3 * Copyright (c) 2011 Justin Ruggles
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #ifndef AVCODEC_AC3DSP_H
23 #define AVCODEC_AC3DSP_H
28 * Number of mantissa bits written for each bap value.
29 * bap values with fractional bits are set to 0 and are calculated separately.
31 extern const uint16_t ff_ac3_bap_bits[16];
33 typedef struct AC3DSPContext {
35 * Set each encoded exponent in a block to the minimum of itself and the
36 * exponents in the same frequency bin of up to 5 following blocks.
37 * @param exp pointer to the start of the current block of exponents.
38 * constraints: align 16
39 * @param num_reuse_blocks number of blocks that will reuse exponents from the current block.
40 * constraints: range 0 to 5
41 * @param nb_coefs number of frequency coefficients.
43 void (*ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs);
46 * Calculate the maximum MSB of the absolute value of each element in an
48 * @param src input array
49 * constraints: align 16. values must be in range [-32767,32767]
50 * @param len number of values in the array
51 * constraints: multiple of 16 greater than 0
52 * @return a value with the same MSB as max(abs(src[]))
54 int (*ac3_max_msb_abs_int16)(const int16_t *src, int len);
57 * Left-shift each value in an array of int16_t by a specified amount.
58 * @param src input array
59 * constraints: align 16
60 * @param len number of values in the array
61 * constraints: multiple of 32 greater than 0
62 * @param shift left shift amount
63 * constraints: range [0,15]
65 void (*ac3_lshift_int16)(int16_t *src, unsigned int len, unsigned int shift);
68 * Right-shift each value in an array of int32_t by a specified amount.
69 * @param src input array
70 * constraints: align 16
71 * @param len number of values in the array
72 * constraints: multiple of 16 greater than 0
73 * @param shift right shift amount
74 * constraints: range [0,31]
76 void (*ac3_rshift_int32)(int32_t *src, unsigned int len, unsigned int shift);
79 * Convert an array of float in range [-1.0,1.0] to int32_t with range
82 * @param dst destination array of int32_t.
83 * constraints: 16-byte aligned
84 * @param src source array of float.
85 * constraints: 16-byte aligned
86 * @param len number of elements to convert.
87 * constraints: multiple of 32 greater than zero
89 void (*float_to_fixed24)(int32_t *dst, const float *src, unsigned int len);
92 * Calculate bit allocation pointers.
93 * The SNR is the difference between the masking curve and the signal. AC-3
94 * uses this value for each frequency bin to allocate bits. The snroffset
95 * parameter is a global adjustment to the SNR for all bins.
97 * @param[in] mask masking curve
98 * @param[in] psd signal power for each frequency bin
99 * @param[in] start starting bin location
100 * @param[in] end ending bin location
101 * @param[in] snr_offset SNR adjustment
102 * @param[in] floor noise floor
103 * @param[in] bap_tab look-up table for bit allocation pointers
104 * @param[out] bap bit allocation pointers
106 void (*bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end,
107 int snr_offset, int floor,
108 const uint8_t *bap_tab, uint8_t *bap);
111 * Update bap counts using the supplied array of bap.
113 * @param[out] mant_cnt bap counts for 1 block
114 * @param[in] bap array of bap, pointing to start coef bin
115 * @param[in] len number of elements to process
117 void (*update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len);
120 * Calculate the number of bits needed to encode a set of mantissas.
122 * @param[in] mant_cnt bap counts for all blocks
123 * @return mantissa bit count
125 int (*compute_mantissa_size)(uint16_t mant_cnt[6][16]);
127 void (*extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs);
129 void (*sum_square_butterfly_int32)(int64_t sum[4], const int32_t *coef0,
130 const int32_t *coef1, int len);
132 void (*sum_square_butterfly_float)(float sum[4], const float *coef0,
133 const float *coef1, int len);
137 void (*downmix)(float **samples, float **matrix, int len);
138 void (*downmix_fixed)(int32_t **samples, int16_t **matrix, int len);
141 * Apply symmetric window in 16-bit fixed-point.
142 * @param output destination array
143 * constraints: 16-byte aligned
144 * @param input source array
145 * constraints: 16-byte aligned
146 * @param window window array
147 * constraints: 16-byte aligned, at least len/2 elements
148 * @param len full window length
149 * constraints: multiple of ? greater than zero
151 void (*apply_window_int16)(int16_t *output, const int16_t *input,
152 const int16_t *window, unsigned int len);
155 void ff_ac3dsp_init (AC3DSPContext *c, int bit_exact);
156 void ff_ac3dsp_init_arm(AC3DSPContext *c, int bit_exact);
157 void ff_ac3dsp_init_x86(AC3DSPContext *c, int bit_exact);
158 void ff_ac3dsp_init_mips(AC3DSPContext *c, int bit_exact);
160 void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
161 int out_ch, int in_ch, int len);
162 void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
163 int out_ch, int in_ch, int len);
165 void ff_ac3dsp_set_downmix_x86(AC3DSPContext *c);
167 #endif /* AVCODEC_AC3DSP_H */