]> git.sesse.net Git - ffmpeg/blob - libavcodec/ac3dsp.c
avformat/avio: Add Metacube support
[ffmpeg] / libavcodec / ac3dsp.c
1 /*
2  * AC-3 DSP functions
3  * Copyright (c) 2011 Justin Ruggles
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/mem_internal.h"
23
24 #include "avcodec.h"
25 #include "ac3.h"
26 #include "ac3dsp.h"
27 #include "mathops.h"
28
29 static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
30 {
31     int blk, i;
32
33     if (!num_reuse_blocks)
34         return;
35
36     for (i = 0; i < nb_coefs; i++) {
37         uint8_t min_exp = *exp;
38         uint8_t *exp1 = exp + 256;
39         for (blk = 0; blk < num_reuse_blocks; blk++) {
40             uint8_t next_exp = *exp1;
41             if (next_exp < min_exp)
42                 min_exp = next_exp;
43             exp1 += 256;
44         }
45         *exp++ = min_exp;
46     }
47 }
48
49 static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
50 {
51     const float scale = 1 << 24;
52     do {
53         *dst++ = lrintf(*src++ * scale);
54         *dst++ = lrintf(*src++ * scale);
55         *dst++ = lrintf(*src++ * scale);
56         *dst++ = lrintf(*src++ * scale);
57         *dst++ = lrintf(*src++ * scale);
58         *dst++ = lrintf(*src++ * scale);
59         *dst++ = lrintf(*src++ * scale);
60         *dst++ = lrintf(*src++ * scale);
61         len -= 8;
62     } while (len > 0);
63 }
64
65 static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
66                                      int start, int end,
67                                      int snr_offset, int floor,
68                                      const uint8_t *bap_tab, uint8_t *bap)
69 {
70     int bin, band, band_end;
71
72     /* special case, if snr offset is -960, set all bap's to zero */
73     if (snr_offset == -960) {
74         memset(bap, 0, AC3_MAX_COEFS);
75         return;
76     }
77
78     bin  = start;
79     band = ff_ac3_bin_to_band_tab[start];
80     do {
81         int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
82         band_end = ff_ac3_band_start_tab[++band];
83         band_end = FFMIN(band_end, end);
84
85         for (; bin < band_end; bin++) {
86             int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
87             bap[bin] = bap_tab[address];
88         }
89     } while (end > band_end);
90 }
91
92 static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
93                                     int len)
94 {
95     while (len-- > 0)
96         mant_cnt[bap[len]]++;
97 }
98
99 DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
100     0,  0,  0,  3,  0,  4,  5,  6,  7,  8,  9, 10, 11, 12, 14, 16
101 };
102
103 static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
104 {
105     int blk, bap;
106     int bits = 0;
107
108     for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
109         // bap=1 : 3 mantissas in 5 bits
110         bits += (mant_cnt[blk][1] / 3) * 5;
111         // bap=2 : 3 mantissas in 7 bits
112         // bap=4 : 2 mantissas in 7 bits
113         bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
114         // bap=3 : 1 mantissa in 3 bits
115         bits += mant_cnt[blk][3] * 3;
116         // bap=5 to 15 : get bits per mantissa from table
117         for (bap = 5; bap < 16; bap++)
118             bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
119     }
120     return bits;
121 }
122
123 static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
124 {
125     int i;
126
127     for (i = 0; i < nb_coefs; i++) {
128         int v = abs(coef[i]);
129         exp[i] = v ? 23 - av_log2(v) : 24;
130     }
131 }
132
133 static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
134                                              const int32_t *coef0,
135                                              const int32_t *coef1,
136                                              int len)
137 {
138     int i;
139
140     sum[0] = sum[1] = sum[2] = sum[3] = 0;
141
142     for (i = 0; i < len; i++) {
143         int lt = coef0[i];
144         int rt = coef1[i];
145         int md = lt + rt;
146         int sd = lt - rt;
147         MAC64(sum[0], lt, lt);
148         MAC64(sum[1], rt, rt);
149         MAC64(sum[2], md, md);
150         MAC64(sum[3], sd, sd);
151     }
152 }
153
154 static void ac3_sum_square_butterfly_float_c(float sum[4],
155                                              const float *coef0,
156                                              const float *coef1,
157                                              int len)
158 {
159     int i;
160
161     sum[0] = sum[1] = sum[2] = sum[3] = 0;
162
163     for (i = 0; i < len; i++) {
164         float lt = coef0[i];
165         float rt = coef1[i];
166         float md = lt + rt;
167         float sd = lt - rt;
168         sum[0] += lt * lt;
169         sum[1] += rt * rt;
170         sum[2] += md * md;
171         sum[3] += sd * sd;
172     }
173 }
174
175 static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix,
176                                            int len)
177 {
178     int i;
179     float v0, v1;
180     float front_mix    = matrix[0][0];
181     float center_mix   = matrix[0][1];
182     float surround_mix = matrix[0][3];
183
184     for (i = 0; i < len; i++) {
185         v0 = samples[0][i] * front_mix  +
186              samples[1][i] * center_mix +
187              samples[3][i] * surround_mix;
188
189         v1 = samples[1][i] * center_mix +
190              samples[2][i] * front_mix  +
191              samples[4][i] * surround_mix;
192
193         samples[0][i] = v0;
194         samples[1][i] = v1;
195     }
196 }
197
198 static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix,
199                                            int len)
200 {
201     int i;
202     float front_mix    = matrix[0][0];
203     float center_mix   = matrix[0][1];
204     float surround_mix = matrix[0][3];
205
206     for (i = 0; i < len; i++) {
207         samples[0][i] = samples[0][i] * front_mix    +
208                         samples[1][i] * center_mix   +
209                         samples[2][i] * front_mix    +
210                         samples[3][i] * surround_mix +
211                         samples[4][i] * surround_mix;
212     }
213 }
214
215 static void ac3_downmix_c(float **samples, float **matrix,
216                           int out_ch, int in_ch, int len)
217 {
218     int i, j;
219     float v0, v1;
220
221     if (out_ch == 2) {
222         for (i = 0; i < len; i++) {
223             v0 = v1 = 0.0f;
224             for (j = 0; j < in_ch; j++) {
225                 v0 += samples[j][i] * matrix[0][j];
226                 v1 += samples[j][i] * matrix[1][j];
227             }
228             samples[0][i] = v0;
229             samples[1][i] = v1;
230         }
231     } else if (out_ch == 1) {
232         for (i = 0; i < len; i++) {
233             v0 = 0.0f;
234             for (j = 0; j < in_ch; j++)
235                 v0 += samples[j][i] * matrix[0][j];
236             samples[0][i] = v0;
237         }
238     }
239 }
240
241 static void ac3_downmix_5_to_2_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
242                                            int len)
243 {
244     int i;
245     int64_t v0, v1;
246     int16_t front_mix    = matrix[0][0];
247     int16_t center_mix   = matrix[0][1];
248     int16_t surround_mix = matrix[0][3];
249
250     for (i = 0; i < len; i++) {
251         v0 = (int64_t)samples[0][i] * front_mix  +
252              (int64_t)samples[1][i] * center_mix +
253              (int64_t)samples[3][i] * surround_mix;
254
255         v1 = (int64_t)samples[1][i] * center_mix +
256              (int64_t)samples[2][i] * front_mix  +
257              (int64_t)samples[4][i] * surround_mix;
258
259         samples[0][i] = (v0+2048)>>12;
260         samples[1][i] = (v1+2048)>>12;
261     }
262 }
263
264 static void ac3_downmix_5_to_1_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
265                                                  int len)
266 {
267     int i;
268     int64_t v0;
269     int16_t front_mix    = matrix[0][0];
270     int16_t center_mix   = matrix[0][1];
271     int16_t surround_mix = matrix[0][3];
272
273     for (i = 0; i < len; i++) {
274         v0 = (int64_t)samples[0][i] * front_mix    +
275              (int64_t)samples[1][i] * center_mix   +
276              (int64_t)samples[2][i] * front_mix    +
277              (int64_t)samples[3][i] * surround_mix +
278              (int64_t)samples[4][i] * surround_mix;
279
280         samples[0][i] = (v0+2048)>>12;
281     }
282 }
283
284 static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix,
285                                 int out_ch, int in_ch, int len)
286 {
287     int i, j;
288     int64_t v0, v1;
289     if (out_ch == 2) {
290         for (i = 0; i < len; i++) {
291             v0 = v1 = 0;
292             for (j = 0; j < in_ch; j++) {
293                 v0 += (int64_t)samples[j][i] * matrix[0][j];
294                 v1 += (int64_t)samples[j][i] * matrix[1][j];
295             }
296             samples[0][i] = (v0+2048)>>12;
297             samples[1][i] = (v1+2048)>>12;
298         }
299     } else if (out_ch == 1) {
300         for (i = 0; i < len; i++) {
301             v0 = 0;
302             for (j = 0; j < in_ch; j++)
303                 v0 += (int64_t)samples[j][i] * matrix[0][j];
304             samples[0][i] = (v0+2048)>>12;
305         }
306     }
307 }
308
309 void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
310                              int out_ch, int in_ch, int len)
311 {
312     if (c->in_channels != in_ch || c->out_channels != out_ch) {
313         c->in_channels  = in_ch;
314         c->out_channels = out_ch;
315         c->downmix_fixed = NULL;
316
317         if (in_ch == 5 && out_ch == 2 &&
318             !(matrix[1][0] | matrix[0][2]  |
319               matrix[1][3] | matrix[0][4]  |
320              (matrix[0][1] ^ matrix[1][1]) |
321              (matrix[0][0] ^ matrix[1][2]))) {
322             c->downmix_fixed = ac3_downmix_5_to_2_symmetric_c_fixed;
323         } else if (in_ch == 5 && out_ch == 1 &&
324                    matrix[0][0] == matrix[0][2] &&
325                    matrix[0][3] == matrix[0][4]) {
326             c->downmix_fixed = ac3_downmix_5_to_1_symmetric_c_fixed;
327         }
328     }
329
330     if (c->downmix_fixed)
331         c->downmix_fixed(samples, matrix, len);
332     else
333         ac3_downmix_c_fixed(samples, matrix, out_ch, in_ch, len);
334 }
335
336 void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
337                        int out_ch, int in_ch, int len)
338 {
339     if (c->in_channels != in_ch || c->out_channels != out_ch) {
340         int **matrix_cmp = (int **)matrix;
341
342         c->in_channels  = in_ch;
343         c->out_channels = out_ch;
344         c->downmix      = NULL;
345
346         if (in_ch == 5 && out_ch == 2 &&
347             !(matrix_cmp[1][0] | matrix_cmp[0][2]   |
348               matrix_cmp[1][3] | matrix_cmp[0][4]   |
349              (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
350              (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
351             c->downmix = ac3_downmix_5_to_2_symmetric_c;
352         } else if (in_ch == 5 && out_ch == 1 &&
353                    matrix_cmp[0][0] == matrix_cmp[0][2] &&
354                    matrix_cmp[0][3] == matrix_cmp[0][4]) {
355             c->downmix = ac3_downmix_5_to_1_symmetric_c;
356         }
357
358         if (ARCH_X86)
359             ff_ac3dsp_set_downmix_x86(c);
360     }
361
362     if (c->downmix)
363         c->downmix(samples, matrix, len);
364     else
365         ac3_downmix_c(samples, matrix, out_ch, in_ch, len);
366 }
367
368 av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
369 {
370     c->ac3_exponent_min = ac3_exponent_min_c;
371     c->float_to_fixed24 = float_to_fixed24_c;
372     c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
373     c->update_bap_counts = ac3_update_bap_counts_c;
374     c->compute_mantissa_size = ac3_compute_mantissa_size_c;
375     c->extract_exponents = ac3_extract_exponents_c;
376     c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
377     c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
378     c->in_channels           = 0;
379     c->out_channels          = 0;
380     c->downmix               = NULL;
381     c->downmix_fixed         = NULL;
382
383     if (ARCH_ARM)
384         ff_ac3dsp_init_arm(c, bit_exact);
385     if (ARCH_X86)
386         ff_ac3dsp_init_x86(c, bit_exact);
387     if (ARCH_MIPS)
388         ff_ac3dsp_init_mips(c, bit_exact);
389 }