3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "bitstream.h"
23 #include "bytestream.h"
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 * Features and limitations:
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
69 static const int step_table[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
88 static const int AdaptCoeff1[] = {
89 256, 512, 0, 192, 240, 460, 392
92 static const int AdaptCoeff2[] = {
93 0, -256, 0, 64, 0, -208, -232
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table[5][2] = {
105 static const int ea_adpcm_table[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
110 static const int ct_adpcm_table[8] = {
111 0x00E6, 0x00E6, 0x00E6, 0x00E6,
112 0x0133, 0x0199, 0x0200, 0x0266
115 // padded to zero where table size is less then 16
116 static const int swf_index_tables[4][16] = {
118 /*3*/ { -1, -1, 2, 4 },
119 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
123 static const int yamaha_indexscale[] = {
124 230, 230, 230, 230, 307, 409, 512, 614,
125 230, 230, 230, 230, 307, 409, 512, 614
128 static const int yamaha_difflookup[] = {
129 1, 3, 5, 7, 9, 11, 13, 15,
130 -1, -3, -5, -7, -9, -11, -13, -15
135 typedef struct ADPCMChannelStatus {
137 short int step_index;
148 } ADPCMChannelStatus;
150 typedef struct ADPCMContext {
151 ADPCMChannelStatus status[6];
154 /* XXX: implement encoding */
156 #ifdef CONFIG_ENCODERS
157 static int adpcm_encode_init(AVCodecContext *avctx)
159 if (avctx->channels > 2)
160 return -1; /* only stereo or mono =) */
161 switch(avctx->codec->id) {
162 case CODEC_ID_ADPCM_IMA_WAV:
163 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
164 /* and we have 4 bytes per channel overhead */
165 avctx->block_align = BLKSIZE;
166 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
168 case CODEC_ID_ADPCM_IMA_QT:
169 avctx->frame_size = 64;
170 avctx->block_align = 34 * avctx->channels;
172 case CODEC_ID_ADPCM_MS:
173 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
174 /* and we have 7 bytes per channel overhead */
175 avctx->block_align = BLKSIZE;
177 case CODEC_ID_ADPCM_YAMAHA:
178 avctx->frame_size = BLKSIZE * avctx->channels;
179 avctx->block_align = BLKSIZE;
181 case CODEC_ID_ADPCM_SWF:
182 if (avctx->sample_rate != 11025 &&
183 avctx->sample_rate != 22050 &&
184 avctx->sample_rate != 44100) {
185 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
188 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
195 avctx->coded_frame= avcodec_alloc_frame();
196 avctx->coded_frame->key_frame= 1;
201 static int adpcm_encode_close(AVCodecContext *avctx)
203 av_freep(&avctx->coded_frame);
209 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
211 int delta = sample - c->prev_sample;
212 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
213 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
214 c->prev_sample = av_clip_int16(c->prev_sample);
215 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
219 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
221 int predictor, nibble, bias;
223 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
225 nibble= sample - predictor;
226 if(nibble>=0) bias= c->idelta/2;
227 else bias=-c->idelta/2;
229 nibble= (nibble + bias) / c->idelta;
230 nibble= av_clip(nibble, -8, 7)&0x0F;
232 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
234 c->sample2 = c->sample1;
235 c->sample1 = av_clip_int16(predictor);
237 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
238 if (c->idelta < 16) c->idelta = 16;
243 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
252 delta = sample - c->predictor;
254 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
256 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
257 c->predictor = av_clip_int16(c->predictor);
258 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
259 c->step = av_clip(c->step, 127, 24567);
264 typedef struct TrellisPath {
269 typedef struct TrellisNode {
277 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
278 uint8_t *dst, ADPCMChannelStatus *c, int n)
280 #define FREEZE_INTERVAL 128
281 //FIXME 6% faster if frontier is a compile-time constant
282 const int frontier = 1 << avctx->trellis;
283 const int stride = avctx->channels;
284 const int version = avctx->codec->id;
285 const int max_paths = frontier*FREEZE_INTERVAL;
286 TrellisPath paths[max_paths], *p;
287 TrellisNode node_buf[2][frontier];
288 TrellisNode *nodep_buf[2][frontier];
289 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
290 TrellisNode **nodes_next = nodep_buf[1];
291 int pathn = 0, froze = -1, i, j, k;
293 assert(!(max_paths&(max_paths-1)));
295 memset(nodep_buf, 0, sizeof(nodep_buf));
296 nodes[0] = &node_buf[1][0];
299 nodes[0]->step = c->step_index;
300 nodes[0]->sample1 = c->sample1;
301 nodes[0]->sample2 = c->sample2;
302 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
303 nodes[0]->sample1 = c->prev_sample;
304 if(version == CODEC_ID_ADPCM_MS)
305 nodes[0]->step = c->idelta;
306 if(version == CODEC_ID_ADPCM_YAMAHA) {
308 nodes[0]->step = 127;
309 nodes[0]->sample1 = 0;
311 nodes[0]->step = c->step;
312 nodes[0]->sample1 = c->predictor;
317 TrellisNode *t = node_buf[i&1];
319 int sample = samples[i*stride];
320 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
321 for(j=0; j<frontier && nodes[j]; j++) {
322 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
323 const int range = (j < frontier/2) ? 1 : 0;
324 const int step = nodes[j]->step;
326 if(version == CODEC_ID_ADPCM_MS) {
327 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
328 const int div = (sample - predictor) / step;
329 const int nmin = av_clip(div-range, -8, 6);
330 const int nmax = av_clip(div+range, -7, 7);
331 for(nidx=nmin; nidx<=nmax; nidx++) {
332 const int nibble = nidx & 0xf;
333 int dec_sample = predictor + nidx * step;
334 #define STORE_NODE(NAME, STEP_INDEX)\
337 dec_sample = av_clip_int16(dec_sample);\
338 d = sample - dec_sample;\
339 ssd = nodes[j]->ssd + d*d;\
340 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
342 /* Collapse any two states with the same previous sample value. \
343 * One could also distinguish states by step and by 2nd to last
344 * sample, but the effects of that are negligible. */\
345 for(k=0; k<frontier && nodes_next[k]; k++) {\
346 if(dec_sample == nodes_next[k]->sample1) {\
347 assert(ssd >= nodes_next[k]->ssd);\
351 for(k=0; k<frontier; k++) {\
352 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
353 TrellisNode *u = nodes_next[frontier-1];\
355 assert(pathn < max_paths);\
360 u->step = STEP_INDEX;\
361 u->sample2 = nodes[j]->sample1;\
362 u->sample1 = dec_sample;\
363 paths[u->path].nibble = nibble;\
364 paths[u->path].prev = nodes[j]->path;\
365 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
371 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
373 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
374 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
375 const int predictor = nodes[j]->sample1;\
376 const int div = (sample - predictor) * 4 / STEP_TABLE;\
377 int nmin = av_clip(div-range, -7, 6);\
378 int nmax = av_clip(div+range, -6, 7);\
379 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
381 for(nidx=nmin; nidx<=nmax; nidx++) {\
382 const int nibble = nidx<0 ? 7-nidx : nidx;\
383 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
384 STORE_NODE(NAME, STEP_INDEX);\
386 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
387 } else { //CODEC_ID_ADPCM_YAMAHA
388 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
399 if(nodes[0]->ssd > (1<<28)) {
400 for(j=1; j<frontier && nodes[j]; j++)
401 nodes[j]->ssd -= nodes[0]->ssd;
405 // merge old paths to save memory
406 if(i == froze + FREEZE_INTERVAL) {
407 p = &paths[nodes[0]->path];
408 for(k=i; k>froze; k--) {
414 // other nodes might use paths that don't coincide with the frozen one.
415 // checking which nodes do so is too slow, so just kill them all.
416 // this also slightly improves quality, but I don't know why.
417 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
421 p = &paths[nodes[0]->path];
422 for(i=n-1; i>froze; i--) {
427 c->predictor = nodes[0]->sample1;
428 c->sample1 = nodes[0]->sample1;
429 c->sample2 = nodes[0]->sample2;
430 c->step_index = nodes[0]->step;
431 c->step = nodes[0]->step;
432 c->idelta = nodes[0]->step;
435 static int adpcm_encode_frame(AVCodecContext *avctx,
436 unsigned char *frame, int buf_size, void *data)
441 ADPCMContext *c = avctx->priv_data;
444 samples = (short *)data;
445 st= avctx->channels == 2;
446 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
448 switch(avctx->codec->id) {
449 case CODEC_ID_ADPCM_IMA_WAV:
450 n = avctx->frame_size / 8;
451 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
452 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
453 bytestream_put_le16(&dst, c->status[0].prev_sample);
454 *dst++ = (unsigned char)c->status[0].step_index;
455 *dst++ = 0; /* unknown */
457 if (avctx->channels == 2) {
458 c->status[1].prev_sample = (signed short)samples[0];
459 /* c->status[1].step_index = 0; */
460 bytestream_put_le16(&dst, c->status[1].prev_sample);
461 *dst++ = (unsigned char)c->status[1].step_index;
466 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
467 if(avctx->trellis > 0) {
469 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
470 if(avctx->channels == 2)
471 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
474 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
475 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
476 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
477 if (avctx->channels == 2) {
478 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
479 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
480 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
481 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
486 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
487 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
489 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
490 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
492 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
493 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
495 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
496 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
499 if (avctx->channels == 2) {
500 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
501 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
504 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
507 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
510 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
513 samples += 8 * avctx->channels;
516 case CODEC_ID_ADPCM_IMA_QT:
520 init_put_bits(&pb, dst, buf_size*8);
522 for(ch=0; ch<avctx->channels; ch++){
523 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
524 put_bits(&pb, 7, c->status[ch].step_index);
525 if(avctx->trellis > 0) {
527 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
529 put_bits(&pb, 4, buf[i^1]);
530 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
532 for (i=0; i<64; i+=2){
534 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
535 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
536 put_bits(&pb, 4, t2);
537 put_bits(&pb, 4, t1);
539 c->status[ch].prev_sample &= ~0x7F;
543 dst += put_bits_count(&pb)>>3;
546 case CODEC_ID_ADPCM_SWF:
550 init_put_bits(&pb, dst, buf_size*8);
552 n = avctx->frame_size-1;
554 //Store AdpcmCodeSize
555 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
557 //Init the encoder state
558 for(i=0; i<avctx->channels; i++){
559 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
560 put_bits(&pb, 16, samples[i] & 0xFFFF);
561 put_bits(&pb, 6, c->status[i].step_index);
562 c->status[i].prev_sample = (signed short)samples[i];
565 if(avctx->trellis > 0) {
567 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
568 if (avctx->channels == 2)
569 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
571 put_bits(&pb, 4, buf[0][i]);
572 if (avctx->channels == 2)
573 put_bits(&pb, 4, buf[1][i]);
576 for (i=1; i<avctx->frame_size; i++) {
577 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
578 if (avctx->channels == 2)
579 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
583 dst += put_bits_count(&pb)>>3;
586 case CODEC_ID_ADPCM_MS:
587 for(i=0; i<avctx->channels; i++){
591 c->status[i].coeff1 = AdaptCoeff1[predictor];
592 c->status[i].coeff2 = AdaptCoeff2[predictor];
594 for(i=0; i<avctx->channels; i++){
595 if (c->status[i].idelta < 16)
596 c->status[i].idelta = 16;
598 bytestream_put_le16(&dst, c->status[i].idelta);
600 for(i=0; i<avctx->channels; i++){
601 c->status[i].sample1= *samples++;
603 bytestream_put_le16(&dst, c->status[i].sample1);
605 for(i=0; i<avctx->channels; i++){
606 c->status[i].sample2= *samples++;
608 bytestream_put_le16(&dst, c->status[i].sample2);
611 if(avctx->trellis > 0) {
612 int n = avctx->block_align - 7*avctx->channels;
614 if(avctx->channels == 1) {
616 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
618 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
620 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
621 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
623 *dst++ = (buf[0][i] << 4) | buf[1][i];
626 for(i=7*avctx->channels; i<avctx->block_align; i++) {
628 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
629 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
633 case CODEC_ID_ADPCM_YAMAHA:
634 n = avctx->frame_size / 2;
635 if(avctx->trellis > 0) {
638 if(avctx->channels == 1) {
639 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
641 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
643 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
644 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
646 *dst++ = buf[0][i] | (buf[1][i] << 4);
650 for(i = 0; i < avctx->channels; i++) {
652 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
653 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
656 samples += 2 * avctx->channels;
664 #endif //CONFIG_ENCODERS
666 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
668 ADPCMContext *c = avctx->priv_data;
669 unsigned int max_channels = 2;
671 switch(avctx->codec->id) {
672 case CODEC_ID_ADPCM_EA_R1:
673 case CODEC_ID_ADPCM_EA_R2:
674 case CODEC_ID_ADPCM_EA_R3:
678 if(avctx->channels > max_channels){
682 switch(avctx->codec->id) {
683 case CODEC_ID_ADPCM_CT:
684 c->status[0].step = c->status[1].step = 511;
686 case CODEC_ID_ADPCM_IMA_WS:
687 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
688 c->status[0].predictor = AV_RL32(avctx->extradata);
689 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
698 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
702 int sign, delta, diff, step;
704 step = step_table[c->step_index];
705 step_index = c->step_index + index_table[(unsigned)nibble];
706 if (step_index < 0) step_index = 0;
707 else if (step_index > 88) step_index = 88;
711 /* perform direct multiplication instead of series of jumps proposed by
712 * the reference ADPCM implementation since modern CPUs can do the mults
714 diff = ((2 * delta + 1) * step) >> shift;
715 predictor = c->predictor;
716 if (sign) predictor -= diff;
717 else predictor += diff;
719 c->predictor = av_clip_int16(predictor);
720 c->step_index = step_index;
722 return (short)c->predictor;
725 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
729 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
730 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
732 c->sample2 = c->sample1;
733 c->sample1 = av_clip_int16(predictor);
734 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
735 if (c->idelta < 16) c->idelta = 16;
740 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
742 int sign, delta, diff;
747 /* perform direct multiplication instead of series of jumps proposed by
748 * the reference ADPCM implementation since modern CPUs can do the mults
750 diff = ((2 * delta + 1) * c->step) >> 3;
751 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
752 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
753 c->predictor = av_clip_int16(c->predictor);
754 /* calculate new step and clamp it to range 511..32767 */
755 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
756 c->step = av_clip(new_step, 511, 32767);
758 return (short)c->predictor;
761 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
763 int sign, delta, diff;
765 sign = nibble & (1<<(size-1));
766 delta = nibble & ((1<<(size-1))-1);
767 diff = delta << (7 + c->step + shift);
770 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
772 /* calculate new step */
773 if (delta >= (2*size - 3) && c->step < 3)
775 else if (delta == 0 && c->step > 0)
778 return (short) c->predictor;
781 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
788 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
789 c->predictor = av_clip_int16(c->predictor);
790 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
791 c->step = av_clip(c->step, 127, 24567);
795 static void xa_decode(short *out, const unsigned char *in,
796 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
799 int shift,filter,f0,f1;
805 shift = 12 - (in[4+i*2] & 15);
806 filter = in[4+i*2] >> 4;
807 f0 = xa_adpcm_table[filter][0];
808 f1 = xa_adpcm_table[filter][1];
816 t = (signed char)(d<<4)>>4;
817 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
819 s_1 = av_clip_int16(s);
824 if (inc==2) { /* stereo */
827 s_1 = right->sample1;
828 s_2 = right->sample2;
829 out = out + 1 - 28*2;
832 shift = 12 - (in[5+i*2] & 15);
833 filter = in[5+i*2] >> 4;
835 f0 = xa_adpcm_table[filter][0];
836 f1 = xa_adpcm_table[filter][1];
841 t = (signed char)d >> 4;
842 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
844 s_1 = av_clip_int16(s);
849 if (inc==2) { /* stereo */
850 right->sample1 = s_1;
851 right->sample2 = s_2;
861 /* DK3 ADPCM support macro */
862 #define DK3_GET_NEXT_NIBBLE() \
863 if (decode_top_nibble_next) \
865 nibble = last_byte >> 4; \
866 decode_top_nibble_next = 0; \
870 last_byte = *src++; \
871 if (src >= buf + buf_size) break; \
872 nibble = last_byte & 0x0F; \
873 decode_top_nibble_next = 1; \
876 static int adpcm_decode_frame(AVCodecContext *avctx,
877 void *data, int *data_size,
878 const uint8_t *buf, int buf_size)
880 ADPCMContext *c = avctx->priv_data;
881 ADPCMChannelStatus *cs;
882 int n, m, channel, i;
883 int block_predictor[2];
889 /* DK3 ADPCM accounting variables */
890 unsigned char last_byte = 0;
891 unsigned char nibble;
892 int decode_top_nibble_next = 0;
895 /* EA ADPCM state variables */
896 uint32_t samples_in_chunk;
897 int32_t previous_left_sample, previous_right_sample;
898 int32_t current_left_sample, current_right_sample;
899 int32_t next_left_sample, next_right_sample;
900 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
901 uint8_t shift_left, shift_right;
903 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
908 //should protect all 4bit ADPCM variants
909 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
911 if(*data_size/4 < buf_size + 8)
915 samples_end= samples + *data_size/2;
919 st = avctx->channels == 2 ? 1 : 0;
921 switch(avctx->codec->id) {
922 case CODEC_ID_ADPCM_IMA_QT:
923 n = buf_size - 2*avctx->channels;
924 for (channel = 0; channel < avctx->channels; channel++) {
925 cs = &(c->status[channel]);
926 /* (pppppp) (piiiiiii) */
928 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
929 cs->predictor = (*src++) << 8;
930 cs->predictor |= (*src & 0x80);
931 cs->predictor &= 0xFF80;
934 if(cs->predictor & 0x8000)
935 cs->predictor -= 0x10000;
937 cs->predictor = av_clip_int16(cs->predictor);
939 cs->step_index = (*src++) & 0x7F;
941 if (cs->step_index > 88){
942 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
946 cs->step = step_table[cs->step_index];
948 samples = (short*)data + channel;
950 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
951 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
952 samples += avctx->channels;
953 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
954 samples += avctx->channels;
961 case CODEC_ID_ADPCM_IMA_WAV:
962 if (avctx->block_align != 0 && buf_size > avctx->block_align)
963 buf_size = avctx->block_align;
965 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
967 for(i=0; i<avctx->channels; i++){
968 cs = &(c->status[i]);
969 cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8));
972 cs->step_index = *src++;
973 if (cs->step_index > 88){
974 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
977 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
980 while(src < buf + buf_size){
983 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
985 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
991 case CODEC_ID_ADPCM_4XM:
992 cs = &(c->status[0]);
993 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
995 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
997 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
999 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1001 if (cs->step_index < 0) cs->step_index = 0;
1002 if (cs->step_index > 88) cs->step_index = 88;
1004 m= (buf_size - (src - buf))>>st;
1005 for(i=0; i<m; i++) {
1006 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1008 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1009 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1011 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1017 case CODEC_ID_ADPCM_MS:
1018 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1019 buf_size = avctx->block_align;
1020 n = buf_size - 7 * avctx->channels;
1023 block_predictor[0] = av_clip(*src++, 0, 7);
1024 block_predictor[1] = 0;
1026 block_predictor[1] = av_clip(*src++, 0, 7);
1027 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1030 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1033 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1034 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1035 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1036 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1038 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1040 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1042 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1044 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1047 *samples++ = c->status[0].sample1;
1048 if (st) *samples++ = c->status[1].sample1;
1049 *samples++ = c->status[0].sample2;
1050 if (st) *samples++ = c->status[1].sample2;
1052 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1053 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1057 case CODEC_ID_ADPCM_IMA_DK4:
1058 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1059 buf_size = avctx->block_align;
1061 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1062 c->status[0].step_index = src[2];
1064 *samples++ = c->status[0].predictor;
1066 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1067 c->status[1].step_index = src[2];
1069 *samples++ = c->status[1].predictor;
1071 while (src < buf + buf_size) {
1073 /* take care of the top nibble (always left or mono channel) */
1074 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1077 /* take care of the bottom nibble, which is right sample for
1078 * stereo, or another mono sample */
1080 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1083 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1089 case CODEC_ID_ADPCM_IMA_DK3:
1090 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1091 buf_size = avctx->block_align;
1093 if(buf_size + 16 > (samples_end - samples)*3/8)
1096 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1097 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1098 c->status[0].step_index = src[14];
1099 c->status[1].step_index = src[15];
1100 /* sign extend the predictors */
1102 diff_channel = c->status[1].predictor;
1104 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1105 * the buffer is consumed */
1108 /* for this algorithm, c->status[0] is the sum channel and
1109 * c->status[1] is the diff channel */
1111 /* process the first predictor of the sum channel */
1112 DK3_GET_NEXT_NIBBLE();
1113 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1115 /* process the diff channel predictor */
1116 DK3_GET_NEXT_NIBBLE();
1117 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1119 /* process the first pair of stereo PCM samples */
1120 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1121 *samples++ = c->status[0].predictor + c->status[1].predictor;
1122 *samples++ = c->status[0].predictor - c->status[1].predictor;
1124 /* process the second predictor of the sum channel */
1125 DK3_GET_NEXT_NIBBLE();
1126 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1128 /* process the second pair of stereo PCM samples */
1129 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1130 *samples++ = c->status[0].predictor + c->status[1].predictor;
1131 *samples++ = c->status[0].predictor - c->status[1].predictor;
1134 case CODEC_ID_ADPCM_IMA_WS:
1135 /* no per-block initialization; just start decoding the data */
1136 while (src < buf + buf_size) {
1139 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1141 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1144 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1146 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1153 case CODEC_ID_ADPCM_XA:
1154 while (buf_size >= 128) {
1155 xa_decode(samples, src, &c->status[0], &c->status[1],
1162 case CODEC_ID_ADPCM_IMA_EA_EACS:
1163 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1165 if (samples_in_chunk > buf_size-4-(8<<st)) {
1166 src += buf_size - 4;
1170 for (i=0; i<=st; i++)
1171 c->status[i].step_index = bytestream_get_le32(&src);
1172 for (i=0; i<=st; i++)
1173 c->status[i].predictor = bytestream_get_le32(&src);
1175 for (; samples_in_chunk; samples_in_chunk--, src++) {
1176 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1177 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1180 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1181 for (; src < buf+buf_size; src++) {
1182 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1183 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1186 case CODEC_ID_ADPCM_EA:
1187 samples_in_chunk = AV_RL32(src);
1188 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1193 current_left_sample = (int16_t)AV_RL16(src);
1195 previous_left_sample = (int16_t)AV_RL16(src);
1197 current_right_sample = (int16_t)AV_RL16(src);
1199 previous_right_sample = (int16_t)AV_RL16(src);
1202 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1203 coeff1l = ea_adpcm_table[ *src >> 4 ];
1204 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1205 coeff1r = ea_adpcm_table[*src & 0x0F];
1206 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1209 shift_left = (*src >> 4 ) + 8;
1210 shift_right = (*src & 0x0F) + 8;
1213 for (count2 = 0; count2 < 28; count2++) {
1214 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1215 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1218 next_left_sample = (next_left_sample +
1219 (current_left_sample * coeff1l) +
1220 (previous_left_sample * coeff2l) + 0x80) >> 8;
1221 next_right_sample = (next_right_sample +
1222 (current_right_sample * coeff1r) +
1223 (previous_right_sample * coeff2r) + 0x80) >> 8;
1225 previous_left_sample = current_left_sample;
1226 current_left_sample = av_clip_int16(next_left_sample);
1227 previous_right_sample = current_right_sample;
1228 current_right_sample = av_clip_int16(next_right_sample);
1229 *samples++ = (unsigned short)current_left_sample;
1230 *samples++ = (unsigned short)current_right_sample;
1234 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1235 for(channel = 0; channel < avctx->channels; channel++) {
1237 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1238 shift[channel] = (*src & 0x0F) + 8;
1241 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1242 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1243 for(channel = 0; channel < avctx->channels; channel++) {
1244 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1246 c->status[channel].sample1 * coeff[channel][0] +
1247 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1248 c->status[channel].sample2 = c->status[channel].sample1;
1249 c->status[channel].sample1 = av_clip_int16(sample);
1250 *samples++ = c->status[channel].sample1;
1253 src+=avctx->channels;
1256 case CODEC_ID_ADPCM_EA_R1:
1257 case CODEC_ID_ADPCM_EA_R2:
1258 case CODEC_ID_ADPCM_EA_R3: {
1259 /* channel numbering
1261 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1262 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1263 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1264 int32_t previous_sample, current_sample, next_sample;
1265 int32_t coeff1, coeff2;
1267 unsigned int channel;
1269 const uint8_t *srcC;
1271 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1272 : bytestream_get_le32(&src)) / 28;
1273 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1274 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1275 src += buf_size - 4;
1279 for (channel=0; channel<avctx->channels; channel++) {
1280 srcC = src + (big_endian ? bytestream_get_be32(&src)
1281 : bytestream_get_le32(&src))
1282 + (avctx->channels-channel-1) * 4;
1283 samplesC = samples + channel;
1285 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1286 current_sample = (int16_t)bytestream_get_le16(&srcC);
1287 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1289 current_sample = c->status[channel].predictor;
1290 previous_sample = c->status[channel].prev_sample;
1293 for (count1=0; count1<samples_in_chunk; count1++) {
1294 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1296 current_sample = (int16_t)bytestream_get_be16(&srcC);
1297 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1299 for (count2=0; count2<28; count2++) {
1300 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1301 samplesC += avctx->channels;
1304 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1305 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1306 shift = (*srcC++ & 0x0F) + 8;
1308 for (count2=0; count2<28; count2++) {
1310 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1312 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1314 next_sample += (current_sample * coeff1) +
1315 (previous_sample * coeff2);
1316 next_sample = av_clip_int16(next_sample >> 8);
1318 previous_sample = current_sample;
1319 current_sample = next_sample;
1320 *samplesC = current_sample;
1321 samplesC += avctx->channels;
1326 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1327 c->status[channel].predictor = current_sample;
1328 c->status[channel].prev_sample = previous_sample;
1332 src = src + buf_size - (4 + 4*avctx->channels);
1333 samples += 28 * samples_in_chunk * avctx->channels;
1336 case CODEC_ID_ADPCM_EA_XAS:
1337 if (samples_end-samples < 32*4*avctx->channels
1338 || buf_size < (4+15)*4*avctx->channels) {
1342 for (channel=0; channel<avctx->channels; channel++) {
1343 int coeff[2][4], shift[4];
1344 short *s2, *s = &samples[channel];
1345 for (n=0; n<4; n++, s+=32*avctx->channels) {
1347 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1348 shift[n] = (src[2]&0x0F) + 8;
1349 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1350 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1353 for (m=2; m<32; m+=2) {
1354 s = &samples[m*avctx->channels + channel];
1355 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1356 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1357 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1358 int pred = s2[-1*avctx->channels] * coeff[0][n]
1359 + s2[-2*avctx->channels] * coeff[1][n];
1360 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1365 samples += 32*4*avctx->channels;
1367 case CODEC_ID_ADPCM_IMA_AMV:
1368 case CODEC_ID_ADPCM_IMA_SMJPEG:
1369 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1370 c->status[0].step_index = bytestream_get_le16(&src);
1372 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1375 while (src < buf + buf_size) {
1380 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1381 FFSWAP(char, hi, lo);
1383 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1385 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1390 case CODEC_ID_ADPCM_CT:
1391 while (src < buf + buf_size) {
1393 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1395 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1398 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1400 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1406 case CODEC_ID_ADPCM_SBPRO_4:
1407 case CODEC_ID_ADPCM_SBPRO_3:
1408 case CODEC_ID_ADPCM_SBPRO_2:
1409 if (!c->status[0].step_index) {
1410 /* the first byte is a raw sample */
1411 *samples++ = 128 * (*src++ - 0x80);
1413 *samples++ = 128 * (*src++ - 0x80);
1414 c->status[0].step_index = 1;
1416 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1417 while (src < buf + buf_size) {
1418 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1420 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1421 src[0] & 0x0F, 4, 0);
1424 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1425 while (src < buf + buf_size && samples + 2 < samples_end) {
1426 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1427 src[0] >> 5 , 3, 0);
1428 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1429 (src[0] >> 2) & 0x07, 3, 0);
1430 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1431 src[0] & 0x03, 2, 0);
1435 while (src < buf + buf_size && samples + 3 < samples_end) {
1436 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1437 src[0] >> 6 , 2, 2);
1438 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1439 (src[0] >> 4) & 0x03, 2, 2);
1440 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1441 (src[0] >> 2) & 0x03, 2, 2);
1442 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1443 src[0] & 0x03, 2, 2);
1448 case CODEC_ID_ADPCM_SWF:
1452 int k0, signmask, nb_bits, count;
1453 int size = buf_size*8;
1455 init_get_bits(&gb, buf, size);
1457 //read bits & initial values
1458 nb_bits = get_bits(&gb, 2)+2;
1459 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1460 table = swf_index_tables[nb_bits-2];
1461 k0 = 1 << (nb_bits-2);
1462 signmask = 1 << (nb_bits-1);
1464 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1465 for (i = 0; i < avctx->channels; i++) {
1466 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1467 c->status[i].step_index = get_bits(&gb, 6);
1470 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1473 for (i = 0; i < avctx->channels; i++) {
1474 // similar to IMA adpcm
1475 int delta = get_bits(&gb, nb_bits);
1476 int step = step_table[c->status[i].step_index];
1477 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1488 if (delta & signmask)
1489 c->status[i].predictor -= vpdiff;
1491 c->status[i].predictor += vpdiff;
1493 c->status[i].step_index += table[delta & (~signmask)];
1495 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1496 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1498 *samples++ = c->status[i].predictor;
1499 if (samples >= samples_end) {
1500 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1509 case CODEC_ID_ADPCM_YAMAHA:
1510 while (src < buf + buf_size) {
1512 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1514 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1517 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1519 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1525 case CODEC_ID_ADPCM_THP:
1528 unsigned int samplecnt;
1532 if (buf_size < 80) {
1533 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1538 samplecnt = bytestream_get_be32(&src);
1540 for (i = 0; i < 32; i++)
1541 table[0][i] = (int16_t)bytestream_get_be16(&src);
1543 /* Initialize the previous sample. */
1544 for (i = 0; i < 4; i++)
1545 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1547 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1548 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1552 for (ch = 0; ch <= st; ch++) {
1553 samples = (unsigned short *) data + ch;
1555 /* Read in every sample for this channel. */
1556 for (i = 0; i < samplecnt / 14; i++) {
1557 int index = (*src >> 4) & 7;
1558 unsigned int exp = 28 - (*src++ & 15);
1559 int factor1 = table[ch][index * 2];
1560 int factor2 = table[ch][index * 2 + 1];
1562 /* Decode 14 samples. */
1563 for (n = 0; n < 14; n++) {
1565 if(n&1) sampledat= *src++ <<28;
1566 else sampledat= (*src&0xF0)<<24;
1568 sampledat = ((prev[ch][0]*factor1
1569 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1570 *samples = av_clip_int16(sampledat);
1571 prev[ch][1] = prev[ch][0];
1572 prev[ch][0] = *samples++;
1574 /* In case of stereo, skip one sample, this sample
1575 is for the other channel. */
1581 /* In the previous loop, in case stereo is used, samples is
1582 increased exactly one time too often. */
1590 *data_size = (uint8_t *)samples - (uint8_t *)data;
1596 #ifdef CONFIG_ENCODERS
1597 #define ADPCM_ENCODER(id,name,long_name_) \
1598 AVCodec name ## _encoder = { \
1602 sizeof(ADPCMContext), \
1603 adpcm_encode_init, \
1604 adpcm_encode_frame, \
1605 adpcm_encode_close, \
1607 .long_name = long_name_, \
1610 #define ADPCM_ENCODER(id,name,long_name_)
1613 #ifdef CONFIG_DECODERS
1614 #define ADPCM_DECODER(id,name,long_name_) \
1615 AVCodec name ## _decoder = { \
1619 sizeof(ADPCMContext), \
1620 adpcm_decode_init, \
1623 adpcm_decode_frame, \
1624 .long_name = long_name_, \
1627 #define ADPCM_DECODER(id,name,long_name_)
1630 #define ADPCM_CODEC(id,name,long_name_) \
1631 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1633 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM");
1634 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM");
1635 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM");
1636 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM");
1637 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM");
1638 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM");
1639 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM");
1640 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM");
1641 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM");
1642 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM");
1643 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM");
1644 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM");
1645 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM");
1646 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM");
1647 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM");
1648 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM");
1649 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM");
1650 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM");
1651 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2 bits ADPCM");
1652 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6 bits ADPCM");
1653 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4 bits ADPCM");
1654 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM");
1655 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM");
1656 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM");
1657 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");