2 * Copyright (c) 2001-2003 The FFmpeg Project
4 * first version by Francois Revol (revol@free.fr)
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson (melanson@pcisys.net)
7 * CD-ROM XA ADPCM codec by BERO
8 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
16 * This file is part of FFmpeg.
18 * FFmpeg is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU Lesser General Public
20 * License as published by the Free Software Foundation; either
21 * version 2.1 of the License, or (at your option) any later version.
23 * FFmpeg is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 * Lesser General Public License for more details.
28 * You should have received a copy of the GNU Lesser General Public
29 * License along with FFmpeg; if not, write to the Free Software
30 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
34 #include "bytestream.h"
36 #include "adpcm_data.h"
42 * Features and limitations:
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
68 static const int ea_adpcm_table[] = {
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
86 typedef struct ADPCMDecodeContext {
87 ADPCMChannelStatus status[10];
88 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
92 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
94 ADPCMDecodeContext *c = avctx->priv_data;
95 unsigned int min_channels = 1;
96 unsigned int max_channels = 2;
98 switch(avctx->codec->id) {
99 case AV_CODEC_ID_ADPCM_DTK:
100 case AV_CODEC_ID_ADPCM_EA:
103 case AV_CODEC_ID_ADPCM_AFC:
104 case AV_CODEC_ID_ADPCM_EA_R1:
105 case AV_CODEC_ID_ADPCM_EA_R2:
106 case AV_CODEC_ID_ADPCM_EA_R3:
107 case AV_CODEC_ID_ADPCM_EA_XAS:
110 case AV_CODEC_ID_ADPCM_THP:
111 case AV_CODEC_ID_ADPCM_THP_LE:
115 if (avctx->channels < min_channels || avctx->channels > max_channels) {
116 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
117 return AVERROR(EINVAL);
120 switch(avctx->codec->id) {
121 case AV_CODEC_ID_ADPCM_CT:
122 c->status[0].step = c->status[1].step = 511;
124 case AV_CODEC_ID_ADPCM_IMA_WAV:
125 if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
126 return AVERROR_INVALIDDATA;
128 case AV_CODEC_ID_ADPCM_IMA_APC:
129 if (avctx->extradata && avctx->extradata_size >= 8) {
130 c->status[0].predictor = AV_RL32(avctx->extradata);
131 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
134 case AV_CODEC_ID_ADPCM_IMA_WS:
135 if (avctx->extradata && avctx->extradata_size >= 2)
136 c->vqa_version = AV_RL16(avctx->extradata);
142 switch(avctx->codec->id) {
143 case AV_CODEC_ID_ADPCM_IMA_QT:
144 case AV_CODEC_ID_ADPCM_IMA_WAV:
145 case AV_CODEC_ID_ADPCM_4XM:
146 case AV_CODEC_ID_ADPCM_XA:
147 case AV_CODEC_ID_ADPCM_EA_R1:
148 case AV_CODEC_ID_ADPCM_EA_R2:
149 case AV_CODEC_ID_ADPCM_EA_R3:
150 case AV_CODEC_ID_ADPCM_EA_XAS:
151 case AV_CODEC_ID_ADPCM_THP:
152 case AV_CODEC_ID_ADPCM_THP_LE:
153 case AV_CODEC_ID_ADPCM_AFC:
154 case AV_CODEC_ID_ADPCM_DTK:
155 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
157 case AV_CODEC_ID_ADPCM_IMA_WS:
158 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
162 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
168 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
172 int sign, delta, diff, step;
174 step = ff_adpcm_step_table[c->step_index];
175 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
176 step_index = av_clip(step_index, 0, 88);
180 /* perform direct multiplication instead of series of jumps proposed by
181 * the reference ADPCM implementation since modern CPUs can do the mults
183 diff = ((2 * delta + 1) * step) >> shift;
184 predictor = c->predictor;
185 if (sign) predictor -= diff;
186 else predictor += diff;
188 c->predictor = av_clip_int16(predictor);
189 c->step_index = step_index;
191 return (short)c->predictor;
194 static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
196 int nibble, step_index, predictor, sign, delta, diff, step, shift;
199 nibble = get_bits_le(gb, bps),
200 step = ff_adpcm_step_table[c->step_index];
201 step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
202 step_index = av_clip(step_index, 0, 88);
204 sign = nibble & (1 << shift);
205 delta = av_mod_uintp2(nibble, shift);
206 diff = ((2 * delta + 1) * step) >> shift;
207 predictor = c->predictor;
208 if (sign) predictor -= diff;
209 else predictor += diff;
211 c->predictor = av_clip_int16(predictor);
212 c->step_index = step_index;
214 return (int16_t)c->predictor;
217 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
223 step = ff_adpcm_step_table[c->step_index];
224 step_index = c->step_index + ff_adpcm_index_table[nibble];
225 step_index = av_clip(step_index, 0, 88);
228 if (nibble & 4) diff += step;
229 if (nibble & 2) diff += step >> 1;
230 if (nibble & 1) diff += step >> 2;
233 predictor = c->predictor - diff;
235 predictor = c->predictor + diff;
237 c->predictor = av_clip_int16(predictor);
238 c->step_index = step_index;
243 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
247 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
248 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
250 c->sample2 = c->sample1;
251 c->sample1 = av_clip_int16(predictor);
252 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
253 if (c->idelta < 16) c->idelta = 16;
254 if (c->idelta > INT_MAX/768) {
255 av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
256 c->idelta = INT_MAX/768;
262 static inline short adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
264 int step_index, predictor, sign, delta, diff, step;
266 step = ff_adpcm_oki_step_table[c->step_index];
267 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
268 step_index = av_clip(step_index, 0, 48);
272 diff = ((2 * delta + 1) * step) >> 3;
273 predictor = c->predictor;
274 if (sign) predictor -= diff;
275 else predictor += diff;
277 c->predictor = av_clip_intp2(predictor, 11);
278 c->step_index = step_index;
280 return c->predictor << 4;
283 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
285 int sign, delta, diff;
290 /* perform direct multiplication instead of series of jumps proposed by
291 * the reference ADPCM implementation since modern CPUs can do the mults
293 diff = ((2 * delta + 1) * c->step) >> 3;
294 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
295 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
296 c->predictor = av_clip_int16(c->predictor);
297 /* calculate new step and clamp it to range 511..32767 */
298 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
299 c->step = av_clip(new_step, 511, 32767);
301 return (short)c->predictor;
304 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
306 int sign, delta, diff;
308 sign = nibble & (1<<(size-1));
309 delta = nibble & ((1<<(size-1))-1);
310 diff = delta << (7 + c->step + shift);
313 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
315 /* calculate new step */
316 if (delta >= (2*size - 3) && c->step < 3)
318 else if (delta == 0 && c->step > 0)
321 return (short) c->predictor;
324 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
331 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
332 c->predictor = av_clip_int16(c->predictor);
333 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
334 c->step = av_clip(c->step, 127, 24567);
338 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
339 const uint8_t *in, ADPCMChannelStatus *left,
340 ADPCMChannelStatus *right, int channels, int sample_offset)
343 int shift,filter,f0,f1;
347 out0 += sample_offset;
351 out1 += sample_offset;
354 shift = 12 - (in[4+i*2] & 15);
355 filter = in[4+i*2] >> 4;
356 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
357 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
360 f0 = xa_adpcm_table[filter][0];
361 f1 = xa_adpcm_table[filter][1];
369 t = sign_extend(d, 4);
370 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
372 s_1 = av_clip_int16(s);
379 s_1 = right->sample1;
380 s_2 = right->sample2;
383 shift = 12 - (in[5+i*2] & 15);
384 filter = in[5+i*2] >> 4;
385 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
386 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
390 f0 = xa_adpcm_table[filter][0];
391 f1 = xa_adpcm_table[filter][1];
396 t = sign_extend(d >> 4, 4);
397 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
399 s_1 = av_clip_int16(s);
404 right->sample1 = s_1;
405 right->sample2 = s_2;
411 out0 += 28 * (3 - channels);
412 out1 += 28 * (3 - channels);
418 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
420 ADPCMDecodeContext *c = avctx->priv_data;
423 int k0, signmask, nb_bits, count;
424 int size = buf_size*8;
427 init_get_bits(&gb, buf, size);
429 //read bits & initial values
430 nb_bits = get_bits(&gb, 2)+2;
431 table = swf_index_tables[nb_bits-2];
432 k0 = 1 << (nb_bits-2);
433 signmask = 1 << (nb_bits-1);
435 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
436 for (i = 0; i < avctx->channels; i++) {
437 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
438 c->status[i].step_index = get_bits(&gb, 6);
441 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
444 for (i = 0; i < avctx->channels; i++) {
445 // similar to IMA adpcm
446 int delta = get_bits(&gb, nb_bits);
447 int step = ff_adpcm_step_table[c->status[i].step_index];
448 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
459 if (delta & signmask)
460 c->status[i].predictor -= vpdiff;
462 c->status[i].predictor += vpdiff;
464 c->status[i].step_index += table[delta & (~signmask)];
466 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
467 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
469 *samples++ = c->status[i].predictor;
476 * Get the number of samples that will be decoded from the packet.
477 * In one case, this is actually the maximum number of samples possible to
478 * decode with the given buf_size.
480 * @param[out] coded_samples set to the number of samples as coded in the
481 * packet, or 0 if the codec does not encode the
482 * number of samples in each frame.
483 * @param[out] approx_nb_samples set to non-zero if the number of samples
484 * returned is an approximation.
486 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
487 int buf_size, int *coded_samples, int *approx_nb_samples)
489 ADPCMDecodeContext *s = avctx->priv_data;
491 int ch = avctx->channels;
492 int has_coded_samples = 0;
496 *approx_nb_samples = 0;
501 switch (avctx->codec->id) {
502 /* constant, only check buf_size */
503 case AV_CODEC_ID_ADPCM_EA_XAS:
504 if (buf_size < 76 * ch)
508 case AV_CODEC_ID_ADPCM_IMA_QT:
509 if (buf_size < 34 * ch)
513 /* simple 4-bit adpcm */
514 case AV_CODEC_ID_ADPCM_CT:
515 case AV_CODEC_ID_ADPCM_IMA_APC:
516 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
517 case AV_CODEC_ID_ADPCM_IMA_OKI:
518 case AV_CODEC_ID_ADPCM_IMA_WS:
519 case AV_CODEC_ID_ADPCM_YAMAHA:
520 nb_samples = buf_size * 2 / ch;
526 /* simple 4-bit adpcm, with header */
528 switch (avctx->codec->id) {
529 case AV_CODEC_ID_ADPCM_4XM:
530 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
531 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
532 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
535 return (buf_size - header_size) * 2 / ch;
537 /* more complex formats */
538 switch (avctx->codec->id) {
539 case AV_CODEC_ID_ADPCM_EA:
540 has_coded_samples = 1;
541 *coded_samples = bytestream2_get_le32(gb);
542 *coded_samples -= *coded_samples % 28;
543 nb_samples = (buf_size - 12) / 30 * 28;
545 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
546 has_coded_samples = 1;
547 *coded_samples = bytestream2_get_le32(gb);
548 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
550 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
551 nb_samples = (buf_size - ch) / ch * 2;
553 case AV_CODEC_ID_ADPCM_EA_R1:
554 case AV_CODEC_ID_ADPCM_EA_R2:
555 case AV_CODEC_ID_ADPCM_EA_R3:
556 /* maximum number of samples */
557 /* has internal offsets and a per-frame switch to signal raw 16-bit */
558 has_coded_samples = 1;
559 switch (avctx->codec->id) {
560 case AV_CODEC_ID_ADPCM_EA_R1:
561 header_size = 4 + 9 * ch;
562 *coded_samples = bytestream2_get_le32(gb);
564 case AV_CODEC_ID_ADPCM_EA_R2:
565 header_size = 4 + 5 * ch;
566 *coded_samples = bytestream2_get_le32(gb);
568 case AV_CODEC_ID_ADPCM_EA_R3:
569 header_size = 4 + 5 * ch;
570 *coded_samples = bytestream2_get_be32(gb);
573 *coded_samples -= *coded_samples % 28;
574 nb_samples = (buf_size - header_size) * 2 / ch;
575 nb_samples -= nb_samples % 28;
576 *approx_nb_samples = 1;
578 case AV_CODEC_ID_ADPCM_IMA_DK3:
579 if (avctx->block_align > 0)
580 buf_size = FFMIN(buf_size, avctx->block_align);
581 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
583 case AV_CODEC_ID_ADPCM_IMA_DK4:
584 if (avctx->block_align > 0)
585 buf_size = FFMIN(buf_size, avctx->block_align);
586 if (buf_size < 4 * ch)
587 return AVERROR_INVALIDDATA;
588 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
590 case AV_CODEC_ID_ADPCM_IMA_RAD:
591 if (avctx->block_align > 0)
592 buf_size = FFMIN(buf_size, avctx->block_align);
593 nb_samples = (buf_size - 4 * ch) * 2 / ch;
595 case AV_CODEC_ID_ADPCM_IMA_WAV:
597 int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
598 int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
599 if (avctx->block_align > 0)
600 buf_size = FFMIN(buf_size, avctx->block_align);
601 if (buf_size < 4 * ch)
602 return AVERROR_INVALIDDATA;
603 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
606 case AV_CODEC_ID_ADPCM_MS:
607 if (avctx->block_align > 0)
608 buf_size = FFMIN(buf_size, avctx->block_align);
609 nb_samples = (buf_size - 6 * ch) * 2 / ch;
611 case AV_CODEC_ID_ADPCM_SBPRO_2:
612 case AV_CODEC_ID_ADPCM_SBPRO_3:
613 case AV_CODEC_ID_ADPCM_SBPRO_4:
615 int samples_per_byte;
616 switch (avctx->codec->id) {
617 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
618 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
619 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
621 if (!s->status[0].step_index) {
623 return AVERROR_INVALIDDATA;
627 nb_samples += buf_size * samples_per_byte / ch;
630 case AV_CODEC_ID_ADPCM_SWF:
632 int buf_bits = buf_size * 8 - 2;
633 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
634 int block_hdr_size = 22 * ch;
635 int block_size = block_hdr_size + nbits * ch * 4095;
636 int nblocks = buf_bits / block_size;
637 int bits_left = buf_bits - nblocks * block_size;
638 nb_samples = nblocks * 4096;
639 if (bits_left >= block_hdr_size)
640 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
643 case AV_CODEC_ID_ADPCM_THP:
644 case AV_CODEC_ID_ADPCM_THP_LE:
645 if (avctx->extradata) {
646 nb_samples = buf_size * 14 / (8 * ch);
649 has_coded_samples = 1;
650 bytestream2_skip(gb, 4); // channel size
651 *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
652 bytestream2_get_le32(gb) :
653 bytestream2_get_be32(gb);
654 buf_size -= 8 + 36 * ch;
656 nb_samples = buf_size / 8 * 14;
657 if (buf_size % 8 > 1)
658 nb_samples += (buf_size % 8 - 1) * 2;
659 *approx_nb_samples = 1;
661 case AV_CODEC_ID_ADPCM_AFC:
662 nb_samples = buf_size / (9 * ch) * 16;
664 case AV_CODEC_ID_ADPCM_XA:
665 nb_samples = (buf_size / 128) * 224 / ch;
667 case AV_CODEC_ID_ADPCM_DTK:
668 nb_samples = buf_size / (16 * ch) * 28;
672 /* validate coded sample count */
673 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
674 return AVERROR_INVALIDDATA;
679 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
680 int *got_frame_ptr, AVPacket *avpkt)
682 AVFrame *frame = data;
683 const uint8_t *buf = avpkt->data;
684 int buf_size = avpkt->size;
685 ADPCMDecodeContext *c = avctx->priv_data;
686 ADPCMChannelStatus *cs;
687 int n, m, channel, i;
692 int nb_samples, coded_samples, approx_nb_samples, ret;
695 bytestream2_init(&gb, buf, buf_size);
696 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
697 if (nb_samples <= 0) {
698 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
699 return AVERROR_INVALIDDATA;
702 /* get output buffer */
703 frame->nb_samples = nb_samples;
704 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
706 samples = (short *)frame->data[0];
707 samples_p = (int16_t **)frame->extended_data;
709 /* use coded_samples when applicable */
710 /* it is always <= nb_samples, so the output buffer will be large enough */
712 if (!approx_nb_samples && coded_samples != nb_samples)
713 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
714 frame->nb_samples = nb_samples = coded_samples;
717 st = avctx->channels == 2 ? 1 : 0;
719 switch(avctx->codec->id) {
720 case AV_CODEC_ID_ADPCM_IMA_QT:
721 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
722 Channel data is interleaved per-chunk. */
723 for (channel = 0; channel < avctx->channels; channel++) {
726 cs = &(c->status[channel]);
727 /* (pppppp) (piiiiiii) */
729 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
730 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
731 step_index = predictor & 0x7F;
734 if (cs->step_index == step_index) {
735 int diff = predictor - cs->predictor;
742 cs->step_index = step_index;
743 cs->predictor = predictor;
746 if (cs->step_index > 88u){
747 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
748 channel, cs->step_index);
749 return AVERROR_INVALIDDATA;
752 samples = samples_p[channel];
754 for (m = 0; m < 64; m += 2) {
755 int byte = bytestream2_get_byteu(&gb);
756 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
757 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
761 case AV_CODEC_ID_ADPCM_IMA_WAV:
762 for(i=0; i<avctx->channels; i++){
763 cs = &(c->status[i]);
764 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
766 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
767 if (cs->step_index > 88u){
768 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
770 return AVERROR_INVALIDDATA;
774 if (avctx->bits_per_coded_sample != 4) {
775 int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
778 init_get_bits8(&g, gb.buffer, bytestream2_get_bytes_left(&gb));
779 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
780 for (i = 0; i < avctx->channels; i++) {
782 samples = &samples_p[i][1 + n * samples_per_block];
783 for (m = 0; m < samples_per_block; m++) {
784 samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
785 avctx->bits_per_coded_sample);
789 bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
791 for (n = 0; n < (nb_samples - 1) / 8; n++) {
792 for (i = 0; i < avctx->channels; i++) {
794 samples = &samples_p[i][1 + n * 8];
795 for (m = 0; m < 8; m += 2) {
796 int v = bytestream2_get_byteu(&gb);
797 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
798 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
804 case AV_CODEC_ID_ADPCM_4XM:
805 for (i = 0; i < avctx->channels; i++)
806 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
808 for (i = 0; i < avctx->channels; i++) {
809 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
810 if (c->status[i].step_index > 88u) {
811 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
812 i, c->status[i].step_index);
813 return AVERROR_INVALIDDATA;
817 for (i = 0; i < avctx->channels; i++) {
818 samples = (int16_t *)frame->data[i];
820 for (n = nb_samples >> 1; n > 0; n--) {
821 int v = bytestream2_get_byteu(&gb);
822 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
823 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
827 case AV_CODEC_ID_ADPCM_MS:
831 block_predictor = bytestream2_get_byteu(&gb);
832 if (block_predictor > 6) {
833 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
835 return AVERROR_INVALIDDATA;
837 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
838 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
840 block_predictor = bytestream2_get_byteu(&gb);
841 if (block_predictor > 6) {
842 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
844 return AVERROR_INVALIDDATA;
846 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
847 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
849 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
851 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
854 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
855 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
856 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
857 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
859 *samples++ = c->status[0].sample2;
860 if (st) *samples++ = c->status[1].sample2;
861 *samples++ = c->status[0].sample1;
862 if (st) *samples++ = c->status[1].sample1;
863 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
864 int byte = bytestream2_get_byteu(&gb);
865 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
866 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
870 case AV_CODEC_ID_ADPCM_IMA_DK4:
871 for (channel = 0; channel < avctx->channels; channel++) {
872 cs = &c->status[channel];
873 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
874 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
875 if (cs->step_index > 88u){
876 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
877 channel, cs->step_index);
878 return AVERROR_INVALIDDATA;
881 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
882 int v = bytestream2_get_byteu(&gb);
883 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
884 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
887 case AV_CODEC_ID_ADPCM_IMA_DK3:
891 int decode_top_nibble_next = 0;
893 const int16_t *samples_end = samples + avctx->channels * nb_samples;
895 bytestream2_skipu(&gb, 10);
896 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
897 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
898 c->status[0].step_index = bytestream2_get_byteu(&gb);
899 c->status[1].step_index = bytestream2_get_byteu(&gb);
900 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
901 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
902 c->status[0].step_index, c->status[1].step_index);
903 return AVERROR_INVALIDDATA;
905 /* sign extend the predictors */
906 diff_channel = c->status[1].predictor;
908 /* DK3 ADPCM support macro */
909 #define DK3_GET_NEXT_NIBBLE() \
910 if (decode_top_nibble_next) { \
911 nibble = last_byte >> 4; \
912 decode_top_nibble_next = 0; \
914 last_byte = bytestream2_get_byteu(&gb); \
915 nibble = last_byte & 0x0F; \
916 decode_top_nibble_next = 1; \
919 while (samples < samples_end) {
921 /* for this algorithm, c->status[0] is the sum channel and
922 * c->status[1] is the diff channel */
924 /* process the first predictor of the sum channel */
925 DK3_GET_NEXT_NIBBLE();
926 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
928 /* process the diff channel predictor */
929 DK3_GET_NEXT_NIBBLE();
930 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
932 /* process the first pair of stereo PCM samples */
933 diff_channel = (diff_channel + c->status[1].predictor) / 2;
934 *samples++ = c->status[0].predictor + c->status[1].predictor;
935 *samples++ = c->status[0].predictor - c->status[1].predictor;
937 /* process the second predictor of the sum channel */
938 DK3_GET_NEXT_NIBBLE();
939 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
941 /* process the second pair of stereo PCM samples */
942 diff_channel = (diff_channel + c->status[1].predictor) / 2;
943 *samples++ = c->status[0].predictor + c->status[1].predictor;
944 *samples++ = c->status[0].predictor - c->status[1].predictor;
947 if ((bytestream2_tell(&gb) & 1))
948 bytestream2_skip(&gb, 1);
951 case AV_CODEC_ID_ADPCM_IMA_ISS:
952 for (channel = 0; channel < avctx->channels; channel++) {
953 cs = &c->status[channel];
954 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
955 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
956 if (cs->step_index > 88u){
957 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
958 channel, cs->step_index);
959 return AVERROR_INVALIDDATA;
963 for (n = nb_samples >> (1 - st); n > 0; n--) {
965 int v = bytestream2_get_byteu(&gb);
966 /* nibbles are swapped for mono */
974 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
975 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
978 case AV_CODEC_ID_ADPCM_IMA_APC:
979 while (bytestream2_get_bytes_left(&gb) > 0) {
980 int v = bytestream2_get_byteu(&gb);
981 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
982 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
985 case AV_CODEC_ID_ADPCM_IMA_OKI:
986 while (bytestream2_get_bytes_left(&gb) > 0) {
987 int v = bytestream2_get_byteu(&gb);
988 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
989 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
992 case AV_CODEC_ID_ADPCM_IMA_RAD:
993 for (channel = 0; channel < avctx->channels; channel++) {
994 cs = &c->status[channel];
995 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
996 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
997 if (cs->step_index > 88u){
998 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
999 channel, cs->step_index);
1000 return AVERROR_INVALIDDATA;
1003 for (n = 0; n < nb_samples / 2; n++) {
1006 byte[0] = bytestream2_get_byteu(&gb);
1008 byte[1] = bytestream2_get_byteu(&gb);
1009 for(channel = 0; channel < avctx->channels; channel++) {
1010 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1012 for(channel = 0; channel < avctx->channels; channel++) {
1013 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1017 case AV_CODEC_ID_ADPCM_IMA_WS:
1018 if (c->vqa_version == 3) {
1019 for (channel = 0; channel < avctx->channels; channel++) {
1020 int16_t *smp = samples_p[channel];
1022 for (n = nb_samples / 2; n > 0; n--) {
1023 int v = bytestream2_get_byteu(&gb);
1024 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1025 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1029 for (n = nb_samples / 2; n > 0; n--) {
1030 for (channel = 0; channel < avctx->channels; channel++) {
1031 int v = bytestream2_get_byteu(&gb);
1032 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1033 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1035 samples += avctx->channels;
1038 bytestream2_seek(&gb, 0, SEEK_END);
1040 case AV_CODEC_ID_ADPCM_XA:
1042 int16_t *out0 = samples_p[0];
1043 int16_t *out1 = samples_p[1];
1044 int samples_per_block = 28 * (3 - avctx->channels) * 4;
1045 int sample_offset = 0;
1046 while (bytestream2_get_bytes_left(&gb) >= 128) {
1047 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1048 &c->status[0], &c->status[1],
1049 avctx->channels, sample_offset)) < 0)
1051 bytestream2_skipu(&gb, 128);
1052 sample_offset += samples_per_block;
1056 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1057 for (i=0; i<=st; i++) {
1058 c->status[i].step_index = bytestream2_get_le32u(&gb);
1059 if (c->status[i].step_index > 88u) {
1060 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1061 i, c->status[i].step_index);
1062 return AVERROR_INVALIDDATA;
1065 for (i=0; i<=st; i++)
1066 c->status[i].predictor = bytestream2_get_le32u(&gb);
1068 for (n = nb_samples >> (1 - st); n > 0; n--) {
1069 int byte = bytestream2_get_byteu(&gb);
1070 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1071 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1074 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1075 for (n = nb_samples >> (1 - st); n > 0; n--) {
1076 int byte = bytestream2_get_byteu(&gb);
1077 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1078 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1081 case AV_CODEC_ID_ADPCM_EA:
1083 int previous_left_sample, previous_right_sample;
1084 int current_left_sample, current_right_sample;
1085 int next_left_sample, next_right_sample;
1086 int coeff1l, coeff2l, coeff1r, coeff2r;
1087 int shift_left, shift_right;
1089 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1090 each coding 28 stereo samples. */
1092 if(avctx->channels != 2)
1093 return AVERROR_INVALIDDATA;
1095 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1096 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1097 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1098 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1100 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1101 int byte = bytestream2_get_byteu(&gb);
1102 coeff1l = ea_adpcm_table[ byte >> 4 ];
1103 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1104 coeff1r = ea_adpcm_table[ byte & 0x0F];
1105 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1107 byte = bytestream2_get_byteu(&gb);
1108 shift_left = 20 - (byte >> 4);
1109 shift_right = 20 - (byte & 0x0F);
1111 for (count2 = 0; count2 < 28; count2++) {
1112 byte = bytestream2_get_byteu(&gb);
1113 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1114 next_right_sample = sign_extend(byte, 4) << shift_right;
1116 next_left_sample = (next_left_sample +
1117 (current_left_sample * coeff1l) +
1118 (previous_left_sample * coeff2l) + 0x80) >> 8;
1119 next_right_sample = (next_right_sample +
1120 (current_right_sample * coeff1r) +
1121 (previous_right_sample * coeff2r) + 0x80) >> 8;
1123 previous_left_sample = current_left_sample;
1124 current_left_sample = av_clip_int16(next_left_sample);
1125 previous_right_sample = current_right_sample;
1126 current_right_sample = av_clip_int16(next_right_sample);
1127 *samples++ = current_left_sample;
1128 *samples++ = current_right_sample;
1132 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1136 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1138 int coeff[2][2], shift[2];
1140 for(channel = 0; channel < avctx->channels; channel++) {
1141 int byte = bytestream2_get_byteu(&gb);
1143 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1144 shift[channel] = 20 - (byte & 0x0F);
1146 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1149 byte[0] = bytestream2_get_byteu(&gb);
1150 if (st) byte[1] = bytestream2_get_byteu(&gb);
1151 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1152 for(channel = 0; channel < avctx->channels; channel++) {
1153 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1155 c->status[channel].sample1 * coeff[channel][0] +
1156 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1157 c->status[channel].sample2 = c->status[channel].sample1;
1158 c->status[channel].sample1 = av_clip_int16(sample);
1159 *samples++ = c->status[channel].sample1;
1163 bytestream2_seek(&gb, 0, SEEK_END);
1166 case AV_CODEC_ID_ADPCM_EA_R1:
1167 case AV_CODEC_ID_ADPCM_EA_R2:
1168 case AV_CODEC_ID_ADPCM_EA_R3: {
1169 /* channel numbering
1171 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1172 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1173 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1174 int previous_sample, current_sample, next_sample;
1177 unsigned int channel;
1182 for (channel=0; channel<avctx->channels; channel++)
1183 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1184 bytestream2_get_le32(&gb)) +
1185 (avctx->channels + 1) * 4;
1187 for (channel=0; channel<avctx->channels; channel++) {
1188 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1189 samplesC = samples_p[channel];
1191 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1192 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1193 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1195 current_sample = c->status[channel].predictor;
1196 previous_sample = c->status[channel].prev_sample;
1199 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1200 int byte = bytestream2_get_byte(&gb);
1201 if (byte == 0xEE) { /* only seen in R2 and R3 */
1202 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1203 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1205 for (count2=0; count2<28; count2++)
1206 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1208 coeff1 = ea_adpcm_table[ byte >> 4 ];
1209 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1210 shift = 20 - (byte & 0x0F);
1212 for (count2=0; count2<28; count2++) {
1214 next_sample = sign_extend(byte, 4) << shift;
1216 byte = bytestream2_get_byte(&gb);
1217 next_sample = sign_extend(byte >> 4, 4) << shift;
1220 next_sample += (current_sample * coeff1) +
1221 (previous_sample * coeff2);
1222 next_sample = av_clip_int16(next_sample >> 8);
1224 previous_sample = current_sample;
1225 current_sample = next_sample;
1226 *samplesC++ = current_sample;
1232 } else if (count != count1) {
1233 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1234 count = FFMAX(count, count1);
1237 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1238 c->status[channel].predictor = current_sample;
1239 c->status[channel].prev_sample = previous_sample;
1243 frame->nb_samples = count * 28;
1244 bytestream2_seek(&gb, 0, SEEK_END);
1247 case AV_CODEC_ID_ADPCM_EA_XAS:
1248 for (channel=0; channel<avctx->channels; channel++) {
1249 int coeff[2][4], shift[4];
1250 int16_t *s = samples_p[channel];
1251 for (n = 0; n < 4; n++, s += 32) {
1252 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1254 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1257 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1258 shift[n] = 20 - (val & 0x0F);
1262 for (m=2; m<32; m+=2) {
1263 s = &samples_p[channel][m];
1264 for (n = 0; n < 4; n++, s += 32) {
1266 int byte = bytestream2_get_byteu(&gb);
1268 level = sign_extend(byte >> 4, 4) << shift[n];
1269 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1270 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1272 level = sign_extend(byte, 4) << shift[n];
1273 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1274 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1279 case AV_CODEC_ID_ADPCM_IMA_AMV:
1280 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1281 c->status[0].step_index = bytestream2_get_le16u(&gb);
1282 bytestream2_skipu(&gb, 4);
1283 if (c->status[0].step_index > 88u) {
1284 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1285 c->status[0].step_index);
1286 return AVERROR_INVALIDDATA;
1289 for (n = nb_samples >> (1 - st); n > 0; n--) {
1290 int v = bytestream2_get_byteu(&gb);
1292 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1293 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1296 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1297 for (i = 0; i < avctx->channels; i++) {
1298 c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1299 c->status[i].step_index = bytestream2_get_byteu(&gb);
1300 bytestream2_skipu(&gb, 1);
1301 if (c->status[i].step_index > 88u) {
1302 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1303 c->status[i].step_index);
1304 return AVERROR_INVALIDDATA;
1308 for (n = nb_samples >> (1 - st); n > 0; n--) {
1309 int v = bytestream2_get_byteu(&gb);
1311 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1312 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1315 case AV_CODEC_ID_ADPCM_CT:
1316 for (n = nb_samples >> (1 - st); n > 0; n--) {
1317 int v = bytestream2_get_byteu(&gb);
1318 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1319 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1322 case AV_CODEC_ID_ADPCM_SBPRO_4:
1323 case AV_CODEC_ID_ADPCM_SBPRO_3:
1324 case AV_CODEC_ID_ADPCM_SBPRO_2:
1325 if (!c->status[0].step_index) {
1326 /* the first byte is a raw sample */
1327 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1329 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1330 c->status[0].step_index = 1;
1333 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1334 for (n = nb_samples >> (1 - st); n > 0; n--) {
1335 int byte = bytestream2_get_byteu(&gb);
1336 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1338 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1341 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1342 for (n = (nb_samples<<st) / 3; n > 0; n--) {
1343 int byte = bytestream2_get_byteu(&gb);
1344 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1346 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1347 (byte >> 2) & 0x07, 3, 0);
1348 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1352 for (n = nb_samples >> (2 - st); n > 0; n--) {
1353 int byte = bytestream2_get_byteu(&gb);
1354 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1356 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1357 (byte >> 4) & 0x03, 2, 2);
1358 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1359 (byte >> 2) & 0x03, 2, 2);
1360 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1365 case AV_CODEC_ID_ADPCM_SWF:
1366 adpcm_swf_decode(avctx, buf, buf_size, samples);
1367 bytestream2_seek(&gb, 0, SEEK_END);
1369 case AV_CODEC_ID_ADPCM_YAMAHA:
1370 for (n = nb_samples >> (1 - st); n > 0; n--) {
1371 int v = bytestream2_get_byteu(&gb);
1372 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1373 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1376 case AV_CODEC_ID_ADPCM_AFC:
1378 int samples_per_block;
1381 if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1382 samples_per_block = avctx->extradata[0] / 16;
1383 blocks = nb_samples / avctx->extradata[0];
1385 samples_per_block = nb_samples / 16;
1389 for (m = 0; m < blocks; m++) {
1390 for (channel = 0; channel < avctx->channels; channel++) {
1391 int prev1 = c->status[channel].sample1;
1392 int prev2 = c->status[channel].sample2;
1394 samples = samples_p[channel] + m * 16;
1395 /* Read in every sample for this channel. */
1396 for (i = 0; i < samples_per_block; i++) {
1397 int byte = bytestream2_get_byteu(&gb);
1398 int scale = 1 << (byte >> 4);
1399 int index = byte & 0xf;
1400 int factor1 = ff_adpcm_afc_coeffs[0][index];
1401 int factor2 = ff_adpcm_afc_coeffs[1][index];
1403 /* Decode 16 samples. */
1404 for (n = 0; n < 16; n++) {
1408 sampledat = sign_extend(byte, 4);
1410 byte = bytestream2_get_byteu(&gb);
1411 sampledat = sign_extend(byte >> 4, 4);
1414 sampledat = ((prev1 * factor1 + prev2 * factor2) +
1415 ((sampledat * scale) << 11)) >> 11;
1416 *samples = av_clip_int16(sampledat);
1422 c->status[channel].sample1 = prev1;
1423 c->status[channel].sample2 = prev2;
1426 bytestream2_seek(&gb, 0, SEEK_END);
1429 case AV_CODEC_ID_ADPCM_THP:
1430 case AV_CODEC_ID_ADPCM_THP_LE:
1435 #define THP_GET16(g) \
1437 avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1438 bytestream2_get_le16u(&(g)) : \
1439 bytestream2_get_be16u(&(g)), 16)
1441 if (avctx->extradata) {
1443 if (avctx->extradata_size < 32 * avctx->channels) {
1444 av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1445 return AVERROR_INVALIDDATA;
1448 bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1449 for (i = 0; i < avctx->channels; i++)
1450 for (n = 0; n < 16; n++)
1451 table[i][n] = THP_GET16(tb);
1453 for (i = 0; i < avctx->channels; i++)
1454 for (n = 0; n < 16; n++)
1455 table[i][n] = THP_GET16(gb);
1457 if (!c->has_status) {
1458 /* Initialize the previous sample. */
1459 for (i = 0; i < avctx->channels; i++) {
1460 c->status[i].sample1 = THP_GET16(gb);
1461 c->status[i].sample2 = THP_GET16(gb);
1465 bytestream2_skip(&gb, avctx->channels * 4);
1469 for (ch = 0; ch < avctx->channels; ch++) {
1470 samples = samples_p[ch];
1472 /* Read in every sample for this channel. */
1473 for (i = 0; i < (nb_samples + 13) / 14; i++) {
1474 int byte = bytestream2_get_byteu(&gb);
1475 int index = (byte >> 4) & 7;
1476 unsigned int exp = byte & 0x0F;
1477 int factor1 = table[ch][index * 2];
1478 int factor2 = table[ch][index * 2 + 1];
1480 /* Decode 14 samples. */
1481 for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1485 sampledat = sign_extend(byte, 4);
1487 byte = bytestream2_get_byteu(&gb);
1488 sampledat = sign_extend(byte >> 4, 4);
1491 sampledat = ((c->status[ch].sample1 * factor1
1492 + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1493 *samples = av_clip_int16(sampledat);
1494 c->status[ch].sample2 = c->status[ch].sample1;
1495 c->status[ch].sample1 = *samples++;
1501 case AV_CODEC_ID_ADPCM_DTK:
1502 for (channel = 0; channel < avctx->channels; channel++) {
1503 samples = samples_p[channel];
1505 /* Read in every sample for this channel. */
1506 for (i = 0; i < nb_samples / 28; i++) {
1509 bytestream2_skipu(&gb, 1);
1510 header = bytestream2_get_byteu(&gb);
1511 bytestream2_skipu(&gb, 3 - channel);
1513 /* Decode 28 samples. */
1514 for (n = 0; n < 28; n++) {
1515 int32_t sampledat, prev;
1517 switch (header >> 4) {
1519 prev = (c->status[channel].sample1 * 0x3c);
1522 prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1525 prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1531 prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1533 byte = bytestream2_get_byteu(&gb);
1535 sampledat = sign_extend(byte, 4);
1537 sampledat = sign_extend(byte >> 4, 4);
1539 sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1540 *samples++ = av_clip_int16(sampledat >> 6);
1541 c->status[channel].sample2 = c->status[channel].sample1;
1542 c->status[channel].sample1 = sampledat;
1546 bytestream2_seek(&gb, 0, SEEK_SET);
1554 if (avpkt->size && bytestream2_tell(&gb) == 0) {
1555 av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1556 return AVERROR_INVALIDDATA;
1561 if (avpkt->size < bytestream2_tell(&gb)) {
1562 av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1566 return bytestream2_tell(&gb);
1569 static void adpcm_flush(AVCodecContext *avctx)
1571 ADPCMDecodeContext *c = avctx->priv_data;
1576 static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
1577 AV_SAMPLE_FMT_NONE };
1578 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
1579 AV_SAMPLE_FMT_NONE };
1580 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1582 AV_SAMPLE_FMT_NONE };
1584 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1585 AVCodec ff_ ## name_ ## _decoder = { \
1587 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1588 .type = AVMEDIA_TYPE_AUDIO, \
1590 .priv_data_size = sizeof(ADPCMDecodeContext), \
1591 .init = adpcm_decode_init, \
1592 .decode = adpcm_decode_frame, \
1593 .flush = adpcm_flush, \
1594 .capabilities = CODEC_CAP_DR1, \
1595 .sample_fmts = sample_fmts_, \
1598 /* Note: Do not forget to add new entries to the Makefile as well. */
1599 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1600 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1601 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1602 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1603 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1604 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1605 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1606 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1607 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1608 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1609 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1610 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1611 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1612 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1613 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1614 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1615 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1616 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1617 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1618 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1619 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1620 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1621 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1622 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1623 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1624 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1625 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1626 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1627 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
1628 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
1629 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1630 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");