2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * The simplest AC-3 encoder.
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/opt.h"
49 typedef struct AC3Mant {
50 int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
51 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
54 #define CMIXLEV_NUM_OPTIONS 3
55 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
56 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
59 #define SURMIXLEV_NUM_OPTIONS 3
60 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
61 LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
64 #define EXTMIXLEV_NUM_OPTIONS 8
65 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
66 LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB,
67 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
72 * LUT for number of exponent groups.
73 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
75 static uint8_t exponent_group_tab[2][3][256];
79 * List of supported channel layouts.
81 const uint64_t ff_ac3_channel_layouts[19] = {
85 AV_CH_LAYOUT_SURROUND,
90 AV_CH_LAYOUT_5POINT0_BACK,
91 (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
92 (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
93 (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
94 (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
95 (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
96 (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
97 (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
99 AV_CH_LAYOUT_5POINT1_BACK,
105 * LUT to select the bandwidth code based on the bit rate, sample rate, and
106 * number of full-bandwidth channels.
107 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
109 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
110 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
112 { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
113 { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
114 { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
116 { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
117 { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
118 { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
120 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
121 { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
122 { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
124 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
125 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
126 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
128 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
129 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
130 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
135 * LUT to select the coupling start band based on the bit rate, sample rate, and
136 * number of full-bandwidth channels. -1 = coupling off
137 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
139 * TODO: more testing for optimal parameters.
140 * multi-channel tests at 44.1kHz and 32kHz.
142 static const int8_t ac3_coupling_start_tab[6][3][19] = {
143 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
146 { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
147 { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
148 { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
151 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
152 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
153 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
156 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
157 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
158 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
161 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
162 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
163 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
166 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
167 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
168 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
171 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
172 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
173 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
178 * Adjust the frame size to make the average bit rate match the target bit rate.
179 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
181 * @param s AC-3 encoder private context
183 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
185 while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
186 s->bits_written -= s->bit_rate;
187 s->samples_written -= s->sample_rate;
189 s->frame_size = s->frame_size_min +
190 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
191 s->bits_written += s->frame_size * 8;
192 s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
197 * Set the initial coupling strategy parameters prior to coupling analysis.
199 * @param s AC-3 encoder private context
201 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
207 /* set coupling use flags for each block/channel */
208 /* TODO: turn coupling on/off and adjust start band based on bit usage */
209 for (blk = 0; blk < s->num_blocks; blk++) {
210 AC3Block *block = &s->blocks[blk];
211 for (ch = 1; ch <= s->fbw_channels; ch++)
212 block->channel_in_cpl[ch] = s->cpl_on;
215 /* enable coupling for each block if at least 2 channels have coupling
216 enabled for that block */
219 for (blk = 0; blk < s->num_blocks; blk++) {
220 AC3Block *block = &s->blocks[blk];
221 block->num_cpl_channels = 0;
222 for (ch = 1; ch <= s->fbw_channels; ch++)
223 block->num_cpl_channels += block->channel_in_cpl[ch];
224 block->cpl_in_use = block->num_cpl_channels > 1;
225 num_cpl_blocks += block->cpl_in_use;
226 if (!block->cpl_in_use) {
227 block->num_cpl_channels = 0;
228 for (ch = 1; ch <= s->fbw_channels; ch++)
229 block->channel_in_cpl[ch] = 0;
232 block->new_cpl_strategy = !blk;
234 for (ch = 1; ch <= s->fbw_channels; ch++) {
235 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
236 block->new_cpl_strategy = 1;
241 block->new_cpl_leak = block->new_cpl_strategy;
243 if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
244 block->new_snr_offsets = 1;
245 if (block->cpl_in_use)
248 block->new_snr_offsets = 0;
254 /* set bandwidth for each channel */
255 for (blk = 0; blk < s->num_blocks; blk++) {
256 AC3Block *block = &s->blocks[blk];
257 for (ch = 1; ch <= s->fbw_channels; ch++) {
258 if (block->channel_in_cpl[ch])
259 block->end_freq[ch] = s->start_freq[CPL_CH];
261 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
268 * Apply stereo rematrixing to coefficients based on rematrixing flags.
270 * @param s AC-3 encoder private context
272 void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
277 uint8_t *flags = NULL;
279 if (!s->rematrixing_enabled)
282 for (blk = 0; blk < s->num_blocks; blk++) {
283 AC3Block *block = &s->blocks[blk];
284 if (block->new_rematrixing_strategy)
285 flags = block->rematrixing_flags;
286 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
287 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
289 start = ff_ac3_rematrix_band_tab[bnd];
290 end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
291 for (i = start; i < end; i++) {
292 int32_t lt = block->fixed_coef[1][i];
293 int32_t rt = block->fixed_coef[2][i];
294 block->fixed_coef[1][i] = (lt + rt) >> 1;
295 block->fixed_coef[2][i] = (lt - rt) >> 1;
304 * Initialize exponent tables.
306 static av_cold void exponent_init(AC3EncodeContext *s)
308 int expstr, i, grpsize;
310 for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
311 grpsize = 3 << expstr;
312 for (i = 12; i < 256; i++) {
313 exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
314 exponent_group_tab[1][expstr][i] = (i ) / grpsize;
318 exponent_group_tab[0][0][7] = 2;
320 if (CONFIG_EAC3_ENCODER && s->eac3)
321 ff_eac3_exponent_init();
326 * Extract exponents from the MDCT coefficients.
328 static void extract_exponents(AC3EncodeContext *s)
331 int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
332 AC3Block *block = &s->blocks[0];
334 s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
339 * Exponent Difference Threshold.
340 * New exponents are sent if their SAD exceed this number.
342 #define EXP_DIFF_THRESHOLD 500
345 * Table used to select exponent strategy based on exponent reuse block interval.
347 static const uint8_t exp_strategy_reuse_tab[4][6] = {
348 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
350 { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
351 { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
355 * Calculate exponent strategies for all channels.
356 * Array arrangement is reversed to simplify the per-channel calculation.
358 static void compute_exp_strategy(AC3EncodeContext *s)
362 for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
363 uint8_t *exp_strategy = s->exp_strategy[ch];
364 uint8_t *exp = s->blocks[0].exp[ch];
367 /* estimate if the exponent variation & decide if they should be
368 reused in the next frame */
369 exp_strategy[0] = EXP_NEW;
370 exp += AC3_MAX_COEFS;
371 for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
373 if (!s->blocks[blk-1].cpl_in_use) {
374 exp_strategy[blk] = EXP_NEW;
376 } else if (!s->blocks[blk].cpl_in_use) {
377 exp_strategy[blk] = EXP_REUSE;
380 } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
381 exp_strategy[blk] = EXP_NEW;
384 exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
385 exp_strategy[blk] = EXP_REUSE;
386 if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
387 exp_strategy[blk] = EXP_NEW;
388 else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
389 exp_strategy[blk] = EXP_NEW;
392 /* now select the encoding strategy type : if exponents are often
393 recoded, we use a coarse encoding */
395 while (blk < s->num_blocks) {
397 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
399 exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
405 s->exp_strategy[ch][0] = EXP_D15;
406 for (blk = 1; blk < s->num_blocks; blk++)
407 s->exp_strategy[ch][blk] = EXP_REUSE;
410 /* for E-AC-3, determine frame exponent strategy */
411 if (CONFIG_EAC3_ENCODER && s->eac3)
412 ff_eac3_get_frame_exp_strategy(s);
417 * Update the exponents so that they are the ones the decoder will decode.
419 * @param[in,out] exp array of exponents for 1 block in 1 channel
420 * @param nb_exps number of exponents in active bandwidth
421 * @param exp_strategy exponent strategy for the block
422 * @param cpl indicates if the block is in the coupling channel
424 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
429 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
431 /* for each group, compute the minimum exponent */
432 switch(exp_strategy) {
434 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
435 uint8_t exp_min = exp[k];
436 if (exp[k+1] < exp_min)
438 exp[i-cpl] = exp_min;
443 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
444 uint8_t exp_min = exp[k];
445 if (exp[k+1] < exp_min)
447 if (exp[k+2] < exp_min)
449 if (exp[k+3] < exp_min)
451 exp[i-cpl] = exp_min;
457 /* constraint for DC exponent */
458 if (!cpl && exp[0] > 15)
461 /* decrease the delta between each groups to within 2 so that they can be
462 differentially encoded */
463 for (i = 1; i <= nb_groups; i++)
464 exp[i] = FFMIN(exp[i], exp[i-1] + 2);
467 exp[i] = FFMIN(exp[i], exp[i+1] + 2);
470 exp[-1] = exp[0] & ~1;
472 /* now we have the exponent values the decoder will see */
473 switch (exp_strategy) {
475 for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
476 uint8_t exp1 = exp[i-cpl];
482 for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
483 exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
492 * Encode exponents from original extracted form to what the decoder will see.
493 * This copies and groups exponents based on exponent strategy and reduces
494 * deltas between adjacent exponent groups so that they can be differentially
497 static void encode_exponents(AC3EncodeContext *s)
499 int blk, blk1, ch, cpl;
500 uint8_t *exp, *exp_strategy;
501 int nb_coefs, num_reuse_blocks;
503 for (ch = !s->cpl_on; ch <= s->channels; ch++) {
504 exp = s->blocks[0].exp[ch] + s->start_freq[ch];
505 exp_strategy = s->exp_strategy[ch];
507 cpl = (ch == CPL_CH);
509 while (blk < s->num_blocks) {
510 AC3Block *block = &s->blocks[blk];
511 if (cpl && !block->cpl_in_use) {
512 exp += AC3_MAX_COEFS;
516 nb_coefs = block->end_freq[ch] - s->start_freq[ch];
519 /* count the number of EXP_REUSE blocks after the current block
520 and set exponent reference block numbers */
521 s->exp_ref_block[ch][blk] = blk;
522 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
523 s->exp_ref_block[ch][blk1] = blk;
526 num_reuse_blocks = blk1 - blk - 1;
528 /* for the EXP_REUSE case we select the min of the exponents */
529 s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
532 encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
534 exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
539 /* reference block numbers have been changed, so reset ref_bap_set */
545 * Count exponent bits based on bandwidth, coupling, and exponent strategies.
547 static int count_exponent_bits(AC3EncodeContext *s)
550 int nb_groups, bit_count;
553 for (blk = 0; blk < s->num_blocks; blk++) {
554 AC3Block *block = &s->blocks[blk];
555 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
556 int exp_strategy = s->exp_strategy[ch][blk];
557 int cpl = (ch == CPL_CH);
558 int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
560 if (exp_strategy == EXP_REUSE)
563 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
564 bit_count += 4 + (nb_groups * 7);
574 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
575 * varies depending on exponent strategy and bandwidth.
577 * @param s AC-3 encoder private context
579 void ff_ac3_group_exponents(AC3EncodeContext *s)
582 int group_size, nb_groups;
584 int delta0, delta1, delta2;
587 for (blk = 0; blk < s->num_blocks; blk++) {
588 AC3Block *block = &s->blocks[blk];
589 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
590 int exp_strategy = s->exp_strategy[ch][blk];
591 if (exp_strategy == EXP_REUSE)
593 cpl = (ch == CPL_CH);
594 group_size = exp_strategy + (exp_strategy == EXP_D45);
595 nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
596 p = block->exp[ch] + s->start_freq[ch] - cpl;
600 block->grouped_exp[ch][0] = exp1;
602 /* remaining exponents are delta encoded */
603 for (i = 1; i <= nb_groups; i++) {
604 /* merge three delta in one code */
608 delta0 = exp1 - exp0 + 2;
609 av_assert2(delta0 >= 0 && delta0 <= 4);
614 delta1 = exp1 - exp0 + 2;
615 av_assert2(delta1 >= 0 && delta1 <= 4);
620 delta2 = exp1 - exp0 + 2;
621 av_assert2(delta2 >= 0 && delta2 <= 4);
623 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
631 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
632 * Extract exponents from MDCT coefficients, calculate exponent strategies,
633 * and encode final exponents.
635 * @param s AC-3 encoder private context
637 void ff_ac3_process_exponents(AC3EncodeContext *s)
639 extract_exponents(s);
641 compute_exp_strategy(s);
650 * Count frame bits that are based solely on fixed parameters.
651 * This only has to be run once when the encoder is initialized.
653 static void count_frame_bits_fixed(AC3EncodeContext *s)
655 static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
660 * no dynamic range codes
661 * bit allocation parameters do not change between blocks
662 * no delta bit allocation
669 frame_bits = 16; /* sync info */
671 /* bitstream info header */
674 if (s->num_blocks != 0x6)
677 /* audio frame header */
678 if (s->num_blocks == 6)
681 /* exponent strategy */
682 if (s->use_frame_exp_strategy)
683 frame_bits += 5 * s->fbw_channels;
685 frame_bits += s->num_blocks * 2 * s->fbw_channels;
687 frame_bits += s->num_blocks;
688 /* converter exponent strategy */
689 if (s->num_blks_code != 0x3)
692 frame_bits += s->fbw_channels * 5;
695 /* block start info */
696 if (s->num_blocks != 1)
700 frame_bits += frame_bits_inc[s->channel_mode];
704 for (blk = 0; blk < s->num_blocks; blk++) {
706 /* block switch flags */
707 frame_bits += s->fbw_channels;
710 frame_bits += s->fbw_channels;
716 /* spectral extension */
721 /* exponent strategy */
722 frame_bits += 2 * s->fbw_channels;
726 /* bit allocation params */
729 frame_bits += 2 + 2 + 2 + 2 + 3;
732 /* converter snr offset */
737 /* delta bit allocation */
749 frame_bits += 1 + 16;
751 s->frame_bits_fixed = frame_bits;
756 * Initialize bit allocation.
757 * Set default parameter codes and calculate parameter values.
759 static av_cold void bit_alloc_init(AC3EncodeContext *s)
763 /* init default parameters */
764 s->slow_decay_code = 2;
765 s->fast_decay_code = 1;
766 s->slow_gain_code = 1;
767 s->db_per_bit_code = s->eac3 ? 2 : 3;
769 for (ch = 0; ch <= s->channels; ch++)
770 s->fast_gain_code[ch] = 4;
772 /* initial snr offset */
773 s->coarse_snr_offset = 40;
775 /* compute real values */
776 /* currently none of these values change during encoding, so we can just
777 set them once at initialization */
778 s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
779 s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
780 s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
781 s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
782 s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
783 s->bit_alloc.cpl_fast_leak = 0;
784 s->bit_alloc.cpl_slow_leak = 0;
786 count_frame_bits_fixed(s);
791 * Count the bits used to encode the frame, minus exponents and mantissas.
792 * Bits based on fixed parameters have already been counted, so now we just
793 * have to add the bits based on parameters that change during encoding.
795 static void count_frame_bits(AC3EncodeContext *s)
797 AC3EncOptions *opt = &s->options;
803 if (opt->eac3_mixing_metadata) {
804 if (s->channel_mode > AC3_CHMODE_STEREO)
810 frame_bits += s->lfe_on;
811 frame_bits += 1 + 1 + 2;
812 if (s->channel_mode < AC3_CHMODE_STEREO)
816 if (opt->eac3_info_metadata) {
817 frame_bits += 3 + 1 + 1;
818 if (s->channel_mode == AC3_CHMODE_STEREO)
820 if (s->channel_mode >= AC3_CHMODE_2F2R)
823 if (opt->audio_production_info)
824 frame_bits += 5 + 2 + 1;
828 if (s->channel_mode > AC3_CHMODE_MONO) {
830 for (blk = 1; blk < s->num_blocks; blk++) {
831 AC3Block *block = &s->blocks[blk];
833 if (block->new_cpl_strategy)
837 /* coupling exponent strategy */
839 if (s->use_frame_exp_strategy) {
840 frame_bits += 5 * s->cpl_on;
842 for (blk = 0; blk < s->num_blocks; blk++)
843 frame_bits += 2 * s->blocks[blk].cpl_in_use;
847 if (opt->audio_production_info)
849 if (s->bitstream_id == 6) {
850 if (opt->extended_bsi_1)
852 if (opt->extended_bsi_2)
858 for (blk = 0; blk < s->num_blocks; blk++) {
859 AC3Block *block = &s->blocks[blk];
861 /* coupling strategy */
864 if (block->new_cpl_strategy) {
867 if (block->cpl_in_use) {
870 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
871 frame_bits += s->fbw_channels;
872 if (s->channel_mode == AC3_CHMODE_STEREO)
878 frame_bits += s->num_cpl_subbands - 1;
882 /* coupling coordinates */
883 if (block->cpl_in_use) {
884 for (ch = 1; ch <= s->fbw_channels; ch++) {
885 if (block->channel_in_cpl[ch]) {
886 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
888 if (block->new_cpl_coords[ch]) {
890 frame_bits += (4 + 4) * s->num_cpl_bands;
896 /* stereo rematrixing */
897 if (s->channel_mode == AC3_CHMODE_STEREO) {
898 if (!s->eac3 || blk > 0)
900 if (s->blocks[blk].new_rematrixing_strategy)
901 frame_bits += block->num_rematrixing_bands;
904 /* bandwidth codes & gain range */
905 for (ch = 1; ch <= s->fbw_channels; ch++) {
906 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
907 if (!block->channel_in_cpl[ch])
913 /* coupling exponent strategy */
914 if (!s->eac3 && block->cpl_in_use)
917 /* snr offsets and fast gain codes */
920 if (block->new_snr_offsets)
921 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
924 /* coupling leak info */
925 if (block->cpl_in_use) {
926 if (!s->eac3 || block->new_cpl_leak != 2)
928 if (block->new_cpl_leak)
933 s->frame_bits = s->frame_bits_fixed + frame_bits;
938 * Calculate masking curve based on the final exponents.
939 * Also calculate the power spectral densities to use in future calculations.
941 static void bit_alloc_masking(AC3EncodeContext *s)
945 for (blk = 0; blk < s->num_blocks; blk++) {
946 AC3Block *block = &s->blocks[blk];
947 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
948 /* We only need psd and mask for calculating bap.
949 Since we currently do not calculate bap when exponent
950 strategy is EXP_REUSE we do not need to calculate psd or mask. */
951 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
952 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
953 block->end_freq[ch], block->psd[ch],
954 block->band_psd[ch]);
955 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
956 s->start_freq[ch], block->end_freq[ch],
957 ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
958 ch == s->lfe_channel,
959 DBA_NONE, 0, NULL, NULL, NULL,
968 * Ensure that bap for each block and channel point to the current bap_buffer.
969 * They may have been switched during the bit allocation search.
971 static void reset_block_bap(AC3EncodeContext *s)
976 if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
979 ref_bap = s->bap_buffer;
980 for (ch = 0; ch <= s->channels; ch++) {
981 for (blk = 0; blk < s->num_blocks; blk++)
982 s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
983 ref_bap += AC3_MAX_COEFS * s->num_blocks;
990 * Initialize mantissa counts.
991 * These are set so that they are padded to the next whole group size when bits
992 * are counted in compute_mantissa_size.
994 * @param[in,out] mant_cnt running counts for each bap value for each block
996 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
1000 for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1001 memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1002 mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1003 mant_cnt[blk][4] = 1;
1009 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1012 * @param s AC-3 encoder private context
1013 * @param ch channel index
1014 * @param[in,out] mant_cnt running counts for each bap value for each block
1015 * @param start starting coefficient bin
1016 * @param end ending coefficient bin
1018 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1019 uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1024 for (blk = 0; blk < s->num_blocks; blk++) {
1025 AC3Block *block = &s->blocks[blk];
1026 if (ch == CPL_CH && !block->cpl_in_use)
1028 s->ac3dsp.update_bap_counts(mant_cnt[blk],
1029 s->ref_bap[ch][blk] + start,
1030 FFMIN(end, block->end_freq[ch]) - start);
1036 * Count the number of mantissa bits in the frame based on the bap values.
1038 static int count_mantissa_bits(AC3EncodeContext *s)
1040 int ch, max_end_freq;
1041 LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1043 count_mantissa_bits_init(mant_cnt);
1045 max_end_freq = s->bandwidth_code * 3 + 73;
1046 for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1047 count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1050 return s->ac3dsp.compute_mantissa_size(mant_cnt);
1055 * Run the bit allocation with a given SNR offset.
1056 * This calculates the bit allocation pointers that will be used to determine
1057 * the quantization of each mantissa.
1059 * @param s AC-3 encoder private context
1060 * @param snr_offset SNR offset, 0 to 1023
1061 * @return the number of bits needed for mantissas if the given SNR offset is
1064 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1068 snr_offset = (snr_offset - 240) << 2;
1071 for (blk = 0; blk < s->num_blocks; blk++) {
1072 AC3Block *block = &s->blocks[blk];
1074 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1075 /* Currently the only bit allocation parameters which vary across
1076 blocks within a frame are the exponent values. We can take
1077 advantage of that by reusing the bit allocation pointers
1078 whenever we reuse exponents. */
1079 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1080 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1081 s->start_freq[ch], block->end_freq[ch],
1082 snr_offset, s->bit_alloc.floor,
1083 ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1087 return count_mantissa_bits(s);
1092 * Constant bitrate bit allocation search.
1093 * Find the largest SNR offset that will allow data to fit in the frame.
1095 static int cbr_bit_allocation(AC3EncodeContext *s)
1099 int snr_offset, snr_incr;
1101 bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1103 return AVERROR(EINVAL);
1105 snr_offset = s->coarse_snr_offset << 4;
1107 /* if previous frame SNR offset was 1023, check if current frame can also
1108 use SNR offset of 1023. if so, skip the search. */
1109 if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1110 if (bit_alloc(s, 1023) <= bits_left)
1114 while (snr_offset >= 0 &&
1115 bit_alloc(s, snr_offset) > bits_left) {
1119 return AVERROR(EINVAL);
1121 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1122 for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1123 while (snr_offset + snr_incr <= 1023 &&
1124 bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1125 snr_offset += snr_incr;
1126 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1129 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1132 s->coarse_snr_offset = snr_offset >> 4;
1133 for (ch = !s->cpl_on; ch <= s->channels; ch++)
1134 s->fine_snr_offset[ch] = snr_offset & 0xF;
1141 * Perform bit allocation search.
1142 * Finds the SNR offset value that maximizes quality and fits in the specified
1143 * frame size. Output is the SNR offset and a set of bit allocation pointers
1144 * used to quantize the mantissas.
1146 int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
1148 count_frame_bits(s);
1150 s->exponent_bits = count_exponent_bits(s);
1152 bit_alloc_masking(s);
1154 return cbr_bit_allocation(s);
1159 * Symmetric quantization on 'levels' levels.
1161 * @param c unquantized coefficient
1163 * @param levels number of quantization levels
1164 * @return quantized coefficient
1166 static inline int sym_quant(int c, int e, int levels)
1168 int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1169 av_assert2(v >= 0 && v < levels);
1175 * Asymmetric quantization on 2^qbits levels.
1177 * @param c unquantized coefficient
1179 * @param qbits number of quantization bits
1180 * @return quantized coefficient
1182 static inline int asym_quant(int c, int e, int qbits)
1186 c = (((c * (1<<e)) >> (24 - qbits)) + 1) >> 1;
1187 m = (1 << (qbits-1));
1190 av_assert2(c >= -m);
1196 * Quantize a set of mantissas for a single channel in a single block.
1198 * @param s Mantissa count context
1199 * @param fixed_coef unquantized fixed-point coefficients
1200 * @param exp exponents
1201 * @param bap bit allocation pointer indices
1202 * @param[out] qmant quantized coefficients
1203 * @param start_freq starting coefficient bin
1204 * @param end_freq ending coefficient bin
1206 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1207 uint8_t *exp, uint8_t *bap,
1208 int16_t *qmant, int start_freq,
1213 for (i = start_freq; i < end_freq; i++) {
1214 int c = fixed_coef[i];
1220 v = sym_quant(c, e, 3);
1221 switch (s->mant1_cnt) {
1223 s->qmant1_ptr = &qmant[i];
1228 *s->qmant1_ptr += 3 * v;
1233 *s->qmant1_ptr += v;
1240 v = sym_quant(c, e, 5);
1241 switch (s->mant2_cnt) {
1243 s->qmant2_ptr = &qmant[i];
1248 *s->qmant2_ptr += 5 * v;
1253 *s->qmant2_ptr += v;
1260 v = sym_quant(c, e, 7);
1263 v = sym_quant(c, e, 11);
1264 switch (s->mant4_cnt) {
1266 s->qmant4_ptr = &qmant[i];
1271 *s->qmant4_ptr += v;
1278 v = sym_quant(c, e, 15);
1281 v = asym_quant(c, e, 14);
1284 v = asym_quant(c, e, 16);
1287 v = asym_quant(c, e, v - 1);
1296 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1298 * @param s AC-3 encoder private context
1300 void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
1302 int blk, ch, ch0=0, got_cpl;
1304 for (blk = 0; blk < s->num_blocks; blk++) {
1305 AC3Block *block = &s->blocks[blk];
1308 got_cpl = !block->cpl_in_use;
1309 for (ch = 1; ch <= s->channels; ch++) {
1310 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1315 quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1316 s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1317 s->ref_bap[ch][blk], block->qmant[ch],
1318 s->start_freq[ch], block->end_freq[ch]);
1327 * Write the AC-3 frame header to the output bitstream.
1329 static void ac3_output_frame_header(AC3EncodeContext *s)
1331 AC3EncOptions *opt = &s->options;
1333 put_bits(&s->pb, 16, 0x0b77); /* frame header */
1334 put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1335 put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1336 put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1337 put_bits(&s->pb, 5, s->bitstream_id);
1338 put_bits(&s->pb, 3, s->bitstream_mode);
1339 put_bits(&s->pb, 3, s->channel_mode);
1340 if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1341 put_bits(&s->pb, 2, s->center_mix_level);
1342 if (s->channel_mode & 0x04)
1343 put_bits(&s->pb, 2, s->surround_mix_level);
1344 if (s->channel_mode == AC3_CHMODE_STEREO)
1345 put_bits(&s->pb, 2, opt->dolby_surround_mode);
1346 put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1347 put_bits(&s->pb, 5, -opt->dialogue_level);
1348 put_bits(&s->pb, 1, 0); /* no compression control word */
1349 put_bits(&s->pb, 1, 0); /* no lang code */
1350 put_bits(&s->pb, 1, opt->audio_production_info);
1351 if (opt->audio_production_info) {
1352 put_bits(&s->pb, 5, opt->mixing_level - 80);
1353 put_bits(&s->pb, 2, opt->room_type);
1355 put_bits(&s->pb, 1, opt->copyright);
1356 put_bits(&s->pb, 1, opt->original);
1357 if (s->bitstream_id == 6) {
1358 /* alternate bit stream syntax */
1359 put_bits(&s->pb, 1, opt->extended_bsi_1);
1360 if (opt->extended_bsi_1) {
1361 put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1362 put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1363 put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1364 put_bits(&s->pb, 3, s->loro_center_mix_level);
1365 put_bits(&s->pb, 3, s->loro_surround_mix_level);
1367 put_bits(&s->pb, 1, opt->extended_bsi_2);
1368 if (opt->extended_bsi_2) {
1369 put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1370 put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1371 put_bits(&s->pb, 1, opt->ad_converter_type);
1372 put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1375 put_bits(&s->pb, 1, 0); /* no time code 1 */
1376 put_bits(&s->pb, 1, 0); /* no time code 2 */
1378 put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1383 * Write one audio block to the output bitstream.
1385 static void output_audio_block(AC3EncodeContext *s, int blk)
1387 int ch, i, baie, bnd, got_cpl, av_uninit(ch0);
1388 AC3Block *block = &s->blocks[blk];
1390 /* block switching */
1392 for (ch = 0; ch < s->fbw_channels; ch++)
1393 put_bits(&s->pb, 1, 0);
1398 for (ch = 0; ch < s->fbw_channels; ch++)
1399 put_bits(&s->pb, 1, 1);
1402 /* dynamic range codes */
1403 put_bits(&s->pb, 1, 0);
1405 /* spectral extension */
1407 put_bits(&s->pb, 1, 0);
1409 /* channel coupling */
1411 put_bits(&s->pb, 1, block->new_cpl_strategy);
1412 if (block->new_cpl_strategy) {
1414 put_bits(&s->pb, 1, block->cpl_in_use);
1415 if (block->cpl_in_use) {
1416 int start_sub, end_sub;
1418 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1419 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1420 for (ch = 1; ch <= s->fbw_channels; ch++)
1421 put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1423 if (s->channel_mode == AC3_CHMODE_STEREO)
1424 put_bits(&s->pb, 1, 0); /* phase flags in use */
1425 start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1426 end_sub = (s->cpl_end_freq - 37) / 12;
1427 put_bits(&s->pb, 4, start_sub);
1428 put_bits(&s->pb, 4, end_sub - 3);
1429 /* coupling band structure */
1431 put_bits(&s->pb, 1, 0); /* use default */
1433 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1434 put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1439 /* coupling coordinates */
1440 if (block->cpl_in_use) {
1441 for (ch = 1; ch <= s->fbw_channels; ch++) {
1442 if (block->channel_in_cpl[ch]) {
1443 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1444 put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1445 if (block->new_cpl_coords[ch]) {
1446 put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1447 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1448 put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1449 put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1456 /* stereo rematrixing */
1457 if (s->channel_mode == AC3_CHMODE_STEREO) {
1458 if (!s->eac3 || blk > 0)
1459 put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1460 if (block->new_rematrixing_strategy) {
1461 /* rematrixing flags */
1462 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1463 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1467 /* exponent strategy */
1469 for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1470 put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1472 put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1476 for (ch = 1; ch <= s->fbw_channels; ch++) {
1477 if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1478 put_bits(&s->pb, 6, s->bandwidth_code);
1482 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1484 int cpl = (ch == CPL_CH);
1486 if (s->exp_strategy[ch][blk] == EXP_REUSE)
1490 put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1492 /* exponent groups */
1493 nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1494 for (i = 1; i <= nb_groups; i++)
1495 put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1497 /* gain range info */
1498 if (ch != s->lfe_channel && !cpl)
1499 put_bits(&s->pb, 2, 0);
1502 /* bit allocation info */
1505 put_bits(&s->pb, 1, baie);
1507 put_bits(&s->pb, 2, s->slow_decay_code);
1508 put_bits(&s->pb, 2, s->fast_decay_code);
1509 put_bits(&s->pb, 2, s->slow_gain_code);
1510 put_bits(&s->pb, 2, s->db_per_bit_code);
1511 put_bits(&s->pb, 3, s->floor_code);
1517 put_bits(&s->pb, 1, block->new_snr_offsets);
1518 if (block->new_snr_offsets) {
1519 put_bits(&s->pb, 6, s->coarse_snr_offset);
1520 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1521 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1522 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1526 put_bits(&s->pb, 1, 0); /* no converter snr offset */
1530 if (block->cpl_in_use) {
1531 if (!s->eac3 || block->new_cpl_leak != 2)
1532 put_bits(&s->pb, 1, block->new_cpl_leak);
1533 if (block->new_cpl_leak) {
1534 put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1535 put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1540 put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1541 put_bits(&s->pb, 1, 0); /* no data to skip */
1545 got_cpl = !block->cpl_in_use;
1546 for (ch = 1; ch <= s->channels; ch++) {
1549 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1554 for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1555 q = block->qmant[ch][i];
1556 b = s->ref_bap[ch][blk][i];
1559 case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1560 case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1561 case 3: put_sbits(&s->pb, 3, q); break;
1562 case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1563 case 14: put_sbits(&s->pb, 14, q); break;
1564 case 15: put_sbits(&s->pb, 16, q); break;
1565 default: put_sbits(&s->pb, b-1, q); break;
1574 /** CRC-16 Polynomial */
1575 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1578 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1595 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1601 r = mul_poly(r, a, poly);
1602 a = mul_poly(a, a, poly);
1610 * Fill the end of the frame with 0's and compute the two CRCs.
1612 static void output_frame_end(AC3EncodeContext *s)
1614 const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1615 int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1618 frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1620 /* pad the remainder of the frame with zeros */
1621 av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1622 flush_put_bits(&s->pb);
1624 pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1625 av_assert2(pad_bytes >= 0);
1627 memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1631 crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1634 /* this is not so easy because it is at the beginning of the data... */
1635 crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1636 crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1637 crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1638 AV_WB16(frame + 2, crc1);
1641 crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1642 s->frame_size - frame_size_58 - 3);
1644 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1645 /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1646 if (crc2 == 0x770B) {
1647 frame[s->frame_size - 3] ^= 0x1;
1648 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1650 crc2 = av_bswap16(crc2);
1651 AV_WB16(frame + s->frame_size - 2, crc2);
1656 * Write the frame to the output bitstream.
1658 * @param s AC-3 encoder private context
1659 * @param frame output data buffer
1661 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1665 init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
1667 s->output_frame_header(s);
1669 for (blk = 0; blk < s->num_blocks; blk++)
1670 output_audio_block(s, blk);
1672 output_frame_end(s);
1676 static void dprint_options(AC3EncodeContext *s)
1679 AVCodecContext *avctx = s->avctx;
1680 AC3EncOptions *opt = &s->options;
1683 switch (s->bitstream_id) {
1684 case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1685 case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1686 case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1687 case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1688 case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1689 default: snprintf(strbuf, 32, "ERROR");
1691 ff_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1692 ff_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1693 av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1694 ff_dlog(avctx, "channel_layout: %s\n", strbuf);
1695 ff_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1696 ff_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1697 ff_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1699 ff_dlog(avctx, "cutoff: %d\n", s->cutoff);
1701 ff_dlog(avctx, "per_frame_metadata: %s\n",
1702 opt->allow_per_frame_metadata?"on":"off");
1704 ff_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1705 s->center_mix_level);
1707 ff_dlog(avctx, "center_mixlev: {not written}\n");
1708 if (s->has_surround)
1709 ff_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1710 s->surround_mix_level);
1712 ff_dlog(avctx, "surround_mixlev: {not written}\n");
1713 if (opt->audio_production_info) {
1714 ff_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1715 switch (opt->room_type) {
1716 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1717 case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1718 case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1719 default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1721 ff_dlog(avctx, "room_type: %s\n", strbuf);
1723 ff_dlog(avctx, "mixing_level: {not written}\n");
1724 ff_dlog(avctx, "room_type: {not written}\n");
1726 ff_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1727 ff_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1728 if (s->channel_mode == AC3_CHMODE_STEREO) {
1729 switch (opt->dolby_surround_mode) {
1730 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1731 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1732 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1733 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1735 ff_dlog(avctx, "dsur_mode: %s\n", strbuf);
1737 ff_dlog(avctx, "dsur_mode: {not written}\n");
1739 ff_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1741 if (s->bitstream_id == 6) {
1742 if (opt->extended_bsi_1) {
1743 switch (opt->preferred_stereo_downmix) {
1744 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1745 case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1746 case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1747 default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1749 ff_dlog(avctx, "dmix_mode: %s\n", strbuf);
1750 ff_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1751 opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1752 ff_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1753 opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1754 ff_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1755 opt->loro_center_mix_level, s->loro_center_mix_level);
1756 ff_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1757 opt->loro_surround_mix_level, s->loro_surround_mix_level);
1759 ff_dlog(avctx, "extended bitstream info 1: {not written}\n");
1761 if (opt->extended_bsi_2) {
1762 switch (opt->dolby_surround_ex_mode) {
1763 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1764 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1765 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1766 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1768 ff_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1769 switch (opt->dolby_headphone_mode) {
1770 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1771 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1772 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1773 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1775 ff_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1777 switch (opt->ad_converter_type) {
1778 case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1779 case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1780 default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1782 ff_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1784 ff_dlog(avctx, "extended bitstream info 2: {not written}\n");
1791 #define FLT_OPTION_THRESHOLD 0.01
1793 static int validate_float_option(float v, const float *v_list, int v_list_size)
1797 for (i = 0; i < v_list_size; i++) {
1798 if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1799 v > (v_list[i] - FLT_OPTION_THRESHOLD))
1802 if (i == v_list_size)
1809 static void validate_mix_level(void *log_ctx, const char *opt_name,
1810 float *opt_param, const float *list,
1811 int list_size, int default_value, int min_value,
1814 int mixlev = validate_float_option(*opt_param, list, list_size);
1815 if (mixlev < min_value) {
1816 mixlev = default_value;
1817 if (*opt_param >= 0.0) {
1818 av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1819 "default value: %0.3f\n", opt_name, list[mixlev]);
1822 *opt_param = list[mixlev];
1823 *ctx_param = mixlev;
1828 * Validate metadata options as set by AVOption system.
1829 * These values can optionally be changed per-frame.
1831 * @param s AC-3 encoder private context
1833 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1835 AVCodecContext *avctx = s->avctx;
1836 AC3EncOptions *opt = &s->options;
1838 opt->audio_production_info = 0;
1839 opt->extended_bsi_1 = 0;
1840 opt->extended_bsi_2 = 0;
1841 opt->eac3_mixing_metadata = 0;
1842 opt->eac3_info_metadata = 0;
1844 /* determine mixing metadata / xbsi1 use */
1845 if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1846 opt->extended_bsi_1 = 1;
1847 opt->eac3_mixing_metadata = 1;
1849 if (s->has_center &&
1850 (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1851 opt->extended_bsi_1 = 1;
1852 opt->eac3_mixing_metadata = 1;
1854 if (s->has_surround &&
1855 (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1856 opt->extended_bsi_1 = 1;
1857 opt->eac3_mixing_metadata = 1;
1861 /* determine info metadata use */
1862 if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
1863 opt->eac3_info_metadata = 1;
1864 if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1865 opt->eac3_info_metadata = 1;
1866 if (s->channel_mode == AC3_CHMODE_STEREO &&
1867 (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
1868 opt->eac3_info_metadata = 1;
1869 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1870 opt->eac3_info_metadata = 1;
1871 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1872 opt->ad_converter_type != AC3ENC_OPT_NONE) {
1873 opt->audio_production_info = 1;
1874 opt->eac3_info_metadata = 1;
1877 /* determine audio production info use */
1878 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1879 opt->audio_production_info = 1;
1881 /* determine xbsi2 use */
1882 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1883 opt->extended_bsi_2 = 1;
1884 if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
1885 opt->extended_bsi_2 = 1;
1886 if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1887 opt->extended_bsi_2 = 1;
1890 /* validate AC-3 mixing levels */
1892 if (s->has_center) {
1893 validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1894 cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
1895 &s->center_mix_level);
1897 if (s->has_surround) {
1898 validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1899 surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
1900 &s->surround_mix_level);
1904 /* validate extended bsi 1 / mixing metadata */
1905 if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1906 /* default preferred stereo downmix */
1907 if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
1908 opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
1909 if (!s->eac3 || s->has_center) {
1910 /* validate Lt/Rt center mix level */
1911 validate_mix_level(avctx, "ltrt_center_mix_level",
1912 &opt->ltrt_center_mix_level, extmixlev_options,
1913 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1914 &s->ltrt_center_mix_level);
1915 /* validate Lo/Ro center mix level */
1916 validate_mix_level(avctx, "loro_center_mix_level",
1917 &opt->loro_center_mix_level, extmixlev_options,
1918 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1919 &s->loro_center_mix_level);
1921 if (!s->eac3 || s->has_surround) {
1922 /* validate Lt/Rt surround mix level */
1923 validate_mix_level(avctx, "ltrt_surround_mix_level",
1924 &opt->ltrt_surround_mix_level, extmixlev_options,
1925 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1926 &s->ltrt_surround_mix_level);
1927 /* validate Lo/Ro surround mix level */
1928 validate_mix_level(avctx, "loro_surround_mix_level",
1929 &opt->loro_surround_mix_level, extmixlev_options,
1930 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1931 &s->loro_surround_mix_level);
1935 /* validate audio service type / channels combination */
1936 if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
1937 avctx->channels == 1) ||
1938 ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
1939 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
1940 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
1941 && avctx->channels > 1)) {
1942 av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1943 "specified number of channels\n");
1944 return AVERROR(EINVAL);
1947 /* validate extended bsi 2 / info metadata */
1948 if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1949 /* default dolby headphone mode */
1950 if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
1951 opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
1952 /* default dolby surround ex mode */
1953 if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
1954 opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
1955 /* default A/D converter type */
1956 if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1957 opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
1960 /* copyright & original defaults */
1961 if (!s->eac3 || opt->eac3_info_metadata) {
1962 /* default copyright */
1963 if (opt->copyright == AC3ENC_OPT_NONE)
1964 opt->copyright = AC3ENC_OPT_OFF;
1965 /* default original */
1966 if (opt->original == AC3ENC_OPT_NONE)
1967 opt->original = AC3ENC_OPT_ON;
1970 /* dolby surround mode default */
1971 if (!s->eac3 || opt->eac3_info_metadata) {
1972 if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
1973 opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
1976 /* validate audio production info */
1977 if (opt->audio_production_info) {
1978 if (opt->mixing_level == AC3ENC_OPT_NONE) {
1979 av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1980 "room_type is set\n");
1981 return AVERROR(EINVAL);
1983 if (opt->mixing_level < 80) {
1984 av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1985 "80dB and 111dB\n");
1986 return AVERROR(EINVAL);
1988 /* default room type */
1989 if (opt->room_type == AC3ENC_OPT_NONE)
1990 opt->room_type = AC3ENC_OPT_NOT_INDICATED;
1993 /* set bitstream id for alternate bitstream syntax */
1994 if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1995 if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1996 static int warn_once = 1;
1998 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
1999 "not compatible with reduced samplerates. writing of "
2000 "extended bitstream information will be disabled.\n");
2004 s->bitstream_id = 6;
2013 * Finalize encoding and free any memory allocated by the encoder.
2015 * @param avctx Codec context
2017 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2020 AC3EncodeContext *s = avctx->priv_data;
2022 av_freep(&s->windowed_samples);
2023 if (s->planar_samples)
2024 for (ch = 0; ch < s->channels; ch++)
2025 av_freep(&s->planar_samples[ch]);
2026 av_freep(&s->planar_samples);
2027 av_freep(&s->bap_buffer);
2028 av_freep(&s->bap1_buffer);
2029 av_freep(&s->mdct_coef_buffer);
2030 av_freep(&s->fixed_coef_buffer);
2031 av_freep(&s->exp_buffer);
2032 av_freep(&s->grouped_exp_buffer);
2033 av_freep(&s->psd_buffer);
2034 av_freep(&s->band_psd_buffer);
2035 av_freep(&s->mask_buffer);
2036 av_freep(&s->qmant_buffer);
2037 av_freep(&s->cpl_coord_exp_buffer);
2038 av_freep(&s->cpl_coord_mant_buffer);
2040 for (blk = 0; blk < s->num_blocks; blk++) {
2041 AC3Block *block = &s->blocks[blk];
2042 av_freep(&block->mdct_coef);
2043 av_freep(&block->fixed_coef);
2044 av_freep(&block->exp);
2045 av_freep(&block->grouped_exp);
2046 av_freep(&block->psd);
2047 av_freep(&block->band_psd);
2048 av_freep(&block->mask);
2049 av_freep(&block->qmant);
2050 av_freep(&block->cpl_coord_exp);
2051 av_freep(&block->cpl_coord_mant);
2061 * Set channel information during initialization.
2063 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2064 uint64_t *channel_layout)
2068 if (channels < 1 || channels > AC3_MAX_CHANNELS)
2069 return AVERROR(EINVAL);
2070 if (*channel_layout > 0x7FF)
2071 return AVERROR(EINVAL);
2072 ch_layout = *channel_layout;
2074 ch_layout = av_get_default_channel_layout(channels);
2076 s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2077 s->channels = channels;
2078 s->fbw_channels = channels - s->lfe_on;
2079 s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2081 ch_layout -= AV_CH_LOW_FREQUENCY;
2083 switch (ch_layout) {
2084 case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
2085 case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2086 case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2087 case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2088 case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2089 case AV_CH_LAYOUT_QUAD:
2090 case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2091 case AV_CH_LAYOUT_5POINT0:
2092 case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2094 return AVERROR(EINVAL);
2096 s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2097 s->has_surround = s->channel_mode & 0x04;
2099 s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2100 *channel_layout = ch_layout;
2102 *channel_layout |= AV_CH_LOW_FREQUENCY;
2108 static av_cold int validate_options(AC3EncodeContext *s)
2110 AVCodecContext *avctx = s->avctx;
2113 /* validate channel layout */
2114 if (!avctx->channel_layout) {
2115 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2116 "encoder will guess the layout, but it "
2117 "might be incorrect.\n");
2119 ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2121 av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2125 /* validate sample rate */
2126 /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2127 decoder that supports half sample rate so we can validate that
2128 the generated files are correct. */
2129 max_sr = s->eac3 ? 2 : 8;
2130 for (i = 0; i <= max_sr; i++) {
2131 if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2135 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2136 return AVERROR(EINVAL);
2138 s->sample_rate = avctx->sample_rate;
2139 s->bit_alloc.sr_shift = i / 3;
2140 s->bit_alloc.sr_code = i % 3;
2141 s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2143 /* select a default bit rate if not set by the user */
2144 if (!avctx->bit_rate) {
2145 switch (s->fbw_channels) {
2146 case 1: avctx->bit_rate = 96000; break;
2147 case 2: avctx->bit_rate = 192000; break;
2148 case 3: avctx->bit_rate = 320000; break;
2149 case 4: avctx->bit_rate = 384000; break;
2150 case 5: avctx->bit_rate = 448000; break;
2154 /* validate bit rate */
2156 int max_br, min_br, wpf, min_br_code;
2157 int num_blks_code, num_blocks, frame_samples;
2158 long long min_br_dist;
2160 /* calculate min/max bitrate */
2161 /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2162 found use either 6 blocks or 1 block, even though 2 or 3 blocks
2163 would work as far as the bit rate is concerned. */
2164 for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2165 num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2166 frame_samples = AC3_BLOCK_SIZE * num_blocks;
2167 max_br = 2048 * s->sample_rate / frame_samples * 16;
2168 min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2169 if (avctx->bit_rate <= max_br)
2172 if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2173 av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2174 "for this sample rate\n", min_br, max_br);
2175 return AVERROR(EINVAL);
2177 s->num_blks_code = num_blks_code;
2178 s->num_blocks = num_blocks;
2180 /* calculate words-per-frame for the selected bitrate */
2181 wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2182 av_assert1(wpf > 0 && wpf <= 2048);
2184 /* find the closest AC-3 bitrate code to the selected bitrate.
2185 this is needed for lookup tables for bandwidth and coupling
2186 parameter selection */
2188 min_br_dist = INT64_MAX;
2189 for (i = 0; i < 19; i++) {
2190 long long br_dist = llabs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2191 if (br_dist < min_br_dist) {
2192 min_br_dist = br_dist;
2197 /* make sure the minimum frame size is below the average frame size */
2198 s->frame_size_code = min_br_code << 1;
2199 while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2201 s->frame_size_min = 2 * wpf;
2203 int best_br = 0, best_code = 0;
2204 long long best_diff = INT64_MAX;
2205 for (i = 0; i < 19; i++) {
2206 int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2207 long long diff = llabs(br - avctx->bit_rate);
2208 if (diff < best_diff) {
2216 avctx->bit_rate = best_br;
2217 s->frame_size_code = best_code << 1;
2218 s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2219 s->num_blks_code = 0x3;
2222 s->bit_rate = avctx->bit_rate;
2223 s->frame_size = s->frame_size_min;
2225 /* validate cutoff */
2226 if (avctx->cutoff < 0) {
2227 av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2228 return AVERROR(EINVAL);
2230 s->cutoff = avctx->cutoff;
2231 if (s->cutoff > (s->sample_rate >> 1))
2232 s->cutoff = s->sample_rate >> 1;
2234 ret = ff_ac3_validate_metadata(s);
2238 s->rematrixing_enabled = s->options.stereo_rematrixing &&
2239 (s->channel_mode == AC3_CHMODE_STEREO);
2241 s->cpl_enabled = s->options.channel_coupling &&
2242 s->channel_mode >= AC3_CHMODE_STEREO;
2249 * Set bandwidth for all channels.
2250 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2251 * default value will be used.
2253 static av_cold void set_bandwidth(AC3EncodeContext *s)
2255 int blk, ch, av_uninit(cpl_start);
2258 /* calculate bandwidth based on user-specified cutoff frequency */
2260 fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2261 s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2263 /* use default bandwidth setting */
2264 s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2267 /* set number of coefficients for each channel */
2268 for (ch = 1; ch <= s->fbw_channels; ch++) {
2269 s->start_freq[ch] = 0;
2270 for (blk = 0; blk < s->num_blocks; blk++)
2271 s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2273 /* LFE channel always has 7 coefs */
2275 s->start_freq[s->lfe_channel] = 0;
2276 for (blk = 0; blk < s->num_blocks; blk++)
2277 s->blocks[blk].end_freq[ch] = 7;
2280 /* initialize coupling strategy */
2281 if (s->cpl_enabled) {
2282 if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2283 cpl_start = s->options.cpl_start;
2285 cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2286 if (cpl_start < 0) {
2287 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2294 if (s->cpl_enabled) {
2295 int i, cpl_start_band, cpl_end_band;
2296 uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2298 cpl_end_band = s->bandwidth_code / 4 + 3;
2299 cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2301 s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2303 s->num_cpl_bands = 1;
2304 *cpl_band_sizes = 12;
2305 for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2306 if (ff_eac3_default_cpl_band_struct[i]) {
2307 *cpl_band_sizes += 12;
2311 *cpl_band_sizes = 12;
2315 s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2316 s->cpl_end_freq = cpl_end_band * 12 + 37;
2317 for (blk = 0; blk < s->num_blocks; blk++)
2318 s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2323 static av_cold int allocate_buffers(AC3EncodeContext *s)
2325 AVCodecContext *avctx = s->avctx;
2327 int channels = s->channels + 1; /* includes coupling channel */
2328 int channel_blocks = channels * s->num_blocks;
2329 int total_coefs = AC3_MAX_COEFS * channel_blocks;
2331 if (s->allocate_sample_buffers(s))
2334 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->bap_buffer, total_coefs,
2335 sizeof(*s->bap_buffer), alloc_fail);
2336 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->bap1_buffer, total_coefs,
2337 sizeof(*s->bap1_buffer), alloc_fail);
2338 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs,
2339 sizeof(*s->mdct_coef_buffer), alloc_fail);
2340 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->exp_buffer, total_coefs,
2341 sizeof(*s->exp_buffer), alloc_fail);
2342 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks, 128 *
2343 sizeof(*s->grouped_exp_buffer), alloc_fail);
2344 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->psd_buffer, total_coefs,
2345 sizeof(*s->psd_buffer), alloc_fail);
2346 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks, 64 *
2347 sizeof(*s->band_psd_buffer), alloc_fail);
2348 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->mask_buffer, channel_blocks, 64 *
2349 sizeof(*s->mask_buffer), alloc_fail);
2350 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->qmant_buffer, total_coefs,
2351 sizeof(*s->qmant_buffer), alloc_fail);
2352 if (s->cpl_enabled) {
2353 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks, 16 *
2354 sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2355 FF_ALLOC_ARRAY_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks, 16 *
2356 sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2358 for (blk = 0; blk < s->num_blocks; blk++) {
2359 AC3Block *block = &s->blocks[blk];
2360 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->mdct_coef, channels, sizeof(*block->mdct_coef),
2362 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->exp, channels, sizeof(*block->exp),
2364 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->grouped_exp, channels, sizeof(*block->grouped_exp),
2366 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->psd, channels, sizeof(*block->psd),
2368 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->band_psd, channels, sizeof(*block->band_psd),
2370 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->mask, channels, sizeof(*block->mask),
2372 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->qmant, channels, sizeof(*block->qmant),
2374 if (s->cpl_enabled) {
2375 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->cpl_coord_exp, channels, sizeof(*block->cpl_coord_exp),
2377 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->cpl_coord_mant, channels, sizeof(*block->cpl_coord_mant),
2381 for (ch = 0; ch < channels; ch++) {
2382 /* arrangement: block, channel, coeff */
2383 block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2384 block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2385 block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2386 block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2387 block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2388 if (s->cpl_enabled) {
2389 block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2390 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2393 /* arrangement: channel, block, coeff */
2394 block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2395 block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2399 if (!s->fixed_point) {
2400 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs,
2401 sizeof(*s->fixed_coef_buffer), alloc_fail);
2402 for (blk = 0; blk < s->num_blocks; blk++) {
2403 AC3Block *block = &s->blocks[blk];
2404 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->fixed_coef, channels,
2405 sizeof(*block->fixed_coef), alloc_fail);
2406 for (ch = 0; ch < channels; ch++)
2407 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2410 for (blk = 0; blk < s->num_blocks; blk++) {
2411 AC3Block *block = &s->blocks[blk];
2412 FF_ALLOCZ_ARRAY_OR_GOTO(avctx, block->fixed_coef, channels,
2413 sizeof(*block->fixed_coef), alloc_fail);
2414 for (ch = 0; ch < channels; ch++)
2415 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2421 return AVERROR(ENOMEM);
2425 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2427 AC3EncodeContext *s = avctx->priv_data;
2428 int ret, frame_size_58;
2432 s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2434 ret = validate_options(s);
2438 avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2439 avctx->initial_padding = AC3_BLOCK_SIZE;
2441 s->bitstream_mode = avctx->audio_service_type;
2442 if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2443 s->bitstream_mode = 0x7;
2445 s->bits_written = 0;
2446 s->samples_written = 0;
2448 /* calculate crc_inv for both possible frame sizes */
2449 frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2450 s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2451 if (s->bit_alloc.sr_code == 1) {
2452 frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2453 s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2456 /* set function pointers */
2457 if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
2458 s->mdct_end = ff_ac3_fixed_mdct_end;
2459 s->mdct_init = ff_ac3_fixed_mdct_init;
2460 s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers;
2461 } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2462 s->mdct_end = ff_ac3_float_mdct_end;
2463 s->mdct_init = ff_ac3_float_mdct_init;
2464 s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers;
2466 if (CONFIG_EAC3_ENCODER && s->eac3)
2467 s->output_frame_header = ff_eac3_output_frame_header;
2469 s->output_frame_header = ac3_output_frame_header;
2477 ret = s->mdct_init(s);
2481 ret = allocate_buffers(s);
2485 ff_audiodsp_init(&s->adsp);
2486 ff_me_cmp_init(&s->mecc, avctx);
2487 ff_ac3dsp_init(&s->ac3dsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
2493 ff_ac3_encode_close(avctx);