num_bits_left > 0)
1088 skip_bits(gb, num_bits_left);
1091 return get_bits_count(gb) - cnt;
1094 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1097 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1099 err = sbr_make_f_derived(ac, sbr);
1101 av_log(ac->avctx, AV_LOG_ERROR,
1102 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1108 * Decode Spectral Band Replication extension data; reference: table 4.55.
1110 * @param crc flag indicating the presence of CRC checksum
1111 * @param cnt length of TYPE_FIL syntactic element in bytes
1113 * @return Returns number of bytes consumed from the TYPE_FIL element.
1115 int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1116 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1118 unsigned int num_sbr_bits = 0, num_align_bits;
1119 unsigned bytes_read;
1120 GetBitContext gbc = *gb_host, *gb = &gbc;
1121 skip_bits_long(gb_host, cnt*8 - 4);
1125 if (!sbr->sample_rate)
1126 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1127 if (!ac->oc[1].m4ac.ext_sample_rate)
1128 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1131 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1135 //Save some state from the previous frame.
1136 sbr->kx[0] = sbr->kx[1];
1137 sbr->m[0] = sbr->m[1];
1138 sbr->kx_and_m_pushed = 1;
1141 if (get_bits1(gb)) // bs_header_flag
1142 num_sbr_bits += read_sbr_header(sbr, gb);
1148 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1150 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1151 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1153 if (bytes_read > cnt) {
1154 av_log(ac->avctx, AV_LOG_ERROR,
1155 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1162 * Analysis QMF Bank (14496-3 sp04 p206)
1164 * @param x pointer to the beginning of the first sample window
1165 * @param W array of complex-valued samples split into subbands
1167 #ifndef sbr_qmf_analysis
1169 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1171 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1172 #endif /* USE_FIXED */
1173 SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1174 INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1180 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1181 memcpy(x+288, in, 1024*sizeof(x[0]));
1182 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1183 // are not supported
1184 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1186 sbrdsp->qmf_pre_shuffle(z);
1188 for (j = 64; j < 128; j++) {
1190 av_log(NULL, AV_LOG_WARNING,
1191 "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1194 } else if (z[j] < -(1<<24)) {
1195 av_log(NULL, AV_LOG_WARNING,
1196 "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1202 mdct->imdct_half(mdct, z, z+64);
1203 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1210 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1211 * (14496-3 sp04 p206)
1213 #ifndef sbr_qmf_synthesis
1214 static void sbr_qmf_synthesis(FFTContext *mdct,
1216 SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1218 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1219 #endif /* USE_FIXED */
1220 INTFLOAT *out, INTFLOAT X[2][38][64],
1221 INTFLOAT mdct_buf[2][64],
1222 INTFLOAT *v0, int *v_off, const unsigned int div)
1225 const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1226 const int step = 128 >> div;
1228 for (i = 0; i < 32; i++) {
1229 if (*v_off < step) {
1230 int saved_samples = (1280 - 128) >> div;
1231 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1232 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1238 for (n = 0; n < 32; n++) {
1239 X[0][i][ n] = -X[0][i][n];
1240 X[0][i][32+n] = X[1][i][31-n];
1242 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1245 sbrdsp->neg_odd_64(X[1][i]);
1246 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1247 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1248 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1250 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1251 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1252 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1253 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1254 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1255 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1256 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1257 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1258 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1259 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1265 /// Generate the subband filtered lowband
1266 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1267 INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1271 const int t_HFGen = 8;
1273 memset(X_low, 0, 32*sizeof(*X_low));
1274 for (k = 0; k < sbr->kx[1]; k++) {
1275 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1276 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1277 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1280 buf_idx = 1-buf_idx;
1281 for (k = 0; k < sbr->kx[0]; k++) {
1282 for (i = 0; i < t_HFGen; i++) {
1283 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1284 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1290 /// High Frequency Generator (14496-3 sp04 p215)
1291 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1292 INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1293 const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1294 const INTFLOAT bw_array[5], const uint8_t *t_env,
1300 for (j = 0; j < sbr->num_patches; j++) {
1301 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1302 const int p = sbr->patch_start_subband[j] + x;
1303 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1308 av_log(ac->avctx, AV_LOG_ERROR,
1309 "ERROR : no subband found for frequency %d\n", k);
1313 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1314 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1315 alpha0[p], alpha1[p], bw_array[g],
1316 2 * t_env[0], 2 * t_env[bs_num_env]);
1319 if (k < sbr->m[1] + sbr->kx[1])
1320 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1325 /// Generate the subband filtered lowband
1326 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1327 const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1328 const INTFLOAT X_low[32][40][2], int ch)
1332 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1333 memset(X, 0, 2*sizeof(*X));
1334 for (k = 0; k < sbr->kx[0]; k++) {
1335 for (i = 0; i < i_Temp; i++) {
1336 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1337 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1340 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1341 for (i = 0; i < i_Temp; i++) {
1342 X[0][i][k] = Y0[i + i_f][k][0];
1343 X[1][i][k] = Y0[i + i_f][k][1];
1347 for (k = 0; k < sbr->kx[1]; k++) {
1348 for (i = i_Temp; i < 38; i++) {
1349 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1350 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1353 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1354 for (i = i_Temp; i < i_f; i++) {
1355 X[0][i][k] = Y1[i][k][0];
1356 X[1][i][k] = Y1[i][k][1];
1362 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1363 * (14496-3 sp04 p217)
1365 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1366 SBRData *ch_data, int e_a[2])
1370 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1371 for (e = 0; e < ch_data->bs_num_env; e++) {
1372 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1373 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1376 if (sbr->kx[1] != table[0]) {
1377 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1378 "Derived frequency tables were not regenerated.\n");
1382 for (i = 0; i < ilim; i++)
1383 for (m = table[i]; m < table[i + 1]; m++)
1384 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1386 // ch_data->bs_num_noise > 1 => 2 noise floors
1387 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1388 for (i = 0; i < sbr->n_q; i++)
1389 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1390 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1392 for (i = 0; i < sbr->n[1]; i++) {
1393 if (ch_data->bs_add_harmonic_flag) {
1394 const unsigned int m_midpoint =
1395 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1397 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1398 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1402 for (i = 0; i < ilim; i++) {
1403 int additional_sinusoid_present = 0;
1404 for (m = table[i]; m < table[i + 1]; m++) {
1405 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1406 additional_sinusoid_present = 1;
1410 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1411 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1415 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1419 /// Estimation of current envelope (14496-3 sp04 p218)
1420 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1421 SpectralBandReplication *sbr, SBRData *ch_data)
1424 int kx1 = sbr->kx[1];
1426 if (sbr->bs_interpol_freq) {
1427 for (e = 0; e < ch_data->bs_num_env; e++) {
1429 const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1431 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1432 #endif /* USE_FIXED */
1433 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1434 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1436 for (m = 0; m < sbr->m[1]; m++) {
1437 AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1439 e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1441 e_curr[e][m] = sum * recip_env_size;
1442 #endif /* USE_FIXED */
1448 for (e = 0; e < ch_data->bs_num_env; e++) {
1449 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1450 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1451 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1452 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1454 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1456 SoftFloat sum = FLOAT_0;
1457 const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1458 for (k = table[p]; k < table[p + 1]; k++) {
1459 sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1461 sum = av_mul_sf(sum, den);
1464 const int den = env_size * (table[p + 1] - table[p]);
1466 for (k = table[p]; k < table[p + 1]; k++) {
1467 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1470 #endif /* USE_FIXED */
1471 for (k = table[p]; k < table[p + 1]; k++) {
1472 e_curr[e][k - kx1] = sum;
1479 void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1480 INTFLOAT* L, INTFLOAT* R)
1482 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1484 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1487 if (id_aac != sbr->id_aac) {
1488 av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1489 "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1493 if (sbr->start && !sbr->ready_for_dequant) {
1494 av_log(ac->avctx, AV_LOG_ERROR,
1495 "No quantized data read for sbr_dequant.\n");
1499 if (!sbr->kx_and_m_pushed) {
1500 sbr->kx[0] = sbr->kx[1];
1501 sbr->m[0] = sbr->m[1];
1503 sbr->kx_and_m_pushed = 0;
1507 sbr_dequant(sbr, id_aac);
1508 sbr->ready_for_dequant = 0;
1510 for (ch = 0; ch < nch; ch++) {
1511 /* decode channel */
1512 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1513 (INTFLOAT*)sbr->qmf_filter_scratch,
1514 sbr->data[ch].W, sbr->data[ch].Ypos);
1515 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1516 (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1517 sbr->data[ch].Ypos);
1518 sbr->data[ch].Ypos ^= 1;
1520 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1521 (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1522 sbr_chirp(sbr, &sbr->data[ch]);
1523 av_assert0(sbr->data[ch].bs_num_env > 0);
1524 sbr_hf_gen(ac, sbr, sbr->X_high,
1525 (const INTFLOAT (*)[40][2]) sbr->X_low,
1526 (const INTFLOAT (*)[2]) sbr->alpha0,
1527 (const INTFLOAT (*)[2]) sbr->alpha1,
1528 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1529 sbr->data[ch].bs_num_env);
1532 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1534 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1535 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1536 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1537 (const INTFLOAT (*)[40][2]) sbr->X_high,
1538 sbr, &sbr->data[ch],
1544 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1545 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1546 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1547 (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1550 if (ac->oc[1].m4ac.ps == 1) {
1551 if (sbr->ps.start) {
1552 AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1554 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1559 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1560 L, sbr->X[0], sbr->qmf_filter_scratch,
1561 sbr->data[0].synthesis_filterbank_samples,
1562 &sbr->data[0].synthesis_filterbank_samples_offset,
1565 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1566 R, sbr->X[1], sbr->qmf_filter_scratch,
1567 sbr->data[1].synthesis_filterbank_samples,
1568 &sbr->data[1].synthesis_filterbank_samples_offset,
1572 static void aacsbr_func_ptr_init(AACSBRContext *c)
1574 c->sbr_lf_gen = sbr_lf_gen;
1575 c->sbr_hf_assemble = sbr_hf_assemble;
1576 c->sbr_x_gen = sbr_x_gen;
1577 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1581 ff_aacsbr_func_ptr_init_mips(c);