]> git.sesse.net Git - ffmpeg/blob - libavcodec/ac3enc_template.c
lavu: move LOCAL_ALIGNED from internal.h to mem_internal.h
[ffmpeg] / libavcodec / ac3enc_template.c
1 /*
2  * AC-3 encoder float/fixed template
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 /**
25  * @file
26  * AC-3 encoder float/fixed template
27  */
28
29 #include <stdint.h>
30
31 #include "libavutil/attributes.h"
32 #include "libavutil/internal.h"
33 #include "libavutil/mem_internal.h"
34
35 #include "audiodsp.h"
36 #include "internal.h"
37 #include "ac3enc.h"
38 #include "eac3enc.h"
39
40
41 int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
42 {
43     int ch;
44
45     if (!FF_ALLOC_TYPED_ARRAY(s->windowed_samples, AC3_WINDOW_SIZE) ||
46         !FF_ALLOCZ_TYPED_ARRAY(s->planar_samples,  s->channels))
47         return AVERROR(ENOMEM);
48
49     for (ch = 0; ch < s->channels; ch++) {
50         if (!(s->planar_samples[ch] = av_mallocz((AC3_FRAME_SIZE + AC3_BLOCK_SIZE) *
51                                                   sizeof(**s->planar_samples))))
52             return AVERROR(ENOMEM);
53     }
54     return 0;
55 }
56
57
58 /*
59  * Copy input samples.
60  * Channels are reordered from FFmpeg's default order to AC-3 order.
61  */
62 static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
63 {
64     int ch;
65
66     /* copy and remap input samples */
67     for (ch = 0; ch < s->channels; ch++) {
68         /* copy last 256 samples of previous frame to the start of the current frame */
69         memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
70                AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
71
72         /* copy new samples for current frame */
73         memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
74                samples[s->channel_map[ch]],
75                AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
76     }
77 }
78
79
80 /*
81  * Apply the MDCT to input samples to generate frequency coefficients.
82  * This applies the KBD window and normalizes the input to reduce precision
83  * loss due to fixed-point calculations.
84  */
85 static void apply_mdct(AC3EncodeContext *s)
86 {
87     int blk, ch;
88
89     for (ch = 0; ch < s->channels; ch++) {
90         for (blk = 0; blk < s->num_blocks; blk++) {
91             AC3Block *block = &s->blocks[blk];
92             const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
93
94 #if CONFIG_AC3ENC_FLOAT
95             s->fdsp->vector_fmul(s->windowed_samples, input_samples,
96                                 s->mdct_window, AC3_WINDOW_SIZE);
97 #else
98             s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
99                                          s->mdct_window, AC3_WINDOW_SIZE);
100
101             if (s->fixed_point)
102                 block->coeff_shift[ch+1] = normalize_samples(s);
103 #endif
104
105             s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
106                                s->windowed_samples);
107         }
108     }
109 }
110
111
112 /*
113  * Calculate coupling channel and coupling coordinates.
114  */
115 static void apply_channel_coupling(AC3EncodeContext *s)
116 {
117     LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
118 #if CONFIG_AC3ENC_FLOAT
119     LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
120 #else
121     int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
122 #endif
123     int av_uninit(blk), ch, bnd, i, j;
124     CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
125     int cpl_start, num_cpl_coefs;
126
127     memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
128 #if CONFIG_AC3ENC_FLOAT
129     memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
130 #endif
131
132     /* align start to 16-byte boundary. align length to multiple of 32.
133         note: coupling start bin % 4 will always be 1 */
134     cpl_start     = s->start_freq[CPL_CH] - 1;
135     num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
136     cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
137
138     /* calculate coupling channel from fbw channels */
139     for (blk = 0; blk < s->num_blocks; blk++) {
140         AC3Block *block = &s->blocks[blk];
141         CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
142         if (!block->cpl_in_use)
143             continue;
144         memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
145         for (ch = 1; ch <= s->fbw_channels; ch++) {
146             CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
147             if (!block->channel_in_cpl[ch])
148                 continue;
149             for (i = 0; i < num_cpl_coefs; i++)
150                 cpl_coef[i] += ch_coef[i];
151         }
152
153         /* coefficients must be clipped in order to be encoded */
154         clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
155     }
156
157     /* calculate energy in each band in coupling channel and each fbw channel */
158     /* TODO: possibly use SIMD to speed up energy calculation */
159     bnd = 0;
160     i = s->start_freq[CPL_CH];
161     while (i < s->cpl_end_freq) {
162         int band_size = s->cpl_band_sizes[bnd];
163         for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
164             for (blk = 0; blk < s->num_blocks; blk++) {
165                 AC3Block *block = &s->blocks[blk];
166                 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
167                     continue;
168                 for (j = 0; j < band_size; j++) {
169                     CoefType v = block->mdct_coef[ch][i+j];
170                     MAC_COEF(energy[blk][ch][bnd], v, v);
171                 }
172             }
173         }
174         i += band_size;
175         bnd++;
176     }
177
178     /* calculate coupling coordinates for all blocks for all channels */
179     for (blk = 0; blk < s->num_blocks; blk++) {
180         AC3Block *block  = &s->blocks[blk];
181         if (!block->cpl_in_use)
182             continue;
183         for (ch = 1; ch <= s->fbw_channels; ch++) {
184             if (!block->channel_in_cpl[ch])
185                 continue;
186             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
187                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
188                                                           energy[blk][CPL_CH][bnd]);
189             }
190         }
191     }
192
193     /* determine which blocks to send new coupling coordinates for */
194     for (blk = 0; blk < s->num_blocks; blk++) {
195         AC3Block *block  = &s->blocks[blk];
196         AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
197
198         memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
199
200         if (block->cpl_in_use) {
201             /* send new coordinates if this is the first block, if previous
202              * block did not use coupling but this block does, the channels
203              * using coupling has changed from the previous block, or the
204              * coordinate difference from the last block for any channel is
205              * greater than a threshold value. */
206             if (blk == 0 || !block0->cpl_in_use) {
207                 for (ch = 1; ch <= s->fbw_channels; ch++)
208                     block->new_cpl_coords[ch] = 1;
209             } else {
210                 for (ch = 1; ch <= s->fbw_channels; ch++) {
211                     if (!block->channel_in_cpl[ch])
212                         continue;
213                     if (!block0->channel_in_cpl[ch]) {
214                         block->new_cpl_coords[ch] = 1;
215                     } else {
216                         CoefSumType coord_diff = 0;
217                         for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
218                             coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
219                                                 cpl_coords[blk  ][ch][bnd]);
220                         }
221                         coord_diff /= s->num_cpl_bands;
222                         if (coord_diff > NEW_CPL_COORD_THRESHOLD)
223                             block->new_cpl_coords[ch] = 1;
224                     }
225                 }
226             }
227         }
228     }
229
230     /* calculate final coupling coordinates, taking into account reusing of
231        coordinates in successive blocks */
232     for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
233         blk = 0;
234         while (blk < s->num_blocks) {
235             int av_uninit(blk1);
236             AC3Block *block  = &s->blocks[blk];
237
238             if (!block->cpl_in_use) {
239                 blk++;
240                 continue;
241             }
242
243             for (ch = 1; ch <= s->fbw_channels; ch++) {
244                 CoefSumType energy_ch, energy_cpl;
245                 if (!block->channel_in_cpl[ch])
246                     continue;
247                 energy_cpl = energy[blk][CPL_CH][bnd];
248                 energy_ch = energy[blk][ch][bnd];
249                 blk1 = blk+1;
250                 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
251                     if (s->blocks[blk1].cpl_in_use) {
252                         energy_cpl += energy[blk1][CPL_CH][bnd];
253                         energy_ch += energy[blk1][ch][bnd];
254                     }
255                     blk1++;
256                 }
257                 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
258             }
259             blk = blk1;
260         }
261     }
262
263     /* calculate exponents/mantissas for coupling coordinates */
264     for (blk = 0; blk < s->num_blocks; blk++) {
265         AC3Block *block = &s->blocks[blk];
266         if (!block->cpl_in_use)
267             continue;
268
269 #if CONFIG_AC3ENC_FLOAT
270         s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
271                                    cpl_coords[blk][1],
272                                    s->fbw_channels * 16);
273 #endif
274         s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
275                                     fixed_cpl_coords[blk][1],
276                                     s->fbw_channels * 16);
277
278         for (ch = 1; ch <= s->fbw_channels; ch++) {
279             int bnd, min_exp, max_exp, master_exp;
280
281             if (!block->new_cpl_coords[ch])
282                 continue;
283
284             /* determine master exponent */
285             min_exp = max_exp = block->cpl_coord_exp[ch][0];
286             for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
287                 int exp = block->cpl_coord_exp[ch][bnd];
288                 min_exp = FFMIN(exp, min_exp);
289                 max_exp = FFMAX(exp, max_exp);
290             }
291             master_exp = ((max_exp - 15) + 2) / 3;
292             master_exp = FFMAX(master_exp, 0);
293             while (min_exp < master_exp * 3)
294                 master_exp--;
295             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
296                 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
297                                                         master_exp * 3, 0, 15);
298             }
299             block->cpl_master_exp[ch] = master_exp;
300
301             /* quantize mantissas */
302             for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
303                 int cpl_exp  = block->cpl_coord_exp[ch][bnd];
304                 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
305                 if (cpl_exp == 15)
306                     cpl_mant >>= 1;
307                 else
308                     cpl_mant -= 16;
309
310                 block->cpl_coord_mant[ch][bnd] = cpl_mant;
311             }
312         }
313     }
314
315     if (CONFIG_EAC3_ENCODER && s->eac3)
316         ff_eac3_set_cpl_states(s);
317 }
318
319
320 /*
321  * Determine rematrixing flags for each block and band.
322  */
323 static void compute_rematrixing_strategy(AC3EncodeContext *s)
324 {
325     int nb_coefs;
326     int blk, bnd;
327     AC3Block *block, *block0 = NULL;
328
329     if (s->channel_mode != AC3_CHMODE_STEREO)
330         return;
331
332     for (blk = 0; blk < s->num_blocks; blk++) {
333         block = &s->blocks[blk];
334         block->new_rematrixing_strategy = !blk;
335
336         block->num_rematrixing_bands = 4;
337         if (block->cpl_in_use) {
338             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
339             block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
340             if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
341                 block->new_rematrixing_strategy = 1;
342         }
343         nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
344
345         if (!s->rematrixing_enabled) {
346             block0 = block;
347             continue;
348         }
349
350         for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
351             /* calculate sum of squared coeffs for one band in one block */
352             int start = ff_ac3_rematrix_band_tab[bnd];
353             int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
354             CoefSumType sum[4];
355             sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
356                                  block->mdct_coef[2] + start, end - start);
357
358             /* compare sums to determine if rematrixing will be used for this band */
359             if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
360                 block->rematrixing_flags[bnd] = 1;
361             else
362                 block->rematrixing_flags[bnd] = 0;
363
364             /* determine if new rematrixing flags will be sent */
365             if (blk &&
366                 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
367                 block->new_rematrixing_strategy = 1;
368             }
369         }
370         block0 = block;
371     }
372 }
373
374
375 int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
376                            const AVFrame *frame, int *got_packet_ptr)
377 {
378     AC3EncodeContext *s = avctx->priv_data;
379     int ret;
380
381     if (s->options.allow_per_frame_metadata) {
382         ret = ff_ac3_validate_metadata(s);
383         if (ret)
384             return ret;
385     }
386
387     if (s->bit_alloc.sr_code == 1 || s->eac3)
388         ff_ac3_adjust_frame_size(s);
389
390     copy_input_samples(s, (SampleType **)frame->extended_data);
391
392     apply_mdct(s);
393
394     if (s->fixed_point)
395         scale_coefficients(s);
396
397     clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
398                       AC3_MAX_COEFS * s->num_blocks * s->channels);
399
400     s->cpl_on = s->cpl_enabled;
401     ff_ac3_compute_coupling_strategy(s);
402
403     if (s->cpl_on)
404         apply_channel_coupling(s);
405
406     compute_rematrixing_strategy(s);
407
408     if (!s->fixed_point)
409         scale_coefficients(s);
410
411     ff_ac3_apply_rematrixing(s);
412
413     ff_ac3_process_exponents(s);
414
415     ret = ff_ac3_compute_bit_allocation(s);
416     if (ret) {
417         av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
418         return ret;
419     }
420
421     ff_ac3_group_exponents(s);
422
423     ff_ac3_quantize_mantissas(s);
424
425     if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size, 0)) < 0)
426         return ret;
427     ff_ac3_output_frame(s, avpkt->data);
428
429     if (frame->pts != AV_NOPTS_VALUE)
430         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
431
432     *got_packet_ptr = 1;
433     return 0;
434 }