2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * The simplest AC-3 encoder.
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/opt.h"
46 typedef struct AC3Mant {
47 int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
48 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
51 #define CMIXLEV_NUM_OPTIONS 3
52 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
53 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
56 #define SURMIXLEV_NUM_OPTIONS 3
57 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
58 LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
61 #define EXTMIXLEV_NUM_OPTIONS 8
62 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
63 LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB,
64 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
69 * LUT for number of exponent groups.
70 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
72 static uint8_t exponent_group_tab[2][3][256];
76 * List of supported channel layouts.
78 const uint64_t ff_ac3_channel_layouts[19] = {
82 AV_CH_LAYOUT_SURROUND,
87 AV_CH_LAYOUT_5POINT0_BACK,
88 (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
89 (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
90 (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
91 (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
92 (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
93 (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
94 (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
96 AV_CH_LAYOUT_5POINT1_BACK,
102 * LUT to select the bandwidth code based on the bit rate, sample rate, and
103 * number of full-bandwidth channels.
104 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
106 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
107 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
109 { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
110 { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
111 { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
113 { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
114 { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
115 { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
117 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
118 { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
119 { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
121 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
122 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
123 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
125 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
126 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
127 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
132 * LUT to select the coupling start band based on the bit rate, sample rate, and
133 * number of full-bandwidth channels. -1 = coupling off
134 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
136 * TODO: more testing for optimal parameters.
137 * multi-channel tests at 44.1kHz and 32kHz.
139 static const int8_t ac3_coupling_start_tab[6][3][19] = {
140 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
143 { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
144 { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
145 { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
148 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
149 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
150 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
153 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
154 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
155 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
158 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
159 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
160 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
163 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
164 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
165 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
168 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
169 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
170 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
175 * Adjust the frame size to make the average bit rate match the target bit rate.
176 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
178 * @param s AC-3 encoder private context
180 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
182 while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
183 s->bits_written -= s->bit_rate;
184 s->samples_written -= s->sample_rate;
186 s->frame_size = s->frame_size_min +
187 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
188 s->bits_written += s->frame_size * 8;
189 s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
194 * Set the initial coupling strategy parameters prior to coupling analysis.
196 * @param s AC-3 encoder private context
198 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
204 /* set coupling use flags for each block/channel */
205 /* TODO: turn coupling on/off and adjust start band based on bit usage */
206 for (blk = 0; blk < s->num_blocks; blk++) {
207 AC3Block *block = &s->blocks[blk];
208 for (ch = 1; ch <= s->fbw_channels; ch++)
209 block->channel_in_cpl[ch] = s->cpl_on;
212 /* enable coupling for each block if at least 2 channels have coupling
213 enabled for that block */
216 for (blk = 0; blk < s->num_blocks; blk++) {
217 AC3Block *block = &s->blocks[blk];
218 block->num_cpl_channels = 0;
219 for (ch = 1; ch <= s->fbw_channels; ch++)
220 block->num_cpl_channels += block->channel_in_cpl[ch];
221 block->cpl_in_use = block->num_cpl_channels > 1;
222 num_cpl_blocks += block->cpl_in_use;
223 if (!block->cpl_in_use) {
224 block->num_cpl_channels = 0;
225 for (ch = 1; ch <= s->fbw_channels; ch++)
226 block->channel_in_cpl[ch] = 0;
229 block->new_cpl_strategy = !blk;
231 for (ch = 1; ch <= s->fbw_channels; ch++) {
232 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
233 block->new_cpl_strategy = 1;
238 block->new_cpl_leak = block->new_cpl_strategy;
240 if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
241 block->new_snr_offsets = 1;
242 if (block->cpl_in_use)
245 block->new_snr_offsets = 0;
251 /* set bandwidth for each channel */
252 for (blk = 0; blk < s->num_blocks; blk++) {
253 AC3Block *block = &s->blocks[blk];
254 for (ch = 1; ch <= s->fbw_channels; ch++) {
255 if (block->channel_in_cpl[ch])
256 block->end_freq[ch] = s->start_freq[CPL_CH];
258 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
265 * Apply stereo rematrixing to coefficients based on rematrixing flags.
267 * @param s AC-3 encoder private context
269 void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
274 uint8_t *flags = NULL;
276 if (!s->rematrixing_enabled)
279 for (blk = 0; blk < s->num_blocks; blk++) {
280 AC3Block *block = &s->blocks[blk];
281 if (block->new_rematrixing_strategy)
282 flags = block->rematrixing_flags;
283 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
284 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
286 start = ff_ac3_rematrix_band_tab[bnd];
287 end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
288 for (i = start; i < end; i++) {
289 int32_t lt = block->fixed_coef[1][i];
290 int32_t rt = block->fixed_coef[2][i];
291 block->fixed_coef[1][i] = (lt + rt) >> 1;
292 block->fixed_coef[2][i] = (lt - rt) >> 1;
301 * Initialize exponent tables.
303 static av_cold void exponent_init(AC3EncodeContext *s)
305 int expstr, i, grpsize;
307 for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
308 grpsize = 3 << expstr;
309 for (i = 12; i < 256; i++) {
310 exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
311 exponent_group_tab[1][expstr][i] = (i ) / grpsize;
315 exponent_group_tab[0][0][7] = 2;
317 if (CONFIG_EAC3_ENCODER && s->eac3)
318 ff_eac3_exponent_init();
323 * Extract exponents from the MDCT coefficients.
325 static void extract_exponents(AC3EncodeContext *s)
328 int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
329 AC3Block *block = &s->blocks[0];
331 s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
336 * Exponent Difference Threshold.
337 * New exponents are sent if their SAD exceed this number.
339 #define EXP_DIFF_THRESHOLD 500
342 * Table used to select exponent strategy based on exponent reuse block interval.
344 static const uint8_t exp_strategy_reuse_tab[4][6] = {
345 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
346 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
347 { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
348 { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
352 * Calculate exponent strategies for all channels.
353 * Array arrangement is reversed to simplify the per-channel calculation.
355 static void compute_exp_strategy(AC3EncodeContext *s)
359 for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
360 uint8_t *exp_strategy = s->exp_strategy[ch];
361 uint8_t *exp = s->blocks[0].exp[ch];
364 /* estimate if the exponent variation & decide if they should be
365 reused in the next frame */
366 exp_strategy[0] = EXP_NEW;
367 exp += AC3_MAX_COEFS;
368 for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
370 if (!s->blocks[blk-1].cpl_in_use) {
371 exp_strategy[blk] = EXP_NEW;
373 } else if (!s->blocks[blk].cpl_in_use) {
374 exp_strategy[blk] = EXP_REUSE;
377 } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
378 exp_strategy[blk] = EXP_NEW;
381 exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
382 exp_strategy[blk] = EXP_REUSE;
383 if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
384 exp_strategy[blk] = EXP_NEW;
385 else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
386 exp_strategy[blk] = EXP_NEW;
389 /* now select the encoding strategy type : if exponents are often
390 recoded, we use a coarse encoding */
392 while (blk < s->num_blocks) {
394 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
396 exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
402 s->exp_strategy[ch][0] = EXP_D15;
403 for (blk = 1; blk < s->num_blocks; blk++)
404 s->exp_strategy[ch][blk] = EXP_REUSE;
407 /* for E-AC-3, determine frame exponent strategy */
408 if (CONFIG_EAC3_ENCODER && s->eac3)
409 ff_eac3_get_frame_exp_strategy(s);
414 * Update the exponents so that they are the ones the decoder will decode.
416 * @param[in,out] exp array of exponents for 1 block in 1 channel
417 * @param nb_exps number of exponents in active bandwidth
418 * @param exp_strategy exponent strategy for the block
419 * @param cpl indicates if the block is in the coupling channel
421 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
426 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
428 /* for each group, compute the minimum exponent */
429 switch(exp_strategy) {
431 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
432 uint8_t exp_min = exp[k];
433 if (exp[k+1] < exp_min)
435 exp[i-cpl] = exp_min;
440 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
441 uint8_t exp_min = exp[k];
442 if (exp[k+1] < exp_min)
444 if (exp[k+2] < exp_min)
446 if (exp[k+3] < exp_min)
448 exp[i-cpl] = exp_min;
454 /* constraint for DC exponent */
455 if (!cpl && exp[0] > 15)
458 /* decrease the delta between each groups to within 2 so that they can be
459 differentially encoded */
460 for (i = 1; i <= nb_groups; i++)
461 exp[i] = FFMIN(exp[i], exp[i-1] + 2);
464 exp[i] = FFMIN(exp[i], exp[i+1] + 2);
467 exp[-1] = exp[0] & ~1;
469 /* now we have the exponent values the decoder will see */
470 switch (exp_strategy) {
472 for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
473 uint8_t exp1 = exp[i-cpl];
479 for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
480 exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
489 * Encode exponents from original extracted form to what the decoder will see.
490 * This copies and groups exponents based on exponent strategy and reduces
491 * deltas between adjacent exponent groups so that they can be differentially
494 static void encode_exponents(AC3EncodeContext *s)
496 int blk, blk1, ch, cpl;
497 uint8_t *exp, *exp_strategy;
498 int nb_coefs, num_reuse_blocks;
500 for (ch = !s->cpl_on; ch <= s->channels; ch++) {
501 exp = s->blocks[0].exp[ch] + s->start_freq[ch];
502 exp_strategy = s->exp_strategy[ch];
504 cpl = (ch == CPL_CH);
506 while (blk < s->num_blocks) {
507 AC3Block *block = &s->blocks[blk];
508 if (cpl && !block->cpl_in_use) {
509 exp += AC3_MAX_COEFS;
513 nb_coefs = block->end_freq[ch] - s->start_freq[ch];
516 /* count the number of EXP_REUSE blocks after the current block
517 and set exponent reference block numbers */
518 s->exp_ref_block[ch][blk] = blk;
519 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
520 s->exp_ref_block[ch][blk1] = blk;
523 num_reuse_blocks = blk1 - blk - 1;
525 /* for the EXP_REUSE case we select the min of the exponents */
526 s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
529 encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
531 exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
536 /* reference block numbers have been changed, so reset ref_bap_set */
542 * Count exponent bits based on bandwidth, coupling, and exponent strategies.
544 static int count_exponent_bits(AC3EncodeContext *s)
547 int nb_groups, bit_count;
550 for (blk = 0; blk < s->num_blocks; blk++) {
551 AC3Block *block = &s->blocks[blk];
552 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
553 int exp_strategy = s->exp_strategy[ch][blk];
554 int cpl = (ch == CPL_CH);
555 int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
557 if (exp_strategy == EXP_REUSE)
560 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
561 bit_count += 4 + (nb_groups * 7);
571 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
572 * varies depending on exponent strategy and bandwidth.
574 * @param s AC-3 encoder private context
576 void ff_ac3_group_exponents(AC3EncodeContext *s)
579 int group_size, nb_groups;
581 int delta0, delta1, delta2;
584 for (blk = 0; blk < s->num_blocks; blk++) {
585 AC3Block *block = &s->blocks[blk];
586 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
587 int exp_strategy = s->exp_strategy[ch][blk];
588 if (exp_strategy == EXP_REUSE)
590 cpl = (ch == CPL_CH);
591 group_size = exp_strategy + (exp_strategy == EXP_D45);
592 nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
593 p = block->exp[ch] + s->start_freq[ch] - cpl;
597 block->grouped_exp[ch][0] = exp1;
599 /* remaining exponents are delta encoded */
600 for (i = 1; i <= nb_groups; i++) {
601 /* merge three delta in one code */
605 delta0 = exp1 - exp0 + 2;
606 av_assert2(delta0 >= 0 && delta0 <= 4);
611 delta1 = exp1 - exp0 + 2;
612 av_assert2(delta1 >= 0 && delta1 <= 4);
617 delta2 = exp1 - exp0 + 2;
618 av_assert2(delta2 >= 0 && delta2 <= 4);
620 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
628 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
629 * Extract exponents from MDCT coefficients, calculate exponent strategies,
630 * and encode final exponents.
632 * @param s AC-3 encoder private context
634 void ff_ac3_process_exponents(AC3EncodeContext *s)
636 extract_exponents(s);
638 compute_exp_strategy(s);
647 * Count frame bits that are based solely on fixed parameters.
648 * This only has to be run once when the encoder is initialized.
650 static void count_frame_bits_fixed(AC3EncodeContext *s)
652 static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
657 * no dynamic range codes
658 * bit allocation parameters do not change between blocks
659 * no delta bit allocation
666 frame_bits = 16; /* sync info */
668 /* bitstream info header */
671 if (s->num_blocks != 0x6)
674 /* audio frame header */
675 if (s->num_blocks == 6)
678 /* exponent strategy */
679 if (s->use_frame_exp_strategy)
680 frame_bits += 5 * s->fbw_channels;
682 frame_bits += s->num_blocks * 2 * s->fbw_channels;
684 frame_bits += s->num_blocks;
685 /* converter exponent strategy */
686 if (s->num_blks_code != 0x3)
689 frame_bits += s->fbw_channels * 5;
692 /* block start info */
693 if (s->num_blocks != 1)
697 frame_bits += frame_bits_inc[s->channel_mode];
701 for (blk = 0; blk < s->num_blocks; blk++) {
703 /* block switch flags */
704 frame_bits += s->fbw_channels;
707 frame_bits += s->fbw_channels;
713 /* spectral extension */
718 /* exponent strategy */
719 frame_bits += 2 * s->fbw_channels;
723 /* bit allocation params */
726 frame_bits += 2 + 2 + 2 + 2 + 3;
729 /* converter snr offset */
734 /* delta bit allocation */
746 frame_bits += 1 + 16;
748 s->frame_bits_fixed = frame_bits;
753 * Initialize bit allocation.
754 * Set default parameter codes and calculate parameter values.
756 static av_cold void bit_alloc_init(AC3EncodeContext *s)
760 /* init default parameters */
761 s->slow_decay_code = 2;
762 s->fast_decay_code = 1;
763 s->slow_gain_code = 1;
764 s->db_per_bit_code = s->eac3 ? 2 : 3;
766 for (ch = 0; ch <= s->channels; ch++)
767 s->fast_gain_code[ch] = 4;
769 /* initial snr offset */
770 s->coarse_snr_offset = 40;
772 /* compute real values */
773 /* currently none of these values change during encoding, so we can just
774 set them once at initialization */
775 s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
776 s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
777 s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
778 s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
779 s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
780 s->bit_alloc.cpl_fast_leak = 0;
781 s->bit_alloc.cpl_slow_leak = 0;
783 count_frame_bits_fixed(s);
788 * Count the bits used to encode the frame, minus exponents and mantissas.
789 * Bits based on fixed parameters have already been counted, so now we just
790 * have to add the bits based on parameters that change during encoding.
792 static void count_frame_bits(AC3EncodeContext *s)
794 AC3EncOptions *opt = &s->options;
800 if (opt->eac3_mixing_metadata) {
801 if (s->channel_mode > AC3_CHMODE_STEREO)
807 frame_bits += s->lfe_on;
808 frame_bits += 1 + 1 + 2;
809 if (s->channel_mode < AC3_CHMODE_STEREO)
813 if (opt->eac3_info_metadata) {
814 frame_bits += 3 + 1 + 1;
815 if (s->channel_mode == AC3_CHMODE_STEREO)
817 if (s->channel_mode >= AC3_CHMODE_2F2R)
820 if (opt->audio_production_info)
821 frame_bits += 5 + 2 + 1;
825 if (s->channel_mode > AC3_CHMODE_MONO) {
827 for (blk = 1; blk < s->num_blocks; blk++) {
828 AC3Block *block = &s->blocks[blk];
830 if (block->new_cpl_strategy)
834 /* coupling exponent strategy */
836 if (s->use_frame_exp_strategy) {
837 frame_bits += 5 * s->cpl_on;
839 for (blk = 0; blk < s->num_blocks; blk++)
840 frame_bits += 2 * s->blocks[blk].cpl_in_use;
844 if (opt->audio_production_info)
846 if (s->bitstream_id == 6) {
847 if (opt->extended_bsi_1)
849 if (opt->extended_bsi_2)
855 for (blk = 0; blk < s->num_blocks; blk++) {
856 AC3Block *block = &s->blocks[blk];
858 /* coupling strategy */
861 if (block->new_cpl_strategy) {
864 if (block->cpl_in_use) {
867 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
868 frame_bits += s->fbw_channels;
869 if (s->channel_mode == AC3_CHMODE_STEREO)
875 frame_bits += s->num_cpl_subbands - 1;
879 /* coupling coordinates */
880 if (block->cpl_in_use) {
881 for (ch = 1; ch <= s->fbw_channels; ch++) {
882 if (block->channel_in_cpl[ch]) {
883 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
885 if (block->new_cpl_coords[ch]) {
887 frame_bits += (4 + 4) * s->num_cpl_bands;
893 /* stereo rematrixing */
894 if (s->channel_mode == AC3_CHMODE_STEREO) {
895 if (!s->eac3 || blk > 0)
897 if (s->blocks[blk].new_rematrixing_strategy)
898 frame_bits += block->num_rematrixing_bands;
901 /* bandwidth codes & gain range */
902 for (ch = 1; ch <= s->fbw_channels; ch++) {
903 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
904 if (!block->channel_in_cpl[ch])
910 /* coupling exponent strategy */
911 if (!s->eac3 && block->cpl_in_use)
914 /* snr offsets and fast gain codes */
917 if (block->new_snr_offsets)
918 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
921 /* coupling leak info */
922 if (block->cpl_in_use) {
923 if (!s->eac3 || block->new_cpl_leak != 2)
925 if (block->new_cpl_leak)
930 s->frame_bits = s->frame_bits_fixed + frame_bits;
935 * Calculate masking curve based on the final exponents.
936 * Also calculate the power spectral densities to use in future calculations.
938 static void bit_alloc_masking(AC3EncodeContext *s)
942 for (blk = 0; blk < s->num_blocks; blk++) {
943 AC3Block *block = &s->blocks[blk];
944 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
945 /* We only need psd and mask for calculating bap.
946 Since we currently do not calculate bap when exponent
947 strategy is EXP_REUSE we do not need to calculate psd or mask. */
948 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
949 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
950 block->end_freq[ch], block->psd[ch],
951 block->band_psd[ch]);
952 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
953 s->start_freq[ch], block->end_freq[ch],
954 ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
955 ch == s->lfe_channel,
956 DBA_NONE, 0, NULL, NULL, NULL,
965 * Ensure that bap for each block and channel point to the current bap_buffer.
966 * They may have been switched during the bit allocation search.
968 static void reset_block_bap(AC3EncodeContext *s)
973 if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
976 ref_bap = s->bap_buffer;
977 for (ch = 0; ch <= s->channels; ch++) {
978 for (blk = 0; blk < s->num_blocks; blk++)
979 s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
980 ref_bap += AC3_MAX_COEFS * s->num_blocks;
987 * Initialize mantissa counts.
988 * These are set so that they are padded to the next whole group size when bits
989 * are counted in compute_mantissa_size.
991 * @param[in,out] mant_cnt running counts for each bap value for each block
993 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
997 for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
998 memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
999 mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1000 mant_cnt[blk][4] = 1;
1006 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1009 * @param s AC-3 encoder private context
1010 * @param ch channel index
1011 * @param[in,out] mant_cnt running counts for each bap value for each block
1012 * @param start starting coefficient bin
1013 * @param end ending coefficient bin
1015 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1016 uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1021 for (blk = 0; blk < s->num_blocks; blk++) {
1022 AC3Block *block = &s->blocks[blk];
1023 if (ch == CPL_CH && !block->cpl_in_use)
1025 s->ac3dsp.update_bap_counts(mant_cnt[blk],
1026 s->ref_bap[ch][blk] + start,
1027 FFMIN(end, block->end_freq[ch]) - start);
1033 * Count the number of mantissa bits in the frame based on the bap values.
1035 static int count_mantissa_bits(AC3EncodeContext *s)
1037 int ch, max_end_freq;
1038 LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1040 count_mantissa_bits_init(mant_cnt);
1042 max_end_freq = s->bandwidth_code * 3 + 73;
1043 for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1044 count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1047 return s->ac3dsp.compute_mantissa_size(mant_cnt);
1052 * Run the bit allocation with a given SNR offset.
1053 * This calculates the bit allocation pointers that will be used to determine
1054 * the quantization of each mantissa.
1056 * @param s AC-3 encoder private context
1057 * @param snr_offset SNR offset, 0 to 1023
1058 * @return the number of bits needed for mantissas if the given SNR offset is
1061 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1065 snr_offset = (snr_offset - 240) << 2;
1068 for (blk = 0; blk < s->num_blocks; blk++) {
1069 AC3Block *block = &s->blocks[blk];
1071 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1072 /* Currently the only bit allocation parameters which vary across
1073 blocks within a frame are the exponent values. We can take
1074 advantage of that by reusing the bit allocation pointers
1075 whenever we reuse exponents. */
1076 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1077 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1078 s->start_freq[ch], block->end_freq[ch],
1079 snr_offset, s->bit_alloc.floor,
1080 ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1084 return count_mantissa_bits(s);
1089 * Constant bitrate bit allocation search.
1090 * Find the largest SNR offset that will allow data to fit in the frame.
1092 static int cbr_bit_allocation(AC3EncodeContext *s)
1096 int snr_offset, snr_incr;
1098 bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1100 return AVERROR(EINVAL);
1102 snr_offset = s->coarse_snr_offset << 4;
1104 /* if previous frame SNR offset was 1023, check if current frame can also
1105 use SNR offset of 1023. if so, skip the search. */
1106 if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1107 if (bit_alloc(s, 1023) <= bits_left)
1111 while (snr_offset >= 0 &&
1112 bit_alloc(s, snr_offset) > bits_left) {
1116 return AVERROR(EINVAL);
1118 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1119 for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1120 while (snr_offset + snr_incr <= 1023 &&
1121 bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1122 snr_offset += snr_incr;
1123 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1126 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1129 s->coarse_snr_offset = snr_offset >> 4;
1130 for (ch = !s->cpl_on; ch <= s->channels; ch++)
1131 s->fine_snr_offset[ch] = snr_offset & 0xF;
1138 * Perform bit allocation search.
1139 * Finds the SNR offset value that maximizes quality and fits in the specified
1140 * frame size. Output is the SNR offset and a set of bit allocation pointers
1141 * used to quantize the mantissas.
1143 int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
1145 count_frame_bits(s);
1147 s->exponent_bits = count_exponent_bits(s);
1149 bit_alloc_masking(s);
1151 return cbr_bit_allocation(s);
1156 * Symmetric quantization on 'levels' levels.
1158 * @param c unquantized coefficient
1160 * @param levels number of quantization levels
1161 * @return quantized coefficient
1163 static inline int sym_quant(int c, int e, int levels)
1165 int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1166 av_assert2(v >= 0 && v < levels);
1172 * Asymmetric quantization on 2^qbits levels.
1174 * @param c unquantized coefficient
1176 * @param qbits number of quantization bits
1177 * @return quantized coefficient
1179 static inline int asym_quant(int c, int e, int qbits)
1183 c = (((c << e) >> (24 - qbits)) + 1) >> 1;
1184 m = (1 << (qbits-1));
1187 av_assert2(c >= -m);
1193 * Quantize a set of mantissas for a single channel in a single block.
1195 * @param s Mantissa count context
1196 * @param fixed_coef unquantized fixed-point coefficients
1197 * @param exp exponents
1198 * @param bap bit allocation pointer indices
1199 * @param[out] qmant quantized coefficients
1200 * @param start_freq starting coefficient bin
1201 * @param end_freq ending coefficient bin
1203 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1204 uint8_t *exp, uint8_t *bap,
1205 int16_t *qmant, int start_freq,
1210 for (i = start_freq; i < end_freq; i++) {
1211 int c = fixed_coef[i];
1217 v = sym_quant(c, e, 3);
1218 switch (s->mant1_cnt) {
1220 s->qmant1_ptr = &qmant[i];
1225 *s->qmant1_ptr += 3 * v;
1230 *s->qmant1_ptr += v;
1237 v = sym_quant(c, e, 5);
1238 switch (s->mant2_cnt) {
1240 s->qmant2_ptr = &qmant[i];
1245 *s->qmant2_ptr += 5 * v;
1250 *s->qmant2_ptr += v;
1257 v = sym_quant(c, e, 7);
1260 v = sym_quant(c, e, 11);
1261 switch (s->mant4_cnt) {
1263 s->qmant4_ptr = &qmant[i];
1268 *s->qmant4_ptr += v;
1275 v = sym_quant(c, e, 15);
1278 v = asym_quant(c, e, 14);
1281 v = asym_quant(c, e, 16);
1284 v = asym_quant(c, e, v - 1);
1293 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1295 * @param s AC-3 encoder private context
1297 void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
1299 int blk, ch, ch0=0, got_cpl;
1301 for (blk = 0; blk < s->num_blocks; blk++) {
1302 AC3Block *block = &s->blocks[blk];
1305 got_cpl = !block->cpl_in_use;
1306 for (ch = 1; ch <= s->channels; ch++) {
1307 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1312 quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1313 s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1314 s->ref_bap[ch][blk], block->qmant[ch],
1315 s->start_freq[ch], block->end_freq[ch]);
1324 * Write the AC-3 frame header to the output bitstream.
1326 static void ac3_output_frame_header(AC3EncodeContext *s)
1328 AC3EncOptions *opt = &s->options;
1330 put_bits(&s->pb, 16, 0x0b77); /* frame header */
1331 put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1332 put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1333 put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1334 put_bits(&s->pb, 5, s->bitstream_id);
1335 put_bits(&s->pb, 3, s->bitstream_mode);
1336 put_bits(&s->pb, 3, s->channel_mode);
1337 if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1338 put_bits(&s->pb, 2, s->center_mix_level);
1339 if (s->channel_mode & 0x04)
1340 put_bits(&s->pb, 2, s->surround_mix_level);
1341 if (s->channel_mode == AC3_CHMODE_STEREO)
1342 put_bits(&s->pb, 2, opt->dolby_surround_mode);
1343 put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1344 put_bits(&s->pb, 5, -opt->dialogue_level);
1345 put_bits(&s->pb, 1, 0); /* no compression control word */
1346 put_bits(&s->pb, 1, 0); /* no lang code */
1347 put_bits(&s->pb, 1, opt->audio_production_info);
1348 if (opt->audio_production_info) {
1349 put_bits(&s->pb, 5, opt->mixing_level - 80);
1350 put_bits(&s->pb, 2, opt->room_type);
1352 put_bits(&s->pb, 1, opt->copyright);
1353 put_bits(&s->pb, 1, opt->original);
1354 if (s->bitstream_id == 6) {
1355 /* alternate bit stream syntax */
1356 put_bits(&s->pb, 1, opt->extended_bsi_1);
1357 if (opt->extended_bsi_1) {
1358 put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1359 put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1360 put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1361 put_bits(&s->pb, 3, s->loro_center_mix_level);
1362 put_bits(&s->pb, 3, s->loro_surround_mix_level);
1364 put_bits(&s->pb, 1, opt->extended_bsi_2);
1365 if (opt->extended_bsi_2) {
1366 put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1367 put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1368 put_bits(&s->pb, 1, opt->ad_converter_type);
1369 put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1372 put_bits(&s->pb, 1, 0); /* no time code 1 */
1373 put_bits(&s->pb, 1, 0); /* no time code 2 */
1375 put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1380 * Write one audio block to the output bitstream.
1382 static void output_audio_block(AC3EncodeContext *s, int blk)
1384 int ch, i, baie, bnd, got_cpl, ch0;
1385 AC3Block *block = &s->blocks[blk];
1387 /* block switching */
1389 for (ch = 0; ch < s->fbw_channels; ch++)
1390 put_bits(&s->pb, 1, 0);
1395 for (ch = 0; ch < s->fbw_channels; ch++)
1396 put_bits(&s->pb, 1, 1);
1399 /* dynamic range codes */
1400 put_bits(&s->pb, 1, 0);
1402 /* spectral extension */
1404 put_bits(&s->pb, 1, 0);
1406 /* channel coupling */
1408 put_bits(&s->pb, 1, block->new_cpl_strategy);
1409 if (block->new_cpl_strategy) {
1411 put_bits(&s->pb, 1, block->cpl_in_use);
1412 if (block->cpl_in_use) {
1413 int start_sub, end_sub;
1415 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1416 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1417 for (ch = 1; ch <= s->fbw_channels; ch++)
1418 put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1420 if (s->channel_mode == AC3_CHMODE_STEREO)
1421 put_bits(&s->pb, 1, 0); /* phase flags in use */
1422 start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1423 end_sub = (s->cpl_end_freq - 37) / 12;
1424 put_bits(&s->pb, 4, start_sub);
1425 put_bits(&s->pb, 4, end_sub - 3);
1426 /* coupling band structure */
1428 put_bits(&s->pb, 1, 0); /* use default */
1430 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1431 put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1436 /* coupling coordinates */
1437 if (block->cpl_in_use) {
1438 for (ch = 1; ch <= s->fbw_channels; ch++) {
1439 if (block->channel_in_cpl[ch]) {
1440 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1441 put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1442 if (block->new_cpl_coords[ch]) {
1443 put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1444 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1445 put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1446 put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1453 /* stereo rematrixing */
1454 if (s->channel_mode == AC3_CHMODE_STEREO) {
1455 if (!s->eac3 || blk > 0)
1456 put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1457 if (block->new_rematrixing_strategy) {
1458 /* rematrixing flags */
1459 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1460 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1464 /* exponent strategy */
1466 for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1467 put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1469 put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1473 for (ch = 1; ch <= s->fbw_channels; ch++) {
1474 if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1475 put_bits(&s->pb, 6, s->bandwidth_code);
1479 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1481 int cpl = (ch == CPL_CH);
1483 if (s->exp_strategy[ch][blk] == EXP_REUSE)
1487 put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1489 /* exponent groups */
1490 nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1491 for (i = 1; i <= nb_groups; i++)
1492 put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1494 /* gain range info */
1495 if (ch != s->lfe_channel && !cpl)
1496 put_bits(&s->pb, 2, 0);
1499 /* bit allocation info */
1502 put_bits(&s->pb, 1, baie);
1504 put_bits(&s->pb, 2, s->slow_decay_code);
1505 put_bits(&s->pb, 2, s->fast_decay_code);
1506 put_bits(&s->pb, 2, s->slow_gain_code);
1507 put_bits(&s->pb, 2, s->db_per_bit_code);
1508 put_bits(&s->pb, 3, s->floor_code);
1514 put_bits(&s->pb, 1, block->new_snr_offsets);
1515 if (block->new_snr_offsets) {
1516 put_bits(&s->pb, 6, s->coarse_snr_offset);
1517 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1518 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1519 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1523 put_bits(&s->pb, 1, 0); /* no converter snr offset */
1527 if (block->cpl_in_use) {
1528 if (!s->eac3 || block->new_cpl_leak != 2)
1529 put_bits(&s->pb, 1, block->new_cpl_leak);
1530 if (block->new_cpl_leak) {
1531 put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1532 put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1537 put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1538 put_bits(&s->pb, 1, 0); /* no data to skip */
1542 got_cpl = !block->cpl_in_use;
1543 for (ch = 1; ch <= s->channels; ch++) {
1546 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1551 for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1552 q = block->qmant[ch][i];
1553 b = s->ref_bap[ch][blk][i];
1556 case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1557 case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1558 case 3: put_sbits(&s->pb, 3, q); break;
1559 case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1560 case 14: put_sbits(&s->pb, 14, q); break;
1561 case 15: put_sbits(&s->pb, 16, q); break;
1562 default: put_sbits(&s->pb, b-1, q); break;
1571 /** CRC-16 Polynomial */
1572 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1575 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1592 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1598 r = mul_poly(r, a, poly);
1599 a = mul_poly(a, a, poly);
1607 * Fill the end of the frame with 0's and compute the two CRCs.
1609 static void output_frame_end(AC3EncodeContext *s)
1611 const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1612 int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1615 frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1617 /* pad the remainder of the frame with zeros */
1618 av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1619 flush_put_bits(&s->pb);
1621 pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1622 av_assert2(pad_bytes >= 0);
1624 memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1628 crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1631 /* this is not so easy because it is at the beginning of the data... */
1632 crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1633 crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1634 crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1635 AV_WB16(frame + 2, crc1);
1638 crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1639 s->frame_size - frame_size_58 - 3);
1641 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1642 /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1643 if (crc2 == 0x770B) {
1644 frame[s->frame_size - 3] ^= 0x1;
1645 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1647 crc2 = av_bswap16(crc2);
1648 AV_WB16(frame + s->frame_size - 2, crc2);
1653 * Write the frame to the output bitstream.
1655 * @param s AC-3 encoder private context
1656 * @param frame output data buffer
1658 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1662 init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
1664 s->output_frame_header(s);
1666 for (blk = 0; blk < s->num_blocks; blk++)
1667 output_audio_block(s, blk);
1669 output_frame_end(s);
1673 static void dprint_options(AC3EncodeContext *s)
1676 AVCodecContext *avctx = s->avctx;
1677 AC3EncOptions *opt = &s->options;
1680 switch (s->bitstream_id) {
1681 case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1682 case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1683 case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1684 case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1685 case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1686 default: snprintf(strbuf, 32, "ERROR");
1688 av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1689 av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1690 av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1691 av_dlog(avctx, "channel_layout: %s\n", strbuf);
1692 av_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1693 av_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1694 av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1696 av_dlog(avctx, "cutoff: %d\n", s->cutoff);
1698 av_dlog(avctx, "per_frame_metadata: %s\n",
1699 opt->allow_per_frame_metadata?"on":"off");
1701 av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1702 s->center_mix_level);
1704 av_dlog(avctx, "center_mixlev: {not written}\n");
1705 if (s->has_surround)
1706 av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1707 s->surround_mix_level);
1709 av_dlog(avctx, "surround_mixlev: {not written}\n");
1710 if (opt->audio_production_info) {
1711 av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1712 switch (opt->room_type) {
1713 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1714 case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1715 case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1716 default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1718 av_dlog(avctx, "room_type: %s\n", strbuf);
1720 av_dlog(avctx, "mixing_level: {not written}\n");
1721 av_dlog(avctx, "room_type: {not written}\n");
1723 av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1724 av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1725 if (s->channel_mode == AC3_CHMODE_STEREO) {
1726 switch (opt->dolby_surround_mode) {
1727 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1728 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1729 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1730 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1732 av_dlog(avctx, "dsur_mode: %s\n", strbuf);
1734 av_dlog(avctx, "dsur_mode: {not written}\n");
1736 av_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1738 if (s->bitstream_id == 6) {
1739 if (opt->extended_bsi_1) {
1740 switch (opt->preferred_stereo_downmix) {
1741 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1742 case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1743 case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1744 default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1746 av_dlog(avctx, "dmix_mode: %s\n", strbuf);
1747 av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1748 opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1749 av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1750 opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1751 av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1752 opt->loro_center_mix_level, s->loro_center_mix_level);
1753 av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1754 opt->loro_surround_mix_level, s->loro_surround_mix_level);
1756 av_dlog(avctx, "extended bitstream info 1: {not written}\n");
1758 if (opt->extended_bsi_2) {
1759 switch (opt->dolby_surround_ex_mode) {
1760 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1761 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1762 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1763 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1765 av_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1766 switch (opt->dolby_headphone_mode) {
1767 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1768 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1769 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1770 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1772 av_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1774 switch (opt->ad_converter_type) {
1775 case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1776 case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1777 default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1779 av_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1781 av_dlog(avctx, "extended bitstream info 2: {not written}\n");
1788 #define FLT_OPTION_THRESHOLD 0.01
1790 static int validate_float_option(float v, const float *v_list, int v_list_size)
1794 for (i = 0; i < v_list_size; i++) {
1795 if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1796 v > (v_list[i] - FLT_OPTION_THRESHOLD))
1799 if (i == v_list_size)
1806 static void validate_mix_level(void *log_ctx, const char *opt_name,
1807 float *opt_param, const float *list,
1808 int list_size, int default_value, int min_value,
1811 int mixlev = validate_float_option(*opt_param, list, list_size);
1812 if (mixlev < min_value) {
1813 mixlev = default_value;
1814 if (*opt_param >= 0.0) {
1815 av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1816 "default value: %0.3f\n", opt_name, list[mixlev]);
1819 *opt_param = list[mixlev];
1820 *ctx_param = mixlev;
1825 * Validate metadata options as set by AVOption system.
1826 * These values can optionally be changed per-frame.
1828 * @param s AC-3 encoder private context
1830 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1832 AVCodecContext *avctx = s->avctx;
1833 AC3EncOptions *opt = &s->options;
1835 opt->audio_production_info = 0;
1836 opt->extended_bsi_1 = 0;
1837 opt->extended_bsi_2 = 0;
1838 opt->eac3_mixing_metadata = 0;
1839 opt->eac3_info_metadata = 0;
1841 /* determine mixing metadata / xbsi1 use */
1842 if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1843 opt->extended_bsi_1 = 1;
1844 opt->eac3_mixing_metadata = 1;
1846 if (s->has_center &&
1847 (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1848 opt->extended_bsi_1 = 1;
1849 opt->eac3_mixing_metadata = 1;
1851 if (s->has_surround &&
1852 (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1853 opt->extended_bsi_1 = 1;
1854 opt->eac3_mixing_metadata = 1;
1858 /* determine info metadata use */
1859 if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
1860 opt->eac3_info_metadata = 1;
1861 if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1862 opt->eac3_info_metadata = 1;
1863 if (s->channel_mode == AC3_CHMODE_STEREO &&
1864 (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
1865 opt->eac3_info_metadata = 1;
1866 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1867 opt->eac3_info_metadata = 1;
1868 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1869 opt->ad_converter_type != AC3ENC_OPT_NONE) {
1870 opt->audio_production_info = 1;
1871 opt->eac3_info_metadata = 1;
1874 /* determine audio production info use */
1875 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1876 opt->audio_production_info = 1;
1878 /* determine xbsi2 use */
1879 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1880 opt->extended_bsi_2 = 1;
1881 if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
1882 opt->extended_bsi_2 = 1;
1883 if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1884 opt->extended_bsi_2 = 1;
1887 /* validate AC-3 mixing levels */
1889 if (s->has_center) {
1890 validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1891 cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
1892 &s->center_mix_level);
1894 if (s->has_surround) {
1895 validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1896 surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
1897 &s->surround_mix_level);
1901 /* validate extended bsi 1 / mixing metadata */
1902 if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1903 /* default preferred stereo downmix */
1904 if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
1905 opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
1906 if (!s->eac3 || s->has_center) {
1907 /* validate Lt/Rt center mix level */
1908 validate_mix_level(avctx, "ltrt_center_mix_level",
1909 &opt->ltrt_center_mix_level, extmixlev_options,
1910 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1911 &s->ltrt_center_mix_level);
1912 /* validate Lo/Ro center mix level */
1913 validate_mix_level(avctx, "loro_center_mix_level",
1914 &opt->loro_center_mix_level, extmixlev_options,
1915 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1916 &s->loro_center_mix_level);
1918 if (!s->eac3 || s->has_surround) {
1919 /* validate Lt/Rt surround mix level */
1920 validate_mix_level(avctx, "ltrt_surround_mix_level",
1921 &opt->ltrt_surround_mix_level, extmixlev_options,
1922 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1923 &s->ltrt_surround_mix_level);
1924 /* validate Lo/Ro surround mix level */
1925 validate_mix_level(avctx, "loro_surround_mix_level",
1926 &opt->loro_surround_mix_level, extmixlev_options,
1927 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1928 &s->loro_surround_mix_level);
1932 /* validate audio service type / channels combination */
1933 if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
1934 avctx->channels == 1) ||
1935 ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
1936 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
1937 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
1938 && avctx->channels > 1)) {
1939 av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1940 "specified number of channels\n");
1941 return AVERROR(EINVAL);
1944 /* validate extended bsi 2 / info metadata */
1945 if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1946 /* default dolby headphone mode */
1947 if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
1948 opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
1949 /* default dolby surround ex mode */
1950 if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
1951 opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
1952 /* default A/D converter type */
1953 if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1954 opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
1957 /* copyright & original defaults */
1958 if (!s->eac3 || opt->eac3_info_metadata) {
1959 /* default copyright */
1960 if (opt->copyright == AC3ENC_OPT_NONE)
1961 opt->copyright = AC3ENC_OPT_OFF;
1962 /* default original */
1963 if (opt->original == AC3ENC_OPT_NONE)
1964 opt->original = AC3ENC_OPT_ON;
1967 /* dolby surround mode default */
1968 if (!s->eac3 || opt->eac3_info_metadata) {
1969 if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
1970 opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
1973 /* validate audio production info */
1974 if (opt->audio_production_info) {
1975 if (opt->mixing_level == AC3ENC_OPT_NONE) {
1976 av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1977 "room_type is set\n");
1978 return AVERROR(EINVAL);
1980 if (opt->mixing_level < 80) {
1981 av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1982 "80dB and 111dB\n");
1983 return AVERROR(EINVAL);
1985 /* default room type */
1986 if (opt->room_type == AC3ENC_OPT_NONE)
1987 opt->room_type = AC3ENC_OPT_NOT_INDICATED;
1990 /* set bitstream id for alternate bitstream syntax */
1991 if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1992 if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1993 static int warn_once = 1;
1995 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
1996 "not compatible with reduced samplerates. writing of "
1997 "extended bitstream information will be disabled.\n");
2001 s->bitstream_id = 6;
2010 * Finalize encoding and free any memory allocated by the encoder.
2012 * @param avctx Codec context
2014 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2017 AC3EncodeContext *s = avctx->priv_data;
2019 av_freep(&s->windowed_samples);
2020 if (s->planar_samples)
2021 for (ch = 0; ch < s->channels; ch++)
2022 av_freep(&s->planar_samples[ch]);
2023 av_freep(&s->planar_samples);
2024 av_freep(&s->bap_buffer);
2025 av_freep(&s->bap1_buffer);
2026 av_freep(&s->mdct_coef_buffer);
2027 av_freep(&s->fixed_coef_buffer);
2028 av_freep(&s->exp_buffer);
2029 av_freep(&s->grouped_exp_buffer);
2030 av_freep(&s->psd_buffer);
2031 av_freep(&s->band_psd_buffer);
2032 av_freep(&s->mask_buffer);
2033 av_freep(&s->qmant_buffer);
2034 av_freep(&s->cpl_coord_exp_buffer);
2035 av_freep(&s->cpl_coord_mant_buffer);
2036 for (blk = 0; blk < s->num_blocks; blk++) {
2037 AC3Block *block = &s->blocks[blk];
2038 av_freep(&block->mdct_coef);
2039 av_freep(&block->fixed_coef);
2040 av_freep(&block->exp);
2041 av_freep(&block->grouped_exp);
2042 av_freep(&block->psd);
2043 av_freep(&block->band_psd);
2044 av_freep(&block->mask);
2045 av_freep(&block->qmant);
2046 av_freep(&block->cpl_coord_exp);
2047 av_freep(&block->cpl_coord_mant);
2057 * Set channel information during initialization.
2059 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2060 uint64_t *channel_layout)
2064 if (channels < 1 || channels > AC3_MAX_CHANNELS)
2065 return AVERROR(EINVAL);
2066 if (*channel_layout > 0x7FF)
2067 return AVERROR(EINVAL);
2068 ch_layout = *channel_layout;
2070 ch_layout = av_get_default_channel_layout(channels);
2072 s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2073 s->channels = channels;
2074 s->fbw_channels = channels - s->lfe_on;
2075 s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2077 ch_layout -= AV_CH_LOW_FREQUENCY;
2079 switch (ch_layout) {
2080 case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
2081 case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2082 case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2083 case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2084 case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2085 case AV_CH_LAYOUT_QUAD:
2086 case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2087 case AV_CH_LAYOUT_5POINT0:
2088 case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2090 return AVERROR(EINVAL);
2092 s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2093 s->has_surround = s->channel_mode & 0x04;
2095 s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2096 *channel_layout = ch_layout;
2098 *channel_layout |= AV_CH_LOW_FREQUENCY;
2104 static av_cold int validate_options(AC3EncodeContext *s)
2106 AVCodecContext *avctx = s->avctx;
2109 /* validate channel layout */
2110 if (!avctx->channel_layout) {
2111 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2112 "encoder will guess the layout, but it "
2113 "might be incorrect.\n");
2115 ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2117 av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2121 /* validate sample rate */
2122 /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2123 decoder that supports half sample rate so we can validate that
2124 the generated files are correct. */
2125 max_sr = s->eac3 ? 2 : 8;
2126 for (i = 0; i <= max_sr; i++) {
2127 if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2131 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2132 return AVERROR(EINVAL);
2134 s->sample_rate = avctx->sample_rate;
2135 s->bit_alloc.sr_shift = i / 3;
2136 s->bit_alloc.sr_code = i % 3;
2137 s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2139 /* select a default bit rate if not set by the user */
2140 if (!avctx->bit_rate) {
2141 switch (s->fbw_channels) {
2142 case 1: avctx->bit_rate = 96000; break;
2143 case 2: avctx->bit_rate = 192000; break;
2144 case 3: avctx->bit_rate = 320000; break;
2145 case 4: avctx->bit_rate = 384000; break;
2146 case 5: avctx->bit_rate = 448000; break;
2150 /* validate bit rate */
2152 int max_br, min_br, wpf, min_br_dist, min_br_code;
2153 int num_blks_code, num_blocks, frame_samples;
2155 /* calculate min/max bitrate */
2156 /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2157 found use either 6 blocks or 1 block, even though 2 or 3 blocks
2158 would work as far as the bit rate is concerned. */
2159 for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2160 num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2161 frame_samples = AC3_BLOCK_SIZE * num_blocks;
2162 max_br = 2048 * s->sample_rate / frame_samples * 16;
2163 min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2164 if (avctx->bit_rate <= max_br)
2167 if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2168 av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2169 "for this sample rate\n", min_br, max_br);
2170 return AVERROR(EINVAL);
2172 s->num_blks_code = num_blks_code;
2173 s->num_blocks = num_blocks;
2175 /* calculate words-per-frame for the selected bitrate */
2176 wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2177 av_assert1(wpf > 0 && wpf <= 2048);
2179 /* find the closest AC-3 bitrate code to the selected bitrate.
2180 this is needed for lookup tables for bandwidth and coupling
2181 parameter selection */
2183 min_br_dist = INT_MAX;
2184 for (i = 0; i < 19; i++) {
2185 int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2186 if (br_dist < min_br_dist) {
2187 min_br_dist = br_dist;
2192 /* make sure the minimum frame size is below the average frame size */
2193 s->frame_size_code = min_br_code << 1;
2194 while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2196 s->frame_size_min = 2 * wpf;
2198 int best_br = 0, best_code = 0, best_diff = INT_MAX;
2199 for (i = 0; i < 19; i++) {
2200 int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2201 int diff = abs(br - avctx->bit_rate);
2202 if (diff < best_diff) {
2210 avctx->bit_rate = best_br;
2211 s->frame_size_code = best_code << 1;
2212 s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2213 s->num_blks_code = 0x3;
2216 s->bit_rate = avctx->bit_rate;
2217 s->frame_size = s->frame_size_min;
2219 /* validate cutoff */
2220 if (avctx->cutoff < 0) {
2221 av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2222 return AVERROR(EINVAL);
2224 s->cutoff = avctx->cutoff;
2225 if (s->cutoff > (s->sample_rate >> 1))
2226 s->cutoff = s->sample_rate >> 1;
2228 ret = ff_ac3_validate_metadata(s);
2232 s->rematrixing_enabled = s->options.stereo_rematrixing &&
2233 (s->channel_mode == AC3_CHMODE_STEREO);
2235 s->cpl_enabled = s->options.channel_coupling &&
2236 s->channel_mode >= AC3_CHMODE_STEREO;
2243 * Set bandwidth for all channels.
2244 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2245 * default value will be used.
2247 static av_cold void set_bandwidth(AC3EncodeContext *s)
2249 int blk, ch, cpl_start;
2252 /* calculate bandwidth based on user-specified cutoff frequency */
2254 fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2255 s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2257 /* use default bandwidth setting */
2258 s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2261 /* set number of coefficients for each channel */
2262 for (ch = 1; ch <= s->fbw_channels; ch++) {
2263 s->start_freq[ch] = 0;
2264 for (blk = 0; blk < s->num_blocks; blk++)
2265 s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2267 /* LFE channel always has 7 coefs */
2269 s->start_freq[s->lfe_channel] = 0;
2270 for (blk = 0; blk < s->num_blocks; blk++)
2271 s->blocks[blk].end_freq[ch] = 7;
2274 /* initialize coupling strategy */
2275 if (s->cpl_enabled) {
2276 if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2277 cpl_start = s->options.cpl_start;
2279 cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2280 if (cpl_start < 0) {
2281 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2288 if (s->cpl_enabled) {
2289 int i, cpl_start_band, cpl_end_band;
2290 uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2292 cpl_end_band = s->bandwidth_code / 4 + 3;
2293 cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2295 s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2297 s->num_cpl_bands = 1;
2298 *cpl_band_sizes = 12;
2299 for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2300 if (ff_eac3_default_cpl_band_struct[i]) {
2301 *cpl_band_sizes += 12;
2305 *cpl_band_sizes = 12;
2309 s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2310 s->cpl_end_freq = cpl_end_band * 12 + 37;
2311 for (blk = 0; blk < s->num_blocks; blk++)
2312 s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2317 static av_cold int allocate_buffers(AC3EncodeContext *s)
2319 AVCodecContext *avctx = s->avctx;
2321 int channels = s->channels + 1; /* includes coupling channel */
2322 int channel_blocks = channels * s->num_blocks;
2323 int total_coefs = AC3_MAX_COEFS * channel_blocks;
2325 if (s->allocate_sample_buffers(s))
2328 FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs *
2329 sizeof(*s->bap_buffer), alloc_fail);
2330 FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs *
2331 sizeof(*s->bap1_buffer), alloc_fail);
2332 FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs *
2333 sizeof(*s->mdct_coef_buffer), alloc_fail);
2334 FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs *
2335 sizeof(*s->exp_buffer), alloc_fail);
2336 FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 *
2337 sizeof(*s->grouped_exp_buffer), alloc_fail);
2338 FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs *
2339 sizeof(*s->psd_buffer), alloc_fail);
2340 FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 *
2341 sizeof(*s->band_psd_buffer), alloc_fail);
2342 FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 *
2343 sizeof(*s->mask_buffer), alloc_fail);
2344 FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs *
2345 sizeof(*s->qmant_buffer), alloc_fail);
2346 if (s->cpl_enabled) {
2347 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 *
2348 sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2349 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 *
2350 sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2352 for (blk = 0; blk < s->num_blocks; blk++) {
2353 AC3Block *block = &s->blocks[blk];
2354 FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
2356 FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
2358 FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
2360 FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
2362 FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
2364 FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
2366 FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
2368 if (s->cpl_enabled) {
2369 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
2371 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
2375 for (ch = 0; ch < channels; ch++) {
2376 /* arrangement: block, channel, coeff */
2377 block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2378 block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2379 block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2380 block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2381 block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2382 if (s->cpl_enabled) {
2383 block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2384 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2387 /* arrangement: channel, block, coeff */
2388 block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2389 block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2393 if (!s->fixed_point) {
2394 FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs *
2395 sizeof(*s->fixed_coef_buffer), alloc_fail);
2396 for (blk = 0; blk < s->num_blocks; blk++) {
2397 AC3Block *block = &s->blocks[blk];
2398 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2399 sizeof(*block->fixed_coef), alloc_fail);
2400 for (ch = 0; ch < channels; ch++)
2401 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2404 for (blk = 0; blk < s->num_blocks; blk++) {
2405 AC3Block *block = &s->blocks[blk];
2406 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2407 sizeof(*block->fixed_coef), alloc_fail);
2408 for (ch = 0; ch < channels; ch++)
2409 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2415 return AVERROR(ENOMEM);
2419 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2421 AC3EncodeContext *s = avctx->priv_data;
2422 int ret, frame_size_58;
2426 s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2428 ff_ac3_common_init();
2430 ret = validate_options(s);
2434 avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2435 avctx->delay = AC3_BLOCK_SIZE;
2437 s->bitstream_mode = avctx->audio_service_type;
2438 if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2439 s->bitstream_mode = 0x7;
2441 s->bits_written = 0;
2442 s->samples_written = 0;
2444 /* calculate crc_inv for both possible frame sizes */
2445 frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2446 s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2447 if (s->bit_alloc.sr_code == 1) {
2448 frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2449 s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2452 /* set function pointers */
2453 if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
2454 s->mdct_end = ff_ac3_fixed_mdct_end;
2455 s->mdct_init = ff_ac3_fixed_mdct_init;
2456 s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers;
2457 } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2458 s->mdct_end = ff_ac3_float_mdct_end;
2459 s->mdct_init = ff_ac3_float_mdct_init;
2460 s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers;
2462 if (CONFIG_EAC3_ENCODER && s->eac3)
2463 s->output_frame_header = ff_eac3_output_frame_header;
2465 s->output_frame_header = ac3_output_frame_header;
2473 ret = s->mdct_init(s);
2477 ret = allocate_buffers(s);
2481 ff_dsputil_init(&s->dsp, avctx);
2482 avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
2483 ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
2489 ff_ac3_encode_close(avctx);