2 * AC-3 encoder float/fixed template
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * AC-3 encoder float/fixed template
31 #include "libavutil/attributes.h"
32 #include "libavutil/internal.h"
39 /* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */
41 static void scale_coefficients(AC3EncodeContext *s);
43 static int normalize_samples(AC3EncodeContext *s);
45 static void clip_coefficients(AudioDSPContext *adsp, CoefType *coef,
48 static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl);
50 static void sum_square_butterfly(AC3EncodeContext *s, CoefSumType sum[4],
51 const CoefType *coef0, const CoefType *coef1,
54 int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
58 FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
59 sizeof(*s->windowed_samples), alloc_fail);
60 FF_ALLOC_ARRAY_OR_GOTO(s->avctx, s->planar_samples, s->channels, sizeof(*s->planar_samples),
62 for (ch = 0; ch < s->channels; ch++) {
63 FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
64 (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
70 return AVERROR(ENOMEM);
76 * Channels are reordered from FFmpeg's default order to AC-3 order.
78 static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
82 /* copy and remap input samples */
83 for (ch = 0; ch < s->channels; ch++) {
84 /* copy last 256 samples of previous frame to the start of the current frame */
85 memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
86 AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));
88 /* copy new samples for current frame */
89 memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
90 samples[s->channel_map[ch]],
91 AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
97 * Apply the MDCT to input samples to generate frequency coefficients.
98 * This applies the KBD window and normalizes the input to reduce precision
99 * loss due to fixed-point calculations.
101 static void apply_mdct(AC3EncodeContext *s)
105 for (ch = 0; ch < s->channels; ch++) {
106 for (blk = 0; blk < s->num_blocks; blk++) {
107 AC3Block *block = &s->blocks[blk];
108 const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
110 #if CONFIG_AC3ENC_FLOAT
111 s->fdsp->vector_fmul(s->windowed_samples, input_samples,
112 s->mdct_window, AC3_WINDOW_SIZE);
114 s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
115 s->mdct_window, AC3_WINDOW_SIZE);
119 block->coeff_shift[ch+1] = normalize_samples(s);
121 s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
122 s->windowed_samples);
129 * Calculate coupling channel and coupling coordinates.
131 static void apply_channel_coupling(AC3EncodeContext *s)
133 LOCAL_ALIGNED_16(CoefType, cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
134 #if CONFIG_AC3ENC_FLOAT
135 LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
137 int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
139 int av_uninit(blk), ch, bnd, i, j;
140 CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
141 int cpl_start, num_cpl_coefs;
143 memset(cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
144 #if CONFIG_AC3ENC_FLOAT
145 memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
148 /* align start to 16-byte boundary. align length to multiple of 32.
149 note: coupling start bin % 4 will always be 1 */
150 cpl_start = s->start_freq[CPL_CH] - 1;
151 num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
152 cpl_start = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;
154 /* calculate coupling channel from fbw channels */
155 for (blk = 0; blk < s->num_blocks; blk++) {
156 AC3Block *block = &s->blocks[blk];
157 CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
158 if (!block->cpl_in_use)
160 memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
161 for (ch = 1; ch <= s->fbw_channels; ch++) {
162 CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
163 if (!block->channel_in_cpl[ch])
165 for (i = 0; i < num_cpl_coefs; i++)
166 cpl_coef[i] += ch_coef[i];
169 /* coefficients must be clipped in order to be encoded */
170 clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
173 /* calculate energy in each band in coupling channel and each fbw channel */
174 /* TODO: possibly use SIMD to speed up energy calculation */
176 i = s->start_freq[CPL_CH];
177 while (i < s->cpl_end_freq) {
178 int band_size = s->cpl_band_sizes[bnd];
179 for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
180 for (blk = 0; blk < s->num_blocks; blk++) {
181 AC3Block *block = &s->blocks[blk];
182 if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
184 for (j = 0; j < band_size; j++) {
185 CoefType v = block->mdct_coef[ch][i+j];
186 MAC_COEF(energy[blk][ch][bnd], v, v);
194 /* calculate coupling coordinates for all blocks for all channels */
195 for (blk = 0; blk < s->num_blocks; blk++) {
196 AC3Block *block = &s->blocks[blk];
197 if (!block->cpl_in_use)
199 for (ch = 1; ch <= s->fbw_channels; ch++) {
200 if (!block->channel_in_cpl[ch])
202 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
203 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
204 energy[blk][CPL_CH][bnd]);
209 /* determine which blocks to send new coupling coordinates for */
210 for (blk = 0; blk < s->num_blocks; blk++) {
211 AC3Block *block = &s->blocks[blk];
212 AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
214 memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));
216 if (block->cpl_in_use) {
217 /* send new coordinates if this is the first block, if previous
218 * block did not use coupling but this block does, the channels
219 * using coupling has changed from the previous block, or the
220 * coordinate difference from the last block for any channel is
221 * greater than a threshold value. */
222 if (blk == 0 || !block0->cpl_in_use) {
223 for (ch = 1; ch <= s->fbw_channels; ch++)
224 block->new_cpl_coords[ch] = 1;
226 for (ch = 1; ch <= s->fbw_channels; ch++) {
227 if (!block->channel_in_cpl[ch])
229 if (!block0->channel_in_cpl[ch]) {
230 block->new_cpl_coords[ch] = 1;
232 CoefSumType coord_diff = 0;
233 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
234 coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
235 cpl_coords[blk ][ch][bnd]);
237 coord_diff /= s->num_cpl_bands;
238 if (coord_diff > NEW_CPL_COORD_THRESHOLD)
239 block->new_cpl_coords[ch] = 1;
246 /* calculate final coupling coordinates, taking into account reusing of
247 coordinates in successive blocks */
248 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
250 while (blk < s->num_blocks) {
252 AC3Block *block = &s->blocks[blk];
254 if (!block->cpl_in_use) {
259 for (ch = 1; ch <= s->fbw_channels; ch++) {
260 CoefSumType energy_ch, energy_cpl;
261 if (!block->channel_in_cpl[ch])
263 energy_cpl = energy[blk][CPL_CH][bnd];
264 energy_ch = energy[blk][ch][bnd];
266 while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
267 if (s->blocks[blk1].cpl_in_use) {
268 energy_cpl += energy[blk1][CPL_CH][bnd];
269 energy_ch += energy[blk1][ch][bnd];
273 cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
279 /* calculate exponents/mantissas for coupling coordinates */
280 for (blk = 0; blk < s->num_blocks; blk++) {
281 AC3Block *block = &s->blocks[blk];
282 if (!block->cpl_in_use)
285 #if CONFIG_AC3ENC_FLOAT
286 s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
288 s->fbw_channels * 16);
290 s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
291 fixed_cpl_coords[blk][1],
292 s->fbw_channels * 16);
294 for (ch = 1; ch <= s->fbw_channels; ch++) {
295 int bnd, min_exp, max_exp, master_exp;
297 if (!block->new_cpl_coords[ch])
300 /* determine master exponent */
301 min_exp = max_exp = block->cpl_coord_exp[ch][0];
302 for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
303 int exp = block->cpl_coord_exp[ch][bnd];
304 min_exp = FFMIN(exp, min_exp);
305 max_exp = FFMAX(exp, max_exp);
307 master_exp = ((max_exp - 15) + 2) / 3;
308 master_exp = FFMAX(master_exp, 0);
309 while (min_exp < master_exp * 3)
311 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
312 block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
313 master_exp * 3, 0, 15);
315 block->cpl_master_exp[ch] = master_exp;
317 /* quantize mantissas */
318 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
319 int cpl_exp = block->cpl_coord_exp[ch][bnd];
320 int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
326 block->cpl_coord_mant[ch][bnd] = cpl_mant;
331 if (CONFIG_EAC3_ENCODER && s->eac3)
332 ff_eac3_set_cpl_states(s);
337 * Determine rematrixing flags for each block and band.
339 static void compute_rematrixing_strategy(AC3EncodeContext *s)
343 AC3Block *block, *block0 = NULL;
345 if (s->channel_mode != AC3_CHMODE_STEREO)
348 for (blk = 0; blk < s->num_blocks; blk++) {
349 block = &s->blocks[blk];
350 block->new_rematrixing_strategy = !blk;
352 block->num_rematrixing_bands = 4;
353 if (block->cpl_in_use) {
354 block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
355 block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
356 if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
357 block->new_rematrixing_strategy = 1;
359 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
361 if (!s->rematrixing_enabled) {
366 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
367 /* calculate sum of squared coeffs for one band in one block */
368 int start = ff_ac3_rematrix_band_tab[bnd];
369 int end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
371 sum_square_butterfly(s, sum, block->mdct_coef[1] + start,
372 block->mdct_coef[2] + start, end - start);
374 /* compare sums to determine if rematrixing will be used for this band */
375 if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
376 block->rematrixing_flags[bnd] = 1;
378 block->rematrixing_flags[bnd] = 0;
380 /* determine if new rematrixing flags will be sent */
382 block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
383 block->new_rematrixing_strategy = 1;
391 int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
392 const AVFrame *frame, int *got_packet_ptr)
394 AC3EncodeContext *s = avctx->priv_data;
397 if (s->options.allow_per_frame_metadata) {
398 ret = ff_ac3_validate_metadata(s);
403 if (s->bit_alloc.sr_code == 1 || s->eac3)
404 ff_ac3_adjust_frame_size(s);
406 copy_input_samples(s, (SampleType **)frame->extended_data);
411 scale_coefficients(s);
413 clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
414 AC3_MAX_COEFS * s->num_blocks * s->channels);
416 s->cpl_on = s->cpl_enabled;
417 ff_ac3_compute_coupling_strategy(s);
420 apply_channel_coupling(s);
422 compute_rematrixing_strategy(s);
425 scale_coefficients(s);
427 ff_ac3_apply_rematrixing(s);
429 ff_ac3_process_exponents(s);
431 ret = ff_ac3_compute_bit_allocation(s);
433 av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
437 ff_ac3_group_exponents(s);
439 ff_ac3_quantize_mantissas(s);
441 if ((ret = ff_alloc_packet2(avctx, avpkt, s->frame_size, 0)) < 0)
443 ff_ac3_output_frame(s, avpkt->data);
445 if (frame->pts != AV_NOPTS_VALUE)
446 avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);