]> git.sesse.net Git - ffmpeg/blob - libavcodec/alacenc.c
avcodec: Constify AVCodecs
[ffmpeg] / libavcodec / alacenc.c
1 /*
2  * ALAC audio encoder
3  * Copyright (c) 2008  Jaikrishnan Menon <realityman@gmx.net>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "libavutil/opt.h"
23
24 #include "avcodec.h"
25 #include "put_bits.h"
26 #include "internal.h"
27 #include "lpc.h"
28 #include "mathops.h"
29 #include "alac_data.h"
30
31 #define DEFAULT_FRAME_SIZE        4096
32 #define ALAC_EXTRADATA_SIZE       36
33 #define ALAC_FRAME_HEADER_SIZE    55
34 #define ALAC_FRAME_FOOTER_SIZE    3
35
36 #define ALAC_ESCAPE_CODE          0x1FF
37 #define ALAC_MAX_LPC_ORDER        30
38 #define DEFAULT_MAX_PRED_ORDER    6
39 #define DEFAULT_MIN_PRED_ORDER    4
40 #define ALAC_MAX_LPC_PRECISION    9
41 #define ALAC_MIN_LPC_SHIFT        0
42 #define ALAC_MAX_LPC_SHIFT        9
43
44 #define ALAC_CHMODE_LEFT_RIGHT    0
45 #define ALAC_CHMODE_LEFT_SIDE     1
46 #define ALAC_CHMODE_RIGHT_SIDE    2
47 #define ALAC_CHMODE_MID_SIDE      3
48
49 typedef struct RiceContext {
50     int history_mult;
51     int initial_history;
52     int k_modifier;
53     int rice_modifier;
54 } RiceContext;
55
56 typedef struct AlacLPCContext {
57     int lpc_order;
58     int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
59     int lpc_quant;
60 } AlacLPCContext;
61
62 typedef struct AlacEncodeContext {
63     const AVClass *class;
64     AVCodecContext *avctx;
65     int frame_size;                     /**< current frame size               */
66     int verbatim;                       /**< current frame verbatim mode flag */
67     int compression_level;
68     int min_prediction_order;
69     int max_prediction_order;
70     int max_coded_frame_size;
71     int write_sample_size;
72     int extra_bits;
73     int32_t sample_buf[2][DEFAULT_FRAME_SIZE];
74     int32_t predictor_buf[2][DEFAULT_FRAME_SIZE];
75     int interlacing_shift;
76     int interlacing_leftweight;
77     PutBitContext pbctx;
78     RiceContext rc;
79     AlacLPCContext lpc[2];
80     LPCContext lpc_ctx;
81 } AlacEncodeContext;
82
83
84 static void init_sample_buffers(AlacEncodeContext *s, int channels,
85                                 const uint8_t *samples[2])
86 {
87     int ch, i;
88     int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
89                 s->avctx->bits_per_raw_sample;
90
91 #define COPY_SAMPLES(type) do {                             \
92         for (ch = 0; ch < channels; ch++) {                 \
93             int32_t       *bptr = s->sample_buf[ch];        \
94             const type *sptr = (const type *)samples[ch];   \
95             for (i = 0; i < s->frame_size; i++)             \
96                 bptr[i] = sptr[i] >> shift;                 \
97         }                                                   \
98     } while (0)
99
100     if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P)
101         COPY_SAMPLES(int32_t);
102     else
103         COPY_SAMPLES(int16_t);
104 }
105
106 static void encode_scalar(AlacEncodeContext *s, int x,
107                           int k, int write_sample_size)
108 {
109     int divisor, q, r;
110
111     k = FFMIN(k, s->rc.k_modifier);
112     divisor = (1<<k) - 1;
113     q = x / divisor;
114     r = x % divisor;
115
116     if (q > 8) {
117         // write escape code and sample value directly
118         put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
119         put_bits(&s->pbctx, write_sample_size, x);
120     } else {
121         if (q)
122             put_bits(&s->pbctx, q, (1<<q) - 1);
123         put_bits(&s->pbctx, 1, 0);
124
125         if (k != 1) {
126             if (r > 0)
127                 put_bits(&s->pbctx, k, r+1);
128             else
129                 put_bits(&s->pbctx, k-1, 0);
130         }
131     }
132 }
133
134 static void write_element_header(AlacEncodeContext *s,
135                                  enum AlacRawDataBlockType element,
136                                  int instance)
137 {
138     int encode_fs = 0;
139
140     if (s->frame_size < DEFAULT_FRAME_SIZE)
141         encode_fs = 1;
142
143     put_bits(&s->pbctx, 3,  element);               // element type
144     put_bits(&s->pbctx, 4,  instance);              // element instance
145     put_bits(&s->pbctx, 12, 0);                     // unused header bits
146     put_bits(&s->pbctx, 1,  encode_fs);             // Sample count is in the header
147     put_bits(&s->pbctx, 2,  s->extra_bits >> 3);    // Extra bytes (for 24-bit)
148     put_bits(&s->pbctx, 1,  s->verbatim);           // Audio block is verbatim
149     if (encode_fs)
150         put_bits32(&s->pbctx, s->frame_size);       // No. of samples in the frame
151 }
152
153 static void calc_predictor_params(AlacEncodeContext *s, int ch)
154 {
155     int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
156     int shift[MAX_LPC_ORDER];
157     int opt_order;
158
159     if (s->compression_level == 1) {
160         s->lpc[ch].lpc_order = 6;
161         s->lpc[ch].lpc_quant = 6;
162         s->lpc[ch].lpc_coeff[0] =  160;
163         s->lpc[ch].lpc_coeff[1] = -190;
164         s->lpc[ch].lpc_coeff[2] =  170;
165         s->lpc[ch].lpc_coeff[3] = -130;
166         s->lpc[ch].lpc_coeff[4] =   80;
167         s->lpc[ch].lpc_coeff[5] =  -25;
168     } else {
169         opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, s->sample_buf[ch],
170                                       s->frame_size,
171                                       s->min_prediction_order,
172                                       s->max_prediction_order,
173                                       ALAC_MAX_LPC_PRECISION, coefs, shift,
174                                       FF_LPC_TYPE_LEVINSON, 0,
175                                       ORDER_METHOD_EST, ALAC_MIN_LPC_SHIFT,
176                                       ALAC_MAX_LPC_SHIFT, 1);
177
178         s->lpc[ch].lpc_order = opt_order;
179         s->lpc[ch].lpc_quant = shift[opt_order-1];
180         memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
181     }
182 }
183
184 static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
185 {
186     int i, best;
187     int32_t lt, rt;
188     uint64_t sum[4];
189     uint64_t score[4];
190
191     /* calculate sum of 2nd order residual for each channel */
192     sum[0] = sum[1] = sum[2] = sum[3] = 0;
193     for (i = 2; i < n; i++) {
194         lt =  left_ch[i] - 2 *  left_ch[i - 1] +  left_ch[i - 2];
195         rt = right_ch[i] - 2 * right_ch[i - 1] + right_ch[i - 2];
196         sum[2] += FFABS((lt + rt) >> 1);
197         sum[3] += FFABS(lt - rt);
198         sum[0] += FFABS(lt);
199         sum[1] += FFABS(rt);
200     }
201
202     /* calculate score for each mode */
203     score[0] = sum[0] + sum[1];
204     score[1] = sum[0] + sum[3];
205     score[2] = sum[1] + sum[3];
206     score[3] = sum[2] + sum[3];
207
208     /* return mode with lowest score */
209     best = 0;
210     for (i = 1; i < 4; i++) {
211         if (score[i] < score[best])
212             best = i;
213     }
214     return best;
215 }
216
217 static void alac_stereo_decorrelation(AlacEncodeContext *s)
218 {
219     int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
220     int i, mode, n = s->frame_size;
221     int32_t tmp;
222
223     mode = estimate_stereo_mode(left, right, n);
224
225     switch (mode) {
226     case ALAC_CHMODE_LEFT_RIGHT:
227         s->interlacing_leftweight = 0;
228         s->interlacing_shift      = 0;
229         break;
230     case ALAC_CHMODE_LEFT_SIDE:
231         for (i = 0; i < n; i++)
232             right[i] = left[i] - right[i];
233         s->interlacing_leftweight = 1;
234         s->interlacing_shift      = 0;
235         break;
236     case ALAC_CHMODE_RIGHT_SIDE:
237         for (i = 0; i < n; i++) {
238             tmp = right[i];
239             right[i] = left[i] - right[i];
240             left[i]  = tmp + (right[i] >> 31);
241         }
242         s->interlacing_leftweight = 1;
243         s->interlacing_shift      = 31;
244         break;
245     default:
246         for (i = 0; i < n; i++) {
247             tmp = left[i];
248             left[i]  = (tmp + right[i]) >> 1;
249             right[i] =  tmp - right[i];
250         }
251         s->interlacing_leftweight = 1;
252         s->interlacing_shift      = 1;
253         break;
254     }
255 }
256
257 static void alac_linear_predictor(AlacEncodeContext *s, int ch)
258 {
259     int i;
260     AlacLPCContext lpc = s->lpc[ch];
261     int32_t *residual = s->predictor_buf[ch];
262
263     if (lpc.lpc_order == 31) {
264         residual[0] = s->sample_buf[ch][0];
265
266         for (i = 1; i < s->frame_size; i++) {
267             residual[i] = s->sample_buf[ch][i    ] -
268                           s->sample_buf[ch][i - 1];
269         }
270
271         return;
272     }
273
274     // generalised linear predictor
275
276     if (lpc.lpc_order > 0) {
277         int32_t *samples  = s->sample_buf[ch];
278
279         // generate warm-up samples
280         residual[0] = samples[0];
281         for (i = 1; i <= lpc.lpc_order; i++)
282             residual[i] = sign_extend(samples[i] - samples[i-1], s->write_sample_size);
283
284         // perform lpc on remaining samples
285         for (i = lpc.lpc_order + 1; i < s->frame_size; i++) {
286             int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
287
288             for (j = 0; j < lpc.lpc_order; j++) {
289                 sum += (samples[lpc.lpc_order-j] - samples[0]) *
290                        lpc.lpc_coeff[j];
291             }
292
293             sum >>= lpc.lpc_quant;
294             sum += samples[0];
295             residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
296                                       s->write_sample_size);
297             res_val = residual[i];
298
299             if (res_val) {
300                 int index = lpc.lpc_order - 1;
301                 int neg = (res_val < 0);
302
303                 while (index >= 0 && (neg ? (res_val < 0) : (res_val > 0))) {
304                     int val  = samples[0] - samples[lpc.lpc_order - index];
305                     int sign = (val ? FFSIGN(val) : 0);
306
307                     if (neg)
308                         sign *= -1;
309
310                     lpc.lpc_coeff[index] -= sign;
311                     val *= sign;
312                     res_val -= (val >> lpc.lpc_quant) * (lpc.lpc_order - index);
313                     index--;
314                 }
315             }
316             samples++;
317         }
318     }
319 }
320
321 static void alac_entropy_coder(AlacEncodeContext *s, int ch)
322 {
323     unsigned int history = s->rc.initial_history;
324     int sign_modifier = 0, i, k;
325     int32_t *samples = s->predictor_buf[ch];
326
327     for (i = 0; i < s->frame_size;) {
328         int x;
329
330         k = av_log2((history >> 9) + 3);
331
332         x  = -2 * (*samples) -1;
333         x ^= x >> 31;
334
335         samples++;
336         i++;
337
338         encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
339
340         history += x * s->rc.history_mult -
341                    ((history * s->rc.history_mult) >> 9);
342
343         sign_modifier = 0;
344         if (x > 0xFFFF)
345             history = 0xFFFF;
346
347         if (history < 128 && i < s->frame_size) {
348             unsigned int block_size = 0;
349
350             k = 7 - av_log2(history) + ((history + 16) >> 6);
351
352             while (*samples == 0 && i < s->frame_size) {
353                 samples++;
354                 i++;
355                 block_size++;
356             }
357             encode_scalar(s, block_size, k, 16);
358             sign_modifier = (block_size <= 0xFFFF);
359             history = 0;
360         }
361
362     }
363 }
364
365 static void write_element(AlacEncodeContext *s,
366                           enum AlacRawDataBlockType element, int instance,
367                           const uint8_t *samples0, const uint8_t *samples1)
368 {
369     const uint8_t *samples[2] = { samples0, samples1 };
370     int i, j, channels;
371     int prediction_type = 0;
372     PutBitContext *pb = &s->pbctx;
373
374     channels = element == TYPE_CPE ? 2 : 1;
375
376     if (s->verbatim) {
377         write_element_header(s, element, instance);
378         /* samples are channel-interleaved in verbatim mode */
379         if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
380             int shift = 32 - s->avctx->bits_per_raw_sample;
381             const int32_t *samples_s32[2] = { (const int32_t *)samples0,
382                                               (const int32_t *)samples1 };
383             for (i = 0; i < s->frame_size; i++)
384                 for (j = 0; j < channels; j++)
385                     put_sbits(pb, s->avctx->bits_per_raw_sample,
386                               samples_s32[j][i] >> shift);
387         } else {
388             const int16_t *samples_s16[2] = { (const int16_t *)samples0,
389                                               (const int16_t *)samples1 };
390             for (i = 0; i < s->frame_size; i++)
391                 for (j = 0; j < channels; j++)
392                     put_sbits(pb, s->avctx->bits_per_raw_sample,
393                               samples_s16[j][i]);
394         }
395     } else {
396         s->write_sample_size = s->avctx->bits_per_raw_sample - s->extra_bits +
397                                channels - 1;
398
399         init_sample_buffers(s, channels, samples);
400         write_element_header(s, element, instance);
401
402         // extract extra bits if needed
403         if (s->extra_bits) {
404             uint32_t mask = (1 << s->extra_bits) - 1;
405             for (j = 0; j < channels; j++) {
406                 int32_t *extra = s->predictor_buf[j];
407                 int32_t *smp   = s->sample_buf[j];
408                 for (i = 0; i < s->frame_size; i++) {
409                     extra[i] = smp[i] & mask;
410                     smp[i] >>= s->extra_bits;
411                 }
412             }
413         }
414
415         if (channels == 2)
416             alac_stereo_decorrelation(s);
417         else
418             s->interlacing_shift = s->interlacing_leftweight = 0;
419         put_bits(pb, 8, s->interlacing_shift);
420         put_bits(pb, 8, s->interlacing_leftweight);
421
422         for (i = 0; i < channels; i++) {
423             calc_predictor_params(s, i);
424
425             put_bits(pb, 4, prediction_type);
426             put_bits(pb, 4, s->lpc[i].lpc_quant);
427
428             put_bits(pb, 3, s->rc.rice_modifier);
429             put_bits(pb, 5, s->lpc[i].lpc_order);
430             // predictor coeff. table
431             for (j = 0; j < s->lpc[i].lpc_order; j++)
432                 put_sbits(pb, 16, s->lpc[i].lpc_coeff[j]);
433         }
434
435         // write extra bits if needed
436         if (s->extra_bits) {
437             for (i = 0; i < s->frame_size; i++) {
438                 for (j = 0; j < channels; j++) {
439                     put_bits(pb, s->extra_bits, s->predictor_buf[j][i]);
440                 }
441             }
442         }
443
444         // apply lpc and entropy coding to audio samples
445         for (i = 0; i < channels; i++) {
446             alac_linear_predictor(s, i);
447
448             // TODO: determine when this will actually help. for now it's not used.
449             if (prediction_type == 15) {
450                 // 2nd pass 1st order filter
451                 int32_t *residual = s->predictor_buf[i];
452                 for (j = s->frame_size - 1; j > 0; j--)
453                     residual[j] -= residual[j - 1];
454             }
455             alac_entropy_coder(s, i);
456         }
457     }
458 }
459
460 static int write_frame(AlacEncodeContext *s, AVPacket *avpkt,
461                        uint8_t * const *samples)
462 {
463     PutBitContext *pb = &s->pbctx;
464     const enum AlacRawDataBlockType *ch_elements = ff_alac_channel_elements[s->avctx->channels - 1];
465     const uint8_t *ch_map = ff_alac_channel_layout_offsets[s->avctx->channels - 1];
466     int ch, element, sce, cpe;
467
468     init_put_bits(pb, avpkt->data, avpkt->size);
469
470     ch = element = sce = cpe = 0;
471     while (ch < s->avctx->channels) {
472         if (ch_elements[element] == TYPE_CPE) {
473             write_element(s, TYPE_CPE, cpe, samples[ch_map[ch]],
474                           samples[ch_map[ch + 1]]);
475             cpe++;
476             ch += 2;
477         } else {
478             write_element(s, TYPE_SCE, sce, samples[ch_map[ch]], NULL);
479             sce++;
480             ch++;
481         }
482         element++;
483     }
484
485     put_bits(pb, 3, TYPE_END);
486     flush_put_bits(pb);
487
488     return put_bytes_output(pb);
489 }
490
491 static av_always_inline int get_max_frame_size(int frame_size, int ch, int bps)
492 {
493     int header_bits = 23 + 32 * (frame_size < DEFAULT_FRAME_SIZE);
494     return FFALIGN(header_bits + bps * ch * frame_size + 3, 8) / 8;
495 }
496
497 static av_cold int alac_encode_close(AVCodecContext *avctx)
498 {
499     AlacEncodeContext *s = avctx->priv_data;
500     ff_lpc_end(&s->lpc_ctx);
501     return 0;
502 }
503
504 static av_cold int alac_encode_init(AVCodecContext *avctx)
505 {
506     AlacEncodeContext *s = avctx->priv_data;
507     int ret;
508     uint8_t *alac_extradata;
509
510     avctx->frame_size = s->frame_size = DEFAULT_FRAME_SIZE;
511
512     if (avctx->sample_fmt == AV_SAMPLE_FMT_S32P) {
513         if (avctx->bits_per_raw_sample != 24)
514             av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
515         avctx->bits_per_raw_sample = 24;
516     } else {
517         avctx->bits_per_raw_sample = 16;
518         s->extra_bits              = 0;
519     }
520
521     // Set default compression level
522     if (avctx->compression_level == FF_COMPRESSION_DEFAULT)
523         s->compression_level = 2;
524     else
525         s->compression_level = av_clip(avctx->compression_level, 0, 2);
526
527     // Initialize default Rice parameters
528     s->rc.history_mult    = 40;
529     s->rc.initial_history = 10;
530     s->rc.k_modifier      = 14;
531     s->rc.rice_modifier   = 4;
532
533     s->max_coded_frame_size = get_max_frame_size(avctx->frame_size,
534                                                  avctx->channels,
535                                                  avctx->bits_per_raw_sample);
536
537     avctx->extradata = av_mallocz(ALAC_EXTRADATA_SIZE + AV_INPUT_BUFFER_PADDING_SIZE);
538     if (!avctx->extradata)
539         return AVERROR(ENOMEM);
540     avctx->extradata_size = ALAC_EXTRADATA_SIZE;
541
542     alac_extradata = avctx->extradata;
543     AV_WB32(alac_extradata,    ALAC_EXTRADATA_SIZE);
544     AV_WB32(alac_extradata+4,  MKBETAG('a','l','a','c'));
545     AV_WB32(alac_extradata+12, avctx->frame_size);
546     AV_WB8 (alac_extradata+17, avctx->bits_per_raw_sample);
547     AV_WB8 (alac_extradata+21, avctx->channels);
548     AV_WB32(alac_extradata+24, s->max_coded_frame_size);
549     AV_WB32(alac_extradata+28,
550             avctx->sample_rate * avctx->channels * avctx->bits_per_raw_sample); // average bitrate
551     AV_WB32(alac_extradata+32, avctx->sample_rate);
552
553     // Set relevant extradata fields
554     if (s->compression_level > 0) {
555         AV_WB8(alac_extradata+18, s->rc.history_mult);
556         AV_WB8(alac_extradata+19, s->rc.initial_history);
557         AV_WB8(alac_extradata+20, s->rc.k_modifier);
558     }
559
560     if (s->max_prediction_order < s->min_prediction_order) {
561         av_log(avctx, AV_LOG_ERROR,
562                "invalid prediction orders: min=%d max=%d\n",
563                s->min_prediction_order, s->max_prediction_order);
564         return AVERROR(EINVAL);
565     }
566
567     s->avctx = avctx;
568
569     if ((ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
570                            s->max_prediction_order,
571                            FF_LPC_TYPE_LEVINSON)) < 0) {
572         return ret;
573     }
574
575     return 0;
576 }
577
578 static int alac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
579                              const AVFrame *frame, int *got_packet_ptr)
580 {
581     AlacEncodeContext *s = avctx->priv_data;
582     int out_bytes, max_frame_size, ret;
583
584     s->frame_size = frame->nb_samples;
585
586     if (frame->nb_samples < DEFAULT_FRAME_SIZE)
587         max_frame_size = get_max_frame_size(s->frame_size, avctx->channels,
588                                             avctx->bits_per_raw_sample);
589     else
590         max_frame_size = s->max_coded_frame_size;
591
592     if ((ret = ff_alloc_packet2(avctx, avpkt, 4 * max_frame_size, 0)) < 0)
593         return ret;
594
595     /* use verbatim mode for compression_level 0 */
596     if (s->compression_level) {
597         s->verbatim   = 0;
598         s->extra_bits = avctx->bits_per_raw_sample - 16;
599     } else {
600         s->verbatim   = 1;
601         s->extra_bits = 0;
602     }
603
604     out_bytes = write_frame(s, avpkt, frame->extended_data);
605
606     if (out_bytes > max_frame_size) {
607         /* frame too large. use verbatim mode */
608         s->verbatim = 1;
609         s->extra_bits = 0;
610         out_bytes = write_frame(s, avpkt, frame->extended_data);
611     }
612
613     avpkt->size = out_bytes;
614     *got_packet_ptr = 1;
615     return 0;
616 }
617
618 #define OFFSET(x) offsetof(AlacEncodeContext, x)
619 #define AE AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
620 static const AVOption options[] = {
621     { "min_prediction_order", NULL, OFFSET(min_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MIN_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
622     { "max_prediction_order", NULL, OFFSET(max_prediction_order), AV_OPT_TYPE_INT, { .i64 = DEFAULT_MAX_PRED_ORDER }, MIN_LPC_ORDER, ALAC_MAX_LPC_ORDER, AE },
623
624     { NULL },
625 };
626
627 static const AVClass alacenc_class = {
628     .class_name = "alacenc",
629     .item_name  = av_default_item_name,
630     .option     = options,
631     .version    = LIBAVUTIL_VERSION_INT,
632 };
633
634 const AVCodec ff_alac_encoder = {
635     .name           = "alac",
636     .long_name      = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
637     .type           = AVMEDIA_TYPE_AUDIO,
638     .id             = AV_CODEC_ID_ALAC,
639     .priv_data_size = sizeof(AlacEncodeContext),
640     .priv_class     = &alacenc_class,
641     .init           = alac_encode_init,
642     .encode2        = alac_encode_frame,
643     .close          = alac_encode_close,
644     .capabilities   = AV_CODEC_CAP_SMALL_LAST_FRAME,
645     .channel_layouts = ff_alac_channel_layouts,
646     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32P,
647                                                      AV_SAMPLE_FMT_S16P,
648                                                      AV_SAMPLE_FMT_NONE },
649 };