2 * adaptive and fixed codebook vector operations for ACELP-based codecs
4 * Copyright (c) 2008 Vladimir Voroshilov
6 * This file is part of Libav.
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 #include "acelp_vectors.h"
26 #include "celp_math.h"
28 const uint8_t ff_fc_2pulses_9bits_track1[16] =
39 const uint8_t ff_fc_2pulses_9bits_track1_gray[16] =
51 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
53 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
56 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
76 const float ff_pow_0_7[10] = {
77 0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
78 0.117649, 0.082354, 0.057648, 0.040354, 0.028248
81 const float ff_pow_0_75[10] = {
82 0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
83 0.177979, 0.133484, 0.100113, 0.075085, 0.056314
86 const float ff_pow_0_55[10] = {
87 0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
88 0.027681, 0.015224, 0.008373, 0.004605, 0.002533
91 const float ff_b60_sinc[61] = {
92 0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
93 0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
94 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
95 0.0689392 , 0.0357056 , 0. , -0.0305481 , -0.0504150 , -0.0570068 ,
96 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
97 0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
98 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0. , 0.00582886 ,
99 0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
100 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
101 0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
105 void ff_acelp_fc_pulse_per_track(
114 int mask = (1 << bits) - 1;
117 for(i=0; i<pulse_count; i++)
119 fc_v[i + tab1[pulse_indexes & mask]] +=
120 (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
122 pulse_indexes >>= bits;
126 fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
129 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
130 AMRFixed *fixed_sparse,
131 const uint8_t *gray_decode,
132 int half_pulse_count, int bits)
135 int mask = (1 << bits) - 1;
137 fixed_sparse->no_repeat_mask = 0;
138 fixed_sparse->n = 2 * half_pulse_count;
139 for (i = 0; i < half_pulse_count; i++) {
140 const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
141 const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
142 const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
143 fixed_sparse->x[2*i+1] = pos1;
144 fixed_sparse->x[2*i ] = pos2;
145 fixed_sparse->y[2*i+1] = sign;
146 fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
150 void ff_acelp_weighted_vector_sum(
154 int16_t weight_coeff_a,
155 int16_t weight_coeff_b,
162 // Clipping required here; breaks OVERFLOW test.
163 for(i=0; i<length; i++)
164 out[i] = av_clip_int16((
165 in_a[i] * weight_coeff_a +
166 in_b[i] * weight_coeff_b +
170 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
171 float weight_coeff_a, float weight_coeff_b, int length)
175 for(i=0; i<length; i++)
176 out[i] = weight_coeff_a * in_a[i]
177 + weight_coeff_b * in_b[i];
180 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
181 int size, float alpha, float *gain_mem)
184 float postfilter_energ = ff_dot_productf(in, in, size);
185 float gain_scale_factor = 1.0;
186 float mem = *gain_mem;
188 if (postfilter_energ)
189 gain_scale_factor = sqrt(speech_energ / postfilter_energ);
191 gain_scale_factor *= 1.0 - alpha;
193 for (i = 0; i < size; i++) {
194 mem = alpha * mem + gain_scale_factor;
195 out[i] = in[i] * mem;
201 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
202 float sum_of_squares, const int n)
205 float scalefactor = ff_dot_productf(in, in, n);
207 scalefactor = sqrt(sum_of_squares / scalefactor);
208 for (i = 0; i < n; i++)
209 out[i] = in[i] * scalefactor;
212 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
216 for (i=0; i < in->n; i++) {
217 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
218 float y = in->y[i] * scale;
224 } while (x < size && repeats);
228 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
232 for (i=0; i < in->n; i++) {
233 int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
238 } while (x < size && repeats);