]> git.sesse.net Git - ffmpeg/blob - libavcodec/alsdec.c
a8c3433fa869668faec0e903c3de10479b8cb58b
[ffmpeg] / libavcodec / alsdec.c
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27
28 #include <inttypes.h>
29
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "internal.h"
37 #include "mlz.h"
38 #include "libavutil/samplefmt.h"
39 #include "libavutil/crc.h"
40 #include "libavutil/softfloat_ieee754.h"
41 #include "libavutil/intfloat.h"
42 #include "libavutil/intreadwrite.h"
43
44 #include <stdint.h>
45
46 /** Rice parameters and corresponding index offsets for decoding the
47  *  indices of scaled PARCOR values. The table chosen is set globally
48  *  by the encoder and stored in ALSSpecificConfig.
49  */
50 static const int8_t parcor_rice_table[3][20][2] = {
51     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
53       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
54       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
55     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
59     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
63 };
64
65
66 /** Scaled PARCOR values used for the first two PARCOR coefficients.
67  *  To be indexed by the Rice coded indices.
68  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69  *  Actual values are divided by 32 in order to be stored in 16 bits.
70  */
71 static const int16_t parcor_scaled_values[] = {
72     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
77      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
78      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
79      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
80      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
81      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
82      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
83      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
84      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
85      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
86      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
87      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
88      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
89      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
90      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
91      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
92      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
93      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
94       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
95        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
96       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
97       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
98       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
99       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
100       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
101       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
102       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
103       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
104 };
105
106
107 /** Gain values of p(0) for long-term prediction.
108  *  To be indexed by the Rice coded indices.
109  */
110 static const uint8_t ltp_gain_values [4][4] = {
111     { 0,  8, 16,  24},
112     {32, 40, 48,  56},
113     {64, 70, 76,  82},
114     {88, 92, 96, 100}
115 };
116
117
118 /** Inter-channel weighting factors for multi-channel correlation.
119  *  To be indexed by the Rice coded indices.
120  */
121 static const int16_t mcc_weightings[] = {
122     204,  192,  179,  166,  153,  140,  128,  115,
123     102,   89,   76,   64,   51,   38,   25,   12,
124       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
125    -102, -115, -128, -140, -153, -166, -179, -192
126 };
127
128
129 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130  */
131 static const uint8_t tail_code[16][6] = {
132     { 74, 44, 25, 13,  7, 3},
133     { 68, 42, 24, 13,  7, 3},
134     { 58, 39, 23, 13,  7, 3},
135     {126, 70, 37, 19, 10, 5},
136     {132, 70, 37, 20, 10, 5},
137     {124, 70, 38, 20, 10, 5},
138     {120, 69, 37, 20, 11, 5},
139     {116, 67, 37, 20, 11, 5},
140     {108, 66, 36, 20, 10, 5},
141     {102, 62, 36, 20, 10, 5},
142     { 88, 58, 34, 19, 10, 5},
143     {162, 89, 49, 25, 13, 7},
144     {156, 87, 49, 26, 14, 7},
145     {150, 86, 47, 26, 14, 7},
146     {142, 84, 47, 26, 14, 7},
147     {131, 79, 46, 26, 14, 7}
148 };
149
150
151 enum RA_Flag {
152     RA_FLAG_NONE,
153     RA_FLAG_FRAMES,
154     RA_FLAG_HEADER
155 };
156
157
158 typedef struct ALSSpecificConfig {
159     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
160     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
162     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163     int frame_length;         ///< frame length for each frame (last frame may differ)
164     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
165     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
166     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
167     int coef_table;           ///< table index of Rice code parameters
168     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169     int max_order;            ///< maximum prediction order (0..1023)
170     int block_switching;      ///< number of block switching levels
171     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172     int sb_part;              ///< sub-block partition
173     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
174     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175     int chan_config;          ///< indicates that a chan_config_info field is present
176     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
177     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179     int *chan_pos;            ///< original channel positions
180     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
181 } ALSSpecificConfig;
182
183
184 typedef struct ALSChannelData {
185     int stop_flag;
186     int master_channel;
187     int time_diff_flag;
188     int time_diff_sign;
189     int time_diff_index;
190     int weighting[6];
191 } ALSChannelData;
192
193
194 typedef struct ALSDecContext {
195     AVCodecContext *avctx;
196     ALSSpecificConfig sconf;
197     GetBitContext gb;
198     BswapDSPContext bdsp;
199     const AVCRC *crc_table;
200     uint32_t crc_org;               ///< CRC value of the original input data
201     uint32_t crc;                   ///< CRC value calculated from decoded data
202     unsigned int cur_frame_length;  ///< length of the current frame to decode
203     unsigned int frame_id;          ///< the frame ID / number of the current frame
204     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
205     unsigned int cs_switch;         ///< if true, channel rearrangement is done
206     unsigned int num_blocks;        ///< number of blocks used in the current frame
207     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
208     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
209     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
210     int ltp_lag_length;             ///< number of bits used for ltp lag value
211     int *const_block;               ///< contains const_block flags for all channels
212     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
213     unsigned int *opt_order;        ///< contains opt_order flags for all channels
214     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
215     int *use_ltp;                   ///< contains use_ltp flags for all channels
216     int *ltp_lag;                   ///< contains ltp lag values for all channels
217     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
218     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
219     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
220     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
221     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
222     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
223     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
225     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226     int *reverted_channels;         ///< stores a flag for each reverted channel
227     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
228     int32_t **raw_samples;          ///< decoded raw samples for each channel
229     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
230     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
231     MLZ* mlz;                       ///< masked lz decompression structure
232     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
233     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
234     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
235     int *last_shift_value;          ///< contains last shift value for all channels
236     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
237     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
238     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
239     int highest_decoded_channel;
240 } ALSDecContext;
241
242
243 typedef struct ALSBlockData {
244     unsigned int block_length;      ///< number of samples within the block
245     unsigned int ra_block;          ///< if true, this is a random access block
246     int          *const_block;      ///< if true, this is a constant value block
247     int          js_blocks;         ///< true if this block contains a difference signal
248     unsigned int *shift_lsbs;       ///< shift of values for this block
249     unsigned int *opt_order;        ///< prediction order of this block
250     int          *store_prev_samples;///< if true, carryover samples have to be stored
251     int          *use_ltp;          ///< if true, long-term prediction is used
252     int          *ltp_lag;          ///< lag value for long-term prediction
253     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
254     int32_t      *quant_cof;        ///< quantized parcor coefficients
255     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
256     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
257     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
259 } ALSBlockData;
260
261
262 static av_cold void dprint_specific_config(ALSDecContext *ctx)
263 {
264 #ifdef DEBUG
265     AVCodecContext *avctx    = ctx->avctx;
266     ALSSpecificConfig *sconf = &ctx->sconf;
267
268     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
269     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
270     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
271     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
272     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
273     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
274     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
275     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
277     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
278     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
279     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
280     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
281     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
282     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
283     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
284     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
285     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
286 #endif
287 }
288
289
290 /** Read an ALSSpecificConfig from a buffer into the output struct.
291  */
292 static av_cold int read_specific_config(ALSDecContext *ctx)
293 {
294     GetBitContext gb;
295     uint64_t ht_size;
296     int i, config_offset;
297     MPEG4AudioConfig m4ac = {0};
298     ALSSpecificConfig *sconf = &ctx->sconf;
299     AVCodecContext *avctx    = ctx->avctx;
300     uint32_t als_id, header_size, trailer_size;
301     int ret;
302
303     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304         return ret;
305
306     config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
307                                                   avctx->extradata_size, 1, avctx);
308
309     if (config_offset < 0)
310         return AVERROR_INVALIDDATA;
311
312     skip_bits_long(&gb, config_offset);
313
314     if (get_bits_left(&gb) < (30 << 3))
315         return AVERROR_INVALIDDATA;
316
317     // read the fixed items
318     als_id                      = get_bits_long(&gb, 32);
319     avctx->sample_rate          = m4ac.sample_rate;
320     skip_bits_long(&gb, 32); // sample rate already known
321     sconf->samples              = get_bits_long(&gb, 32);
322     avctx->channels             = m4ac.channels;
323     skip_bits(&gb, 16);      // number of channels already known
324     skip_bits(&gb, 3);       // skip file_type
325     sconf->resolution           = get_bits(&gb, 3);
326     sconf->floating             = get_bits1(&gb);
327     sconf->msb_first            = get_bits1(&gb);
328     sconf->frame_length         = get_bits(&gb, 16) + 1;
329     sconf->ra_distance          = get_bits(&gb, 8);
330     sconf->ra_flag              = get_bits(&gb, 2);
331     sconf->adapt_order          = get_bits1(&gb);
332     sconf->coef_table           = get_bits(&gb, 2);
333     sconf->long_term_prediction = get_bits1(&gb);
334     sconf->max_order            = get_bits(&gb, 10);
335     sconf->block_switching      = get_bits(&gb, 2);
336     sconf->bgmc                 = get_bits1(&gb);
337     sconf->sb_part              = get_bits1(&gb);
338     sconf->joint_stereo         = get_bits1(&gb);
339     sconf->mc_coding            = get_bits1(&gb);
340     sconf->chan_config          = get_bits1(&gb);
341     sconf->chan_sort            = get_bits1(&gb);
342     sconf->crc_enabled          = get_bits1(&gb);
343     sconf->rlslms               = get_bits1(&gb);
344     skip_bits(&gb, 5);       // skip 5 reserved bits
345     skip_bits1(&gb);         // skip aux_data_enabled
346
347
348     // check for ALSSpecificConfig struct
349     if (als_id != MKBETAG('A','L','S','\0'))
350         return AVERROR_INVALIDDATA;
351
352     if (avctx->channels > FF_SANE_NB_CHANNELS) {
353         avpriv_request_sample(avctx, "Huge number of channels");
354         return AVERROR_PATCHWELCOME;
355     }
356
357     ctx->cur_frame_length = sconf->frame_length;
358
359     // read channel config
360     if (sconf->chan_config)
361         sconf->chan_config_info = get_bits(&gb, 16);
362     // TODO: use this to set avctx->channel_layout
363
364
365     // read channel sorting
366     if (sconf->chan_sort && avctx->channels > 1) {
367         int chan_pos_bits = av_ceil_log2(avctx->channels);
368         int bits_needed  = avctx->channels * chan_pos_bits + 7;
369         if (get_bits_left(&gb) < bits_needed)
370             return AVERROR_INVALIDDATA;
371
372         if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
373             return AVERROR(ENOMEM);
374
375         ctx->cs_switch = 1;
376
377         for (i = 0; i < avctx->channels; i++) {
378             sconf->chan_pos[i] = -1;
379         }
380
381         for (i = 0; i < avctx->channels; i++) {
382             int idx;
383
384             idx = get_bits(&gb, chan_pos_bits);
385             if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
386                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
387                 ctx->cs_switch = 0;
388                 break;
389             }
390             sconf->chan_pos[idx] = i;
391         }
392
393         align_get_bits(&gb);
394     }
395
396
397     // read fixed header and trailer sizes,
398     // if size = 0xFFFFFFFF then there is no data field!
399     if (get_bits_left(&gb) < 64)
400         return AVERROR_INVALIDDATA;
401
402     header_size  = get_bits_long(&gb, 32);
403     trailer_size = get_bits_long(&gb, 32);
404     if (header_size  == 0xFFFFFFFF)
405         header_size  = 0;
406     if (trailer_size == 0xFFFFFFFF)
407         trailer_size = 0;
408
409     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
410
411
412     // skip the header and trailer data
413     if (get_bits_left(&gb) < ht_size)
414         return AVERROR_INVALIDDATA;
415
416     if (ht_size > INT32_MAX)
417         return AVERROR_PATCHWELCOME;
418
419     skip_bits_long(&gb, ht_size);
420
421
422     // initialize CRC calculation
423     if (sconf->crc_enabled) {
424         if (get_bits_left(&gb) < 32)
425             return AVERROR_INVALIDDATA;
426
427         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
428             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
429             ctx->crc       = 0xFFFFFFFF;
430             ctx->crc_org   = ~get_bits_long(&gb, 32);
431         } else
432             skip_bits_long(&gb, 32);
433     }
434
435
436     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
437
438     dprint_specific_config(ctx);
439
440     return 0;
441 }
442
443
444 /** Check the ALSSpecificConfig for unsupported features.
445  */
446 static int check_specific_config(ALSDecContext *ctx)
447 {
448     ALSSpecificConfig *sconf = &ctx->sconf;
449     int error = 0;
450
451     // report unsupported feature and set error value
452     #define MISSING_ERR(cond, str, errval)              \
453     {                                                   \
454         if (cond) {                                     \
455             avpriv_report_missing_feature(ctx->avctx,   \
456                                           str);         \
457             error = errval;                             \
458         }                                               \
459     }
460
461     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
462
463     return error;
464 }
465
466
467 /** Parse the bs_info field to extract the block partitioning used in
468  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
469  */
470 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
471                           unsigned int div, unsigned int **div_blocks,
472                           unsigned int *num_blocks)
473 {
474     if (n < 31 && ((bs_info << n) & 0x40000000)) {
475         // if the level is valid and the investigated bit n is set
476         // then recursively check both children at bits (2n+1) and (2n+2)
477         n   *= 2;
478         div += 1;
479         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
480         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
481     } else {
482         // else the bit is not set or the last level has been reached
483         // (bit implicitly not set)
484         **div_blocks = div;
485         (*div_blocks)++;
486         (*num_blocks)++;
487     }
488 }
489
490
491 /** Read and decode a Rice codeword.
492  */
493 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
494 {
495     int max = get_bits_left(gb) - k;
496     unsigned q = get_unary(gb, 0, max);
497     int r   = k ? get_bits1(gb) : !(q & 1);
498
499     if (k > 1) {
500         q <<= (k - 1);
501         q  += get_bits_long(gb, k - 1);
502     } else if (!k) {
503         q >>= 1;
504     }
505     return r ? q : ~q;
506 }
507
508
509 /** Convert PARCOR coefficient k to direct filter coefficient.
510  */
511 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
512 {
513     int i, j;
514
515     for (i = 0, j = k - 1; i < j; i++, j--) {
516         unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
518         cof[i]  += tmp1;
519     }
520     if (i == j)
521         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
522
523     cof[k] = par[k];
524 }
525
526
527 /** Read block switching field if necessary and set actual block sizes.
528  *  Also assure that the block sizes of the last frame correspond to the
529  *  actual number of samples.
530  */
531 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
532                             uint32_t *bs_info)
533 {
534     ALSSpecificConfig *sconf     = &ctx->sconf;
535     GetBitContext *gb            = &ctx->gb;
536     unsigned int *ptr_div_blocks = div_blocks;
537     unsigned int b;
538
539     if (sconf->block_switching) {
540         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
541         *bs_info = get_bits_long(gb, bs_info_len);
542         *bs_info <<= (32 - bs_info_len);
543     }
544
545     ctx->num_blocks = 0;
546     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
547
548     // The last frame may have an overdetermined block structure given in
549     // the bitstream. In that case the defined block structure would need
550     // more samples than available to be consistent.
551     // The block structure is actually used but the block sizes are adapted
552     // to fit the actual number of available samples.
553     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
554     // This results in the actual block sizes:    2 2 1 0.
555     // This is not specified in 14496-3 but actually done by the reference
556     // codec RM22 revision 2.
557     // This appears to happen in case of an odd number of samples in the last
558     // frame which is actually not allowed by the block length switching part
559     // of 14496-3.
560     // The ALS conformance files feature an odd number of samples in the last
561     // frame.
562
563     for (b = 0; b < ctx->num_blocks; b++)
564         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
565
566     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
567         unsigned int remaining = ctx->cur_frame_length;
568
569         for (b = 0; b < ctx->num_blocks; b++) {
570             if (remaining <= div_blocks[b]) {
571                 div_blocks[b] = remaining;
572                 ctx->num_blocks = b + 1;
573                 break;
574             }
575
576             remaining -= div_blocks[b];
577         }
578     }
579 }
580
581
582 /** Read the block data for a constant block
583  */
584 static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
585 {
586     ALSSpecificConfig *sconf = &ctx->sconf;
587     AVCodecContext *avctx    = ctx->avctx;
588     GetBitContext *gb        = &ctx->gb;
589
590     if (bd->block_length <= 0)
591         return AVERROR_INVALIDDATA;
592
593     *bd->raw_samples = 0;
594     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
595     bd->js_blocks    = get_bits1(gb);
596
597     // skip 5 reserved bits
598     skip_bits(gb, 5);
599
600     if (*bd->const_block) {
601         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
602         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
603     }
604
605     // ensure constant block decoding by reusing this field
606     *bd->const_block = 1;
607
608     return 0;
609 }
610
611
612 /** Decode the block data for a constant block
613  */
614 static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
615 {
616     int      smp = bd->block_length - 1;
617     int32_t  val = *bd->raw_samples;
618     int32_t *dst = bd->raw_samples + 1;
619
620     // write raw samples into buffer
621     for (; smp; smp--)
622         *dst++ = val;
623 }
624
625
626 /** Read the block data for a non-constant block
627  */
628 static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
629 {
630     ALSSpecificConfig *sconf = &ctx->sconf;
631     AVCodecContext *avctx    = ctx->avctx;
632     GetBitContext *gb        = &ctx->gb;
633     unsigned int k;
634     unsigned int s[8];
635     unsigned int sx[8];
636     unsigned int sub_blocks, log2_sub_blocks, sb_length;
637     unsigned int start      = 0;
638     unsigned int opt_order;
639     int          sb;
640     int32_t      *quant_cof = bd->quant_cof;
641     int32_t      *current_res;
642
643
644     // ensure variable block decoding by reusing this field
645     *bd->const_block = 0;
646
647     *bd->opt_order  = 1;
648     bd->js_blocks   = get_bits1(gb);
649
650     opt_order       = *bd->opt_order;
651
652     // determine the number of subblocks for entropy decoding
653     if (!sconf->bgmc && !sconf->sb_part) {
654         log2_sub_blocks = 0;
655     } else {
656         if (sconf->bgmc && sconf->sb_part)
657             log2_sub_blocks = get_bits(gb, 2);
658         else
659             log2_sub_blocks = 2 * get_bits1(gb);
660     }
661
662     sub_blocks = 1 << log2_sub_blocks;
663
664     // do not continue in case of a damaged stream since
665     // block_length must be evenly divisible by sub_blocks
666     if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
667         av_log(avctx, AV_LOG_WARNING,
668                "Block length is not evenly divisible by the number of subblocks.\n");
669         return AVERROR_INVALIDDATA;
670     }
671
672     sb_length = bd->block_length >> log2_sub_blocks;
673
674     if (sconf->bgmc) {
675         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
676         for (k = 1; k < sub_blocks; k++)
677             s[k] = s[k - 1] + decode_rice(gb, 2);
678
679         for (k = 0; k < sub_blocks; k++) {
680             sx[k]   = s[k] & 0x0F;
681             s [k] >>= 4;
682         }
683     } else {
684         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
685         for (k = 1; k < sub_blocks; k++)
686             s[k] = s[k - 1] + decode_rice(gb, 0);
687     }
688     for (k = 1; k < sub_blocks; k++)
689         if (s[k] > 32) {
690             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
691             return AVERROR_INVALIDDATA;
692         }
693
694     if (get_bits1(gb))
695         *bd->shift_lsbs = get_bits(gb, 4) + 1;
696
697     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
698
699
700     if (!sconf->rlslms) {
701         if (sconf->adapt_order && sconf->max_order) {
702             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
703                                                 2, sconf->max_order + 1));
704             *bd->opt_order       = get_bits(gb, opt_order_length);
705             if (*bd->opt_order > sconf->max_order) {
706                 *bd->opt_order = sconf->max_order;
707                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
708                 return AVERROR_INVALIDDATA;
709             }
710         } else {
711             *bd->opt_order = sconf->max_order;
712         }
713         opt_order = *bd->opt_order;
714
715         if (opt_order) {
716             int add_base;
717
718             if (sconf->coef_table == 3) {
719                 add_base = 0x7F;
720
721                 // read coefficient 0
722                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723
724                 // read coefficient 1
725                 if (opt_order > 1)
726                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727
728                 // read coefficients 2 to opt_order
729                 for (k = 2; k < opt_order; k++)
730                     quant_cof[k] = get_bits(gb, 7);
731             } else {
732                 int k_max;
733                 add_base = 1;
734
735                 // read coefficient 0 to 19
736                 k_max = FFMIN(opt_order, 20);
737                 for (k = 0; k < k_max; k++) {
738                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
740                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
741                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742                         av_log(avctx, AV_LOG_ERROR,
743                                "quant_cof %"PRId32" is out of range.\n",
744                                quant_cof[k]);
745                         return AVERROR_INVALIDDATA;
746                     }
747                 }
748
749                 // read coefficients 20 to 126
750                 k_max = FFMIN(opt_order, 127);
751                 for (; k < k_max; k++)
752                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753
754                 // read coefficients 127 to opt_order
755                 for (; k < opt_order; k++)
756                     quant_cof[k] = decode_rice(gb, 1);
757
758                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759
760                 if (opt_order > 1)
761                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762             }
763
764             for (k = 2; k < opt_order; k++)
765                 quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
766         }
767     }
768
769     // read LTP gain and lag values
770     if (sconf->long_term_prediction) {
771         *bd->use_ltp = get_bits1(gb);
772
773         if (*bd->use_ltp) {
774             int r, c;
775
776             bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
777             bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
778
779             r                 = get_unary(gb, 0, 4);
780             c                 = get_bits(gb, 2);
781             if (r >= 4) {
782                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783                 return AVERROR_INVALIDDATA;
784             }
785
786             bd->ltp_gain[2]   = ltp_gain_values[r][c];
787
788             bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
789             bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
790
791             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
792             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
793         }
794     }
795
796     // read first value and residuals in case of a random access block
797     if (bd->ra_block) {
798         start = FFMIN(opt_order, 3);
799         av_assert0(sb_length <= sconf->frame_length);
800         if (sb_length <= start) {
801             // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
802             av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
803             return AVERROR_PATCHWELCOME;
804         }
805
806         if (opt_order)
807             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
808         if (opt_order > 1)
809             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
810         if (opt_order > 2)
811             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
812     }
813
814     // read all residuals
815     if (sconf->bgmc) {
816         int          delta[8];
817         unsigned int k    [8];
818         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
819
820         // read most significant bits
821         unsigned int high;
822         unsigned int low;
823         unsigned int value;
824
825         int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
826         if (ret < 0)
827             return ret;
828
829         current_res = bd->raw_samples + start;
830
831         for (sb = 0; sb < sub_blocks; sb++) {
832             unsigned int sb_len  = sb_length - (sb ? 0 : start);
833
834             k    [sb] = s[sb] > b ? s[sb] - b : 0;
835             delta[sb] = 5 - s[sb] + k[sb];
836
837             if (k[sb] >= 32)
838                 return AVERROR_INVALIDDATA;
839
840             ff_bgmc_decode(gb, sb_len, current_res,
841                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
842
843             current_res += sb_len;
844         }
845
846         ff_bgmc_decode_end(gb);
847
848
849         // read least significant bits and tails
850         current_res = bd->raw_samples + start;
851
852         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
853             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
854             unsigned int cur_k         = k[sb];
855             unsigned int cur_s         = s[sb];
856
857             for (; start < sb_length; start++) {
858                 int32_t res = *current_res;
859
860                 if (res == cur_tail_code) {
861                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
862                                           << (5 - delta[sb]);
863
864                     res = decode_rice(gb, cur_s);
865
866                     if (res >= 0) {
867                         res += (max_msb    ) << cur_k;
868                     } else {
869                         res -= (max_msb - 1) << cur_k;
870                     }
871                 } else {
872                     if (res > cur_tail_code)
873                         res--;
874
875                     if (res & 1)
876                         res = -res;
877
878                     res >>= 1;
879
880                     if (cur_k) {
881                         res  *= 1U << cur_k;
882                         res  |= get_bits_long(gb, cur_k);
883                     }
884                 }
885
886                 *current_res++ = res;
887             }
888         }
889     } else {
890         current_res = bd->raw_samples + start;
891
892         for (sb = 0; sb < sub_blocks; sb++, start = 0)
893             for (; start < sb_length; start++)
894                 *current_res++ = decode_rice(gb, s[sb]);
895      }
896
897     return 0;
898 }
899
900
901 /** Decode the block data for a non-constant block
902  */
903 static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
904 {
905     ALSSpecificConfig *sconf = &ctx->sconf;
906     unsigned int block_length = bd->block_length;
907     unsigned int smp = 0;
908     unsigned int k;
909     int opt_order             = *bd->opt_order;
910     int sb;
911     int64_t y;
912     int32_t *quant_cof        = bd->quant_cof;
913     int32_t *lpc_cof          = bd->lpc_cof;
914     int32_t *raw_samples      = bd->raw_samples;
915     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
916     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
917
918     // reverse long-term prediction
919     if (*bd->use_ltp) {
920         int ltp_smp;
921
922         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
923             int center = ltp_smp - *bd->ltp_lag;
924             int begin  = FFMAX(0, center - 2);
925             int end    = center + 3;
926             int tab    = 5 - (end - begin);
927             int base;
928
929             y = 1 << 6;
930
931             for (base = begin; base < end; base++, tab++)
932                 y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
933
934             raw_samples[ltp_smp] += y >> 7;
935         }
936     }
937
938     // reconstruct all samples from residuals
939     if (bd->ra_block) {
940         for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
941             y = 1 << 19;
942
943             for (sb = 0; sb < smp; sb++)
944                 y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
945
946             *raw_samples++ -= y >> 20;
947             parcor_to_lpc(smp, quant_cof, lpc_cof);
948         }
949     } else {
950         for (k = 0; k < opt_order; k++)
951             parcor_to_lpc(k, quant_cof, lpc_cof);
952
953         // store previous samples in case that they have to be altered
954         if (*bd->store_prev_samples)
955             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
956                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
957
958         // reconstruct difference signal for prediction (joint-stereo)
959         if (bd->js_blocks && bd->raw_other) {
960             uint32_t *left, *right;
961
962             if (bd->raw_other > raw_samples) {  // D = R - L
963                 left  = raw_samples;
964                 right = bd->raw_other;
965             } else {                                // D = R - L
966                 left  = bd->raw_other;
967                 right = raw_samples;
968             }
969
970             for (sb = -1; sb >= -sconf->max_order; sb--)
971                 raw_samples[sb] = right[sb] - left[sb];
972         }
973
974         // reconstruct shifted signal
975         if (*bd->shift_lsbs)
976             for (sb = -1; sb >= -sconf->max_order; sb--)
977                 raw_samples[sb] >>= *bd->shift_lsbs;
978     }
979
980     // reverse linear prediction coefficients for efficiency
981     lpc_cof = lpc_cof + opt_order;
982
983     for (sb = 0; sb < opt_order; sb++)
984         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
985
986     // reconstruct raw samples
987     raw_samples = bd->raw_samples + smp;
988     lpc_cof     = lpc_cof_reversed + opt_order;
989
990     for (; raw_samples < raw_samples_end; raw_samples++) {
991         y = 1 << 19;
992
993         for (sb = -opt_order; sb < 0; sb++)
994             y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
995
996         *raw_samples -= y >> 20;
997     }
998
999     raw_samples = bd->raw_samples;
1000
1001     // restore previous samples in case that they have been altered
1002     if (*bd->store_prev_samples)
1003         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1004                sizeof(*raw_samples) * sconf->max_order);
1005
1006     return 0;
1007 }
1008
1009
1010 /** Read the block data.
1011  */
1012 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1013 {
1014     int ret;
1015     GetBitContext *gb        = &ctx->gb;
1016     ALSSpecificConfig *sconf = &ctx->sconf;
1017
1018     *bd->shift_lsbs = 0;
1019
1020     if (get_bits_left(gb) < 1)
1021         return AVERROR_INVALIDDATA;
1022
1023     // read block type flag and read the samples accordingly
1024     if (get_bits1(gb)) {
1025         ret = read_var_block_data(ctx, bd);
1026     } else {
1027         ret = read_const_block_data(ctx, bd);
1028     }
1029
1030     if (!sconf->mc_coding || ctx->js_switch)
1031         align_get_bits(gb);
1032
1033     return ret;
1034 }
1035
1036
1037 /** Decode the block data.
1038  */
1039 static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1040 {
1041     unsigned int smp;
1042     int ret = 0;
1043
1044     // read block type flag and read the samples accordingly
1045     if (*bd->const_block)
1046         decode_const_block_data(ctx, bd);
1047     else
1048         ret = decode_var_block_data(ctx, bd); // always return 0
1049
1050     if (ret < 0)
1051         return ret;
1052
1053     // TODO: read RLSLMS extension data
1054
1055     if (*bd->shift_lsbs)
1056         for (smp = 0; smp < bd->block_length; smp++)
1057             bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1058
1059     return 0;
1060 }
1061
1062
1063 /** Read and decode block data successively.
1064  */
1065 static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1066 {
1067     int ret;
1068
1069     if ((ret = read_block(ctx, bd)) < 0)
1070         return ret;
1071
1072     return decode_block(ctx, bd);
1073 }
1074
1075
1076 /** Compute the number of samples left to decode for the current frame and
1077  *  sets these samples to zero.
1078  */
1079 static void zero_remaining(unsigned int b, unsigned int b_max,
1080                            const unsigned int *div_blocks, int32_t *buf)
1081 {
1082     unsigned int count = 0;
1083
1084     while (b < b_max)
1085         count += div_blocks[b++];
1086
1087     if (count)
1088         memset(buf, 0, sizeof(*buf) * count);
1089 }
1090
1091
1092 /** Decode blocks independently.
1093  */
1094 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1095                              unsigned int c, const unsigned int *div_blocks,
1096                              unsigned int *js_blocks)
1097 {
1098     int ret;
1099     unsigned int b;
1100     ALSBlockData bd = { 0 };
1101
1102     bd.ra_block         = ra_frame;
1103     bd.const_block      = ctx->const_block;
1104     bd.shift_lsbs       = ctx->shift_lsbs;
1105     bd.opt_order        = ctx->opt_order;
1106     bd.store_prev_samples = ctx->store_prev_samples;
1107     bd.use_ltp          = ctx->use_ltp;
1108     bd.ltp_lag          = ctx->ltp_lag;
1109     bd.ltp_gain         = ctx->ltp_gain[0];
1110     bd.quant_cof        = ctx->quant_cof[0];
1111     bd.lpc_cof          = ctx->lpc_cof[0];
1112     bd.prev_raw_samples = ctx->prev_raw_samples;
1113     bd.raw_samples      = ctx->raw_samples[c];
1114
1115
1116     for (b = 0; b < ctx->num_blocks; b++) {
1117         bd.block_length     = div_blocks[b];
1118
1119         if ((ret = read_decode_block(ctx, &bd)) < 0) {
1120             // damaged block, write zero for the rest of the frame
1121             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1122             return ret;
1123         }
1124         bd.raw_samples += div_blocks[b];
1125         bd.ra_block     = 0;
1126     }
1127
1128     return 0;
1129 }
1130
1131
1132 /** Decode blocks dependently.
1133  */
1134 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1135                          unsigned int c, const unsigned int *div_blocks,
1136                          unsigned int *js_blocks)
1137 {
1138     ALSSpecificConfig *sconf = &ctx->sconf;
1139     unsigned int offset = 0;
1140     unsigned int b;
1141     int ret;
1142     ALSBlockData bd[2] = { { 0 } };
1143
1144     bd[0].ra_block         = ra_frame;
1145     bd[0].const_block      = ctx->const_block;
1146     bd[0].shift_lsbs       = ctx->shift_lsbs;
1147     bd[0].opt_order        = ctx->opt_order;
1148     bd[0].store_prev_samples = ctx->store_prev_samples;
1149     bd[0].use_ltp          = ctx->use_ltp;
1150     bd[0].ltp_lag          = ctx->ltp_lag;
1151     bd[0].ltp_gain         = ctx->ltp_gain[0];
1152     bd[0].quant_cof        = ctx->quant_cof[0];
1153     bd[0].lpc_cof          = ctx->lpc_cof[0];
1154     bd[0].prev_raw_samples = ctx->prev_raw_samples;
1155     bd[0].js_blocks        = *js_blocks;
1156
1157     bd[1].ra_block         = ra_frame;
1158     bd[1].const_block      = ctx->const_block;
1159     bd[1].shift_lsbs       = ctx->shift_lsbs;
1160     bd[1].opt_order        = ctx->opt_order;
1161     bd[1].store_prev_samples = ctx->store_prev_samples;
1162     bd[1].use_ltp          = ctx->use_ltp;
1163     bd[1].ltp_lag          = ctx->ltp_lag;
1164     bd[1].ltp_gain         = ctx->ltp_gain[0];
1165     bd[1].quant_cof        = ctx->quant_cof[0];
1166     bd[1].lpc_cof          = ctx->lpc_cof[0];
1167     bd[1].prev_raw_samples = ctx->prev_raw_samples;
1168     bd[1].js_blocks        = *(js_blocks + 1);
1169
1170     // decode all blocks
1171     for (b = 0; b < ctx->num_blocks; b++) {
1172         unsigned int s;
1173
1174         bd[0].block_length = div_blocks[b];
1175         bd[1].block_length = div_blocks[b];
1176
1177         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1178         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1179
1180         bd[0].raw_other    = bd[1].raw_samples;
1181         bd[1].raw_other    = bd[0].raw_samples;
1182
1183         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1184             (ret = read_decode_block(ctx, &bd[1])) < 0)
1185             goto fail;
1186
1187         // reconstruct joint-stereo blocks
1188         if (bd[0].js_blocks) {
1189             if (bd[1].js_blocks)
1190                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1191
1192             for (s = 0; s < div_blocks[b]; s++)
1193                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1194         } else if (bd[1].js_blocks) {
1195             for (s = 0; s < div_blocks[b]; s++)
1196                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1197         }
1198
1199         offset  += div_blocks[b];
1200         bd[0].ra_block = 0;
1201         bd[1].ra_block = 0;
1202     }
1203
1204     // store carryover raw samples,
1205     // the others channel raw samples are stored by the calling function.
1206     memmove(ctx->raw_samples[c] - sconf->max_order,
1207             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1208             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1209
1210     return 0;
1211 fail:
1212     // damaged block, write zero for the rest of the frame
1213     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1214     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1215     return ret;
1216 }
1217
1218 static inline int als_weighting(GetBitContext *gb, int k, int off)
1219 {
1220     int idx = av_clip(decode_rice(gb, k) + off,
1221                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1222     return mcc_weightings[idx];
1223 }
1224
1225 /** Read the channel data.
1226   */
1227 static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1228 {
1229     GetBitContext *gb       = &ctx->gb;
1230     ALSChannelData *current = cd;
1231     unsigned int channels   = ctx->avctx->channels;
1232     int entries             = 0;
1233
1234     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1235         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1236
1237         if (current->master_channel >= channels) {
1238             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1239             return AVERROR_INVALIDDATA;
1240         }
1241
1242         if (current->master_channel != c) {
1243             current->time_diff_flag = get_bits1(gb);
1244             current->weighting[0]   = als_weighting(gb, 1, 16);
1245             current->weighting[1]   = als_weighting(gb, 2, 14);
1246             current->weighting[2]   = als_weighting(gb, 1, 16);
1247
1248             if (current->time_diff_flag) {
1249                 current->weighting[3] = als_weighting(gb, 1, 16);
1250                 current->weighting[4] = als_weighting(gb, 1, 16);
1251                 current->weighting[5] = als_weighting(gb, 1, 16);
1252
1253                 current->time_diff_sign  = get_bits1(gb);
1254                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1255             }
1256         }
1257
1258         current++;
1259         entries++;
1260     }
1261
1262     if (entries == channels) {
1263         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1264         return AVERROR_INVALIDDATA;
1265     }
1266
1267     align_get_bits(gb);
1268     return 0;
1269 }
1270
1271
1272 /** Recursively reverts the inter-channel correlation for a block.
1273  */
1274 static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1275                                        ALSChannelData **cd, int *reverted,
1276                                        unsigned int offset, int c)
1277 {
1278     ALSChannelData *ch = cd[c];
1279     unsigned int   dep = 0;
1280     unsigned int channels = ctx->avctx->channels;
1281     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1282
1283     if (reverted[c])
1284         return 0;
1285
1286     reverted[c] = 1;
1287
1288     while (dep < channels && !ch[dep].stop_flag) {
1289         revert_channel_correlation(ctx, bd, cd, reverted, offset,
1290                                    ch[dep].master_channel);
1291
1292         dep++;
1293     }
1294
1295     if (dep == channels) {
1296         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1297         return AVERROR_INVALIDDATA;
1298     }
1299
1300     bd->const_block = ctx->const_block + c;
1301     bd->shift_lsbs  = ctx->shift_lsbs + c;
1302     bd->opt_order   = ctx->opt_order + c;
1303     bd->store_prev_samples = ctx->store_prev_samples + c;
1304     bd->use_ltp     = ctx->use_ltp + c;
1305     bd->ltp_lag     = ctx->ltp_lag + c;
1306     bd->ltp_gain    = ctx->ltp_gain[c];
1307     bd->lpc_cof     = ctx->lpc_cof[c];
1308     bd->quant_cof   = ctx->quant_cof[c];
1309     bd->raw_samples = ctx->raw_samples[c] + offset;
1310
1311     for (dep = 0; !ch[dep].stop_flag; dep++) {
1312         ptrdiff_t smp;
1313         ptrdiff_t begin = 1;
1314         ptrdiff_t end   = bd->block_length - 1;
1315         int64_t y;
1316         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1317
1318         if (ch[dep].master_channel == c)
1319             continue;
1320
1321         if (ch[dep].time_diff_flag) {
1322             int t = ch[dep].time_diff_index;
1323
1324             if (ch[dep].time_diff_sign) {
1325                 t      = -t;
1326                 if (begin < t) {
1327                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1328                     return AVERROR_INVALIDDATA;
1329                 }
1330                 begin -= t;
1331             } else {
1332                 if (end < t) {
1333                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1334                     return AVERROR_INVALIDDATA;
1335                 }
1336                 end   -= t;
1337             }
1338
1339             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1340                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1341                 av_log(ctx->avctx, AV_LOG_ERROR,
1342                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1343                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
1344                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1345                 return AVERROR_INVALIDDATA;
1346             }
1347
1348             for (smp = begin; smp < end; smp++) {
1349                 y  = (1 << 6) +
1350                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1351                      MUL64(ch[dep].weighting[1], master[smp        ]) +
1352                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1353                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1354                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
1355                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1356
1357                 bd->raw_samples[smp] += y >> 7;
1358             }
1359         } else {
1360
1361             if (begin - 1 < ctx->raw_buffer - master ||
1362                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
1363                 av_log(ctx->avctx, AV_LOG_ERROR,
1364                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1365                        master + begin - 1, master + end + 1,
1366                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1367                 return AVERROR_INVALIDDATA;
1368             }
1369
1370             for (smp = begin; smp < end; smp++) {
1371                 y  = (1 << 6) +
1372                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
1373                      MUL64(ch[dep].weighting[1], master[smp    ]) +
1374                      MUL64(ch[dep].weighting[2], master[smp + 1]);
1375
1376                 bd->raw_samples[smp] += y >> 7;
1377             }
1378         }
1379     }
1380
1381     return 0;
1382 }
1383
1384
1385 /** multiply two softfloats and handle the rounding off
1386  */
1387 static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1388     uint64_t mantissa_temp;
1389     uint64_t mask_64;
1390     int cutoff_bit_count;
1391     unsigned char last_2_bits;
1392     unsigned int mantissa;
1393     int32_t sign;
1394     uint32_t return_val = 0;
1395     int bit_count       = 48;
1396
1397     sign = a.sign ^ b.sign;
1398
1399     // Multiply mantissa bits in a 64-bit register
1400     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1401     mask_64       = (uint64_t)0x1 << 47;
1402
1403     if (!mantissa_temp)
1404         return FLOAT_0;
1405
1406     // Count the valid bit count
1407     while (!(mantissa_temp & mask_64) && mask_64) {
1408         bit_count--;
1409         mask_64 >>= 1;
1410     }
1411
1412     // Round off
1413     cutoff_bit_count = bit_count - 24;
1414     if (cutoff_bit_count > 0) {
1415         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1416         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1417             // Need to round up
1418             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1419         }
1420     }
1421
1422     if (cutoff_bit_count >= 0) {
1423         mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1424     } else {
1425         mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1426     }
1427
1428     // Need one more shift?
1429     if (mantissa & 0x01000000ul) {
1430         bit_count++;
1431         mantissa >>= 1;
1432     }
1433
1434     if (!sign) {
1435         return_val = 0x80000000U;
1436     }
1437
1438     return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1439     return_val |= mantissa;
1440     return av_bits2sf_ieee754(return_val);
1441 }
1442
1443
1444 /** Read and decode the floating point sample data
1445  */
1446 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1447     AVCodecContext *avctx   = ctx->avctx;
1448     GetBitContext *gb       = &ctx->gb;
1449     SoftFloat_IEEE754 *acf  = ctx->acf;
1450     int *shift_value        = ctx->shift_value;
1451     int *last_shift_value   = ctx->last_shift_value;
1452     int *last_acf_mantissa  = ctx->last_acf_mantissa;
1453     int **raw_mantissa      = ctx->raw_mantissa;
1454     int *nbits              = ctx->nbits;
1455     unsigned char *larray   = ctx->larray;
1456     int frame_length        = ctx->cur_frame_length;
1457     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1458     unsigned int partA_flag;
1459     unsigned int highest_byte;
1460     unsigned int shift_amp;
1461     uint32_t tmp_32;
1462     int use_acf;
1463     int nchars;
1464     int i;
1465     int c;
1466     long k;
1467     long nbits_aligned;
1468     unsigned long acc;
1469     unsigned long j;
1470     uint32_t sign;
1471     uint32_t e;
1472     uint32_t mantissa;
1473
1474     skip_bits_long(gb, 32); //num_bytes_diff_float
1475     use_acf = get_bits1(gb);
1476
1477     if (ra_frame) {
1478         memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1479         memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
1480         ff_mlz_flush_dict(ctx->mlz);
1481     }
1482
1483     if (avctx->channels * 8 > get_bits_left(gb))
1484         return AVERROR_INVALIDDATA;
1485
1486     for (c = 0; c < avctx->channels; ++c) {
1487         if (use_acf) {
1488             //acf_flag
1489             if (get_bits1(gb)) {
1490                 tmp_32 = get_bits(gb, 23);
1491                 last_acf_mantissa[c] = tmp_32;
1492             } else {
1493                 tmp_32 = last_acf_mantissa[c];
1494             }
1495             acf[c] = av_bits2sf_ieee754(tmp_32);
1496         } else {
1497             acf[c] = FLOAT_1;
1498         }
1499
1500         highest_byte = get_bits(gb, 2);
1501         partA_flag   = get_bits1(gb);
1502         shift_amp    = get_bits1(gb);
1503
1504         if (shift_amp) {
1505             shift_value[c] = get_bits(gb, 8);
1506             last_shift_value[c] = shift_value[c];
1507         } else {
1508             shift_value[c] = last_shift_value[c];
1509         }
1510
1511         if (partA_flag) {
1512             if (!get_bits1(gb)) { //uncompressed
1513                 for (i = 0; i < frame_length; ++i) {
1514                     if (ctx->raw_samples[c][i] == 0) {
1515                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1516                     }
1517                 }
1518             } else { //compressed
1519                 nchars = 0;
1520                 for (i = 0; i < frame_length; ++i) {
1521                     if (ctx->raw_samples[c][i] == 0) {
1522                         nchars += 4;
1523                     }
1524                 }
1525
1526                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1527                 if(tmp_32 != nchars) {
1528                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1529                     return AVERROR_INVALIDDATA;
1530                 }
1531
1532                 for (i = 0; i < frame_length; ++i) {
1533                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
1534                 }
1535             }
1536         }
1537
1538         //decode part B
1539         if (highest_byte) {
1540             for (i = 0; i < frame_length; ++i) {
1541                 if (ctx->raw_samples[c][i] != 0) {
1542                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1543                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1544                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1545                     } else {
1546                         nbits[i] = 23;
1547                     }
1548                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
1549                 }
1550             }
1551
1552             if (!get_bits1(gb)) { //uncompressed
1553                 for (i = 0; i < frame_length; ++i) {
1554                     if (ctx->raw_samples[c][i] != 0) {
1555                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1556                     }
1557                 }
1558             } else { //compressed
1559                 nchars = 0;
1560                 for (i = 0; i < frame_length; ++i) {
1561                     if (ctx->raw_samples[c][i]) {
1562                         nchars += (int) nbits[i] / 8;
1563                         if (nbits[i] & 7) {
1564                             ++nchars;
1565                         }
1566                     }
1567                 }
1568
1569                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1570                 if(tmp_32 != nchars) {
1571                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1572                     return AVERROR_INVALIDDATA;
1573                 }
1574
1575                 j = 0;
1576                 for (i = 0; i < frame_length; ++i) {
1577                     if (ctx->raw_samples[c][i]) {
1578                         if (nbits[i] & 7) {
1579                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1580                         } else {
1581                             nbits_aligned = nbits[i];
1582                         }
1583                         acc = 0;
1584                         for (k = 0; k < nbits_aligned/8; ++k) {
1585                             acc = (acc << 8) + larray[j++];
1586                         }
1587                         acc >>= (nbits_aligned - nbits[i]);
1588                         raw_mantissa[c][i] = acc;
1589                     }
1590                 }
1591             }
1592         }
1593
1594         for (i = 0; i < frame_length; ++i) {
1595             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1596             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1597
1598             if (ctx->raw_samples[c][i] != 0) {
1599                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1600                     pcm_sf = multiply(acf[c], pcm_sf);
1601                 }
1602
1603                 sign = pcm_sf.sign;
1604                 e = pcm_sf.exp;
1605                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1606
1607                 while(mantissa >= 0x1000000) {
1608                     e++;
1609                     mantissa >>= 1;
1610                 }
1611
1612                 if (mantissa) e += (shift_value[c] - 127);
1613                 mantissa &= 0x007fffffUL;
1614
1615                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1616                 ctx->raw_samples[c][i] = tmp_32;
1617             } else {
1618                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1619             }
1620         }
1621         align_get_bits(gb);
1622     }
1623     return 0;
1624 }
1625
1626
1627 /** Read the frame data.
1628  */
1629 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1630 {
1631     ALSSpecificConfig *sconf = &ctx->sconf;
1632     AVCodecContext *avctx    = ctx->avctx;
1633     GetBitContext *gb = &ctx->gb;
1634     unsigned int div_blocks[32];                ///< block sizes.
1635     unsigned int c;
1636     unsigned int js_blocks[2];
1637     uint32_t bs_info = 0;
1638     int ret;
1639
1640     // skip the size of the ra unit if present in the frame
1641     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1642         skip_bits_long(gb, 32);
1643
1644     if (sconf->mc_coding && sconf->joint_stereo) {
1645         ctx->js_switch = get_bits1(gb);
1646         align_get_bits(gb);
1647     }
1648
1649     if (!sconf->mc_coding || ctx->js_switch) {
1650         int independent_bs = !sconf->joint_stereo;
1651
1652         for (c = 0; c < avctx->channels; c++) {
1653             js_blocks[0] = 0;
1654             js_blocks[1] = 0;
1655
1656             get_block_sizes(ctx, div_blocks, &bs_info);
1657
1658             // if joint_stereo and block_switching is set, independent decoding
1659             // is signaled via the first bit of bs_info
1660             if (sconf->joint_stereo && sconf->block_switching)
1661                 if (bs_info >> 31)
1662                     independent_bs = 2;
1663
1664             // if this is the last channel, it has to be decoded independently
1665             if (c == avctx->channels - 1 || (c & 1))
1666                 independent_bs = 1;
1667
1668             if (independent_bs) {
1669                 ret = decode_blocks_ind(ctx, ra_frame, c,
1670                                         div_blocks, js_blocks);
1671                 if (ret < 0)
1672                     return ret;
1673                 independent_bs--;
1674             } else {
1675                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1676                 if (ret < 0)
1677                     return ret;
1678
1679                 c++;
1680             }
1681
1682             // store carryover raw samples
1683             memmove(ctx->raw_samples[c] - sconf->max_order,
1684                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1685                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1686             ctx->highest_decoded_channel = c;
1687         }
1688     } else { // multi-channel coding
1689         ALSBlockData   bd = { 0 };
1690         int            b, ret;
1691         int            *reverted_channels = ctx->reverted_channels;
1692         unsigned int   offset             = 0;
1693
1694         for (c = 0; c < avctx->channels; c++)
1695             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1696                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1697                 return AVERROR_INVALIDDATA;
1698             }
1699
1700         memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1701
1702         bd.ra_block         = ra_frame;
1703         bd.prev_raw_samples = ctx->prev_raw_samples;
1704
1705         get_block_sizes(ctx, div_blocks, &bs_info);
1706
1707         for (b = 0; b < ctx->num_blocks; b++) {
1708             bd.block_length = div_blocks[b];
1709             if (bd.block_length <= 0) {
1710                 av_log(ctx->avctx, AV_LOG_WARNING,
1711                        "Invalid block length %u in channel data!\n",
1712                        bd.block_length);
1713                 continue;
1714             }
1715
1716             for (c = 0; c < avctx->channels; c++) {
1717                 bd.const_block = ctx->const_block + c;
1718                 bd.shift_lsbs  = ctx->shift_lsbs + c;
1719                 bd.opt_order   = ctx->opt_order + c;
1720                 bd.store_prev_samples = ctx->store_prev_samples + c;
1721                 bd.use_ltp     = ctx->use_ltp + c;
1722                 bd.ltp_lag     = ctx->ltp_lag + c;
1723                 bd.ltp_gain    = ctx->ltp_gain[c];
1724                 bd.lpc_cof     = ctx->lpc_cof[c];
1725                 bd.quant_cof   = ctx->quant_cof[c];
1726                 bd.raw_samples = ctx->raw_samples[c] + offset;
1727                 bd.raw_other   = NULL;
1728
1729                 if ((ret = read_block(ctx, &bd)) < 0)
1730                     return ret;
1731                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1732                     return ret;
1733             }
1734
1735             for (c = 0; c < avctx->channels; c++) {
1736                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1737                                                  reverted_channels, offset, c);
1738                 if (ret < 0)
1739                     return ret;
1740             }
1741             for (c = 0; c < avctx->channels; c++) {
1742                 bd.const_block = ctx->const_block + c;
1743                 bd.shift_lsbs  = ctx->shift_lsbs + c;
1744                 bd.opt_order   = ctx->opt_order + c;
1745                 bd.store_prev_samples = ctx->store_prev_samples + c;
1746                 bd.use_ltp     = ctx->use_ltp + c;
1747                 bd.ltp_lag     = ctx->ltp_lag + c;
1748                 bd.ltp_gain    = ctx->ltp_gain[c];
1749                 bd.lpc_cof     = ctx->lpc_cof[c];
1750                 bd.quant_cof   = ctx->quant_cof[c];
1751                 bd.raw_samples = ctx->raw_samples[c] + offset;
1752
1753                 if ((ret = decode_block(ctx, &bd)) < 0)
1754                     return ret;
1755
1756                 ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
1757             }
1758
1759             memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1760             offset      += div_blocks[b];
1761             bd.ra_block  = 0;
1762         }
1763
1764         // store carryover raw samples
1765         for (c = 0; c < avctx->channels; c++)
1766             memmove(ctx->raw_samples[c] - sconf->max_order,
1767                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1768                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1769     }
1770
1771     if (sconf->floating) {
1772         read_diff_float_data(ctx, ra_frame);
1773     }
1774
1775     if (get_bits_left(gb) < 0) {
1776         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1777         return AVERROR_INVALIDDATA;
1778     }
1779
1780     return 0;
1781 }
1782
1783
1784 /** Decode an ALS frame.
1785  */
1786 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1787                         AVPacket *avpkt)
1788 {
1789     ALSDecContext *ctx       = avctx->priv_data;
1790     AVFrame *frame           = data;
1791     ALSSpecificConfig *sconf = &ctx->sconf;
1792     const uint8_t *buffer    = avpkt->data;
1793     int buffer_size          = avpkt->size;
1794     int invalid_frame, ret;
1795     unsigned int c, sample, ra_frame, bytes_read, shift;
1796
1797     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1798         return ret;
1799
1800     // In the case that the distance between random access frames is set to zero
1801     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1802     // For the first frame, if prediction is used, all samples used from the
1803     // previous frame are assumed to be zero.
1804     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1805
1806     // the last frame to decode might have a different length
1807     if (sconf->samples != 0xFFFFFFFF)
1808         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1809                                       sconf->frame_length);
1810     else
1811         ctx->cur_frame_length = sconf->frame_length;
1812
1813     ctx->highest_decoded_channel = 0;
1814     // decode the frame data
1815     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1816         av_log(ctx->avctx, AV_LOG_WARNING,
1817                "Reading frame data failed. Skipping RA unit.\n");
1818
1819     if (ctx->highest_decoded_channel == 0)
1820         return AVERROR_INVALIDDATA;
1821
1822     ctx->frame_id++;
1823
1824     /* get output buffer */
1825     frame->nb_samples = ctx->cur_frame_length;
1826     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1827         return ret;
1828
1829     // transform decoded frame into output format
1830     #define INTERLEAVE_OUTPUT(bps)                                                   \
1831     {                                                                                \
1832         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1833         int channels = avctx->channels;                                              \
1834         int32_t *raw_samples = ctx->raw_samples[0];                                  \
1835         int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1;         \
1836         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1837         if (!ctx->cs_switch) {                                                       \
1838             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1839                 for (c = 0; c < channels; c++)                                       \
1840                     *dest++ = raw_samples[c*raw_step + sample] * (1U << shift);      \
1841         } else {                                                                     \
1842             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1843                 for (c = 0; c < channels; c++)                                       \
1844                     *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1845         }                                                                            \
1846     }
1847
1848     if (ctx->avctx->bits_per_raw_sample <= 16) {
1849         INTERLEAVE_OUTPUT(16)
1850     } else {
1851         INTERLEAVE_OUTPUT(32)
1852     }
1853
1854     // update CRC
1855     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1856         int swap = HAVE_BIGENDIAN != sconf->msb_first;
1857
1858         if (ctx->avctx->bits_per_raw_sample == 24) {
1859             int32_t *src = (int32_t *)frame->data[0];
1860
1861             for (sample = 0;
1862                  sample < ctx->cur_frame_length * avctx->channels;
1863                  sample++) {
1864                 int32_t v;
1865
1866                 if (swap)
1867                     v = av_bswap32(src[sample]);
1868                 else
1869                     v = src[sample];
1870                 if (!HAVE_BIGENDIAN)
1871                     v >>= 8;
1872
1873                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1874             }
1875         } else {
1876             uint8_t *crc_source;
1877
1878             if (swap) {
1879                 if (ctx->avctx->bits_per_raw_sample <= 16) {
1880                     int16_t *src  = (int16_t*) frame->data[0];
1881                     int16_t *dest = (int16_t*) ctx->crc_buffer;
1882                     for (sample = 0;
1883                          sample < ctx->cur_frame_length * avctx->channels;
1884                          sample++)
1885                         *dest++ = av_bswap16(src[sample]);
1886                 } else {
1887                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1888                                         (uint32_t *) frame->data[0],
1889                                         ctx->cur_frame_length * avctx->channels);
1890                 }
1891                 crc_source = ctx->crc_buffer;
1892             } else {
1893                 crc_source = frame->data[0];
1894             }
1895
1896             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1897                               ctx->cur_frame_length * avctx->channels *
1898                               av_get_bytes_per_sample(avctx->sample_fmt));
1899         }
1900
1901
1902         // check CRC sums if this is the last frame
1903         if (ctx->cur_frame_length != sconf->frame_length &&
1904             ctx->crc_org != ctx->crc) {
1905             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1906             if (avctx->err_recognition & AV_EF_EXPLODE)
1907                 return AVERROR_INVALIDDATA;
1908         }
1909     }
1910
1911     *got_frame_ptr = 1;
1912
1913     bytes_read = invalid_frame ? buffer_size :
1914                                  (get_bits_count(&ctx->gb) + 7) >> 3;
1915
1916     return bytes_read;
1917 }
1918
1919
1920 /** Uninitialize the ALS decoder.
1921  */
1922 static av_cold int decode_end(AVCodecContext *avctx)
1923 {
1924     ALSDecContext *ctx = avctx->priv_data;
1925     int i;
1926
1927     av_freep(&ctx->sconf.chan_pos);
1928
1929     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1930
1931     av_freep(&ctx->const_block);
1932     av_freep(&ctx->shift_lsbs);
1933     av_freep(&ctx->opt_order);
1934     av_freep(&ctx->store_prev_samples);
1935     av_freep(&ctx->use_ltp);
1936     av_freep(&ctx->ltp_lag);
1937     av_freep(&ctx->ltp_gain);
1938     av_freep(&ctx->ltp_gain_buffer);
1939     av_freep(&ctx->quant_cof);
1940     av_freep(&ctx->lpc_cof);
1941     av_freep(&ctx->quant_cof_buffer);
1942     av_freep(&ctx->lpc_cof_buffer);
1943     av_freep(&ctx->lpc_cof_reversed_buffer);
1944     av_freep(&ctx->prev_raw_samples);
1945     av_freep(&ctx->raw_samples);
1946     av_freep(&ctx->raw_buffer);
1947     av_freep(&ctx->chan_data);
1948     av_freep(&ctx->chan_data_buffer);
1949     av_freep(&ctx->reverted_channels);
1950     av_freep(&ctx->crc_buffer);
1951     if (ctx->mlz) {
1952         av_freep(&ctx->mlz->dict);
1953         av_freep(&ctx->mlz);
1954     }
1955     av_freep(&ctx->acf);
1956     av_freep(&ctx->last_acf_mantissa);
1957     av_freep(&ctx->shift_value);
1958     av_freep(&ctx->last_shift_value);
1959     if (ctx->raw_mantissa) {
1960         for (i = 0; i < avctx->channels; i++) {
1961             av_freep(&ctx->raw_mantissa[i]);
1962         }
1963         av_freep(&ctx->raw_mantissa);
1964     }
1965     av_freep(&ctx->larray);
1966     av_freep(&ctx->nbits);
1967
1968     return 0;
1969 }
1970
1971
1972 /** Initialize the ALS decoder.
1973  */
1974 static av_cold int decode_init(AVCodecContext *avctx)
1975 {
1976     unsigned int c;
1977     unsigned int channel_size;
1978     int num_buffers, ret;
1979     ALSDecContext *ctx = avctx->priv_data;
1980     ALSSpecificConfig *sconf = &ctx->sconf;
1981     ctx->avctx = avctx;
1982
1983     if (!avctx->extradata) {
1984         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1985         return AVERROR_INVALIDDATA;
1986     }
1987
1988     if ((ret = read_specific_config(ctx)) < 0) {
1989         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1990         goto fail;
1991     }
1992
1993     if ((ret = check_specific_config(ctx)) < 0) {
1994         goto fail;
1995     }
1996
1997     if (sconf->bgmc) {
1998         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1999         if (ret < 0)
2000             goto fail;
2001     }
2002     if (sconf->floating) {
2003         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
2004         avctx->bits_per_raw_sample = 32;
2005     } else {
2006         avctx->sample_fmt          = sconf->resolution > 1
2007                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
2008         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2009         if (avctx->bits_per_raw_sample > 32) {
2010             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2011                    avctx->bits_per_raw_sample);
2012             ret = AVERROR_INVALIDDATA;
2013             goto fail;
2014         }
2015     }
2016
2017     // set maximum Rice parameter for progressive decoding based on resolution
2018     // This is not specified in 14496-3 but actually done by the reference
2019     // codec RM22 revision 2.
2020     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2021
2022     // set lag value for long-term prediction
2023     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
2024                               (avctx->sample_rate >= 192000);
2025
2026     // allocate quantized parcor coefficient buffer
2027     num_buffers = sconf->mc_coding ? avctx->channels : 1;
2028     if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2029         return AVERROR_INVALIDDATA;
2030
2031     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2032     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2033     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2034                                             sizeof(*ctx->quant_cof_buffer));
2035     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
2036                                             sizeof(*ctx->lpc_cof_buffer));
2037     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2038                                                    sizeof(*ctx->lpc_cof_buffer));
2039
2040     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
2041         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
2042         !ctx->lpc_cof_reversed_buffer) {
2043         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2044         ret = AVERROR(ENOMEM);
2045         goto fail;
2046     }
2047
2048     // assign quantized parcor coefficient buffers
2049     for (c = 0; c < num_buffers; c++) {
2050         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2051         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
2052     }
2053
2054     // allocate and assign lag and gain data buffer for ltp mode
2055     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2056     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2057     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2058     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2059     ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2060     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2061     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2062     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2063
2064     if (!ctx->const_block || !ctx->shift_lsbs ||
2065         !ctx->opt_order || !ctx->store_prev_samples ||
2066         !ctx->use_ltp  || !ctx->ltp_lag ||
2067         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2068         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2069         ret = AVERROR(ENOMEM);
2070         goto fail;
2071     }
2072
2073     for (c = 0; c < num_buffers; c++)
2074         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2075
2076     // allocate and assign channel data buffer for mcc mode
2077     if (sconf->mc_coding) {
2078         ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
2079                                                  sizeof(*ctx->chan_data_buffer));
2080         ctx->chan_data         = av_mallocz_array(num_buffers,
2081                                                  sizeof(*ctx->chan_data));
2082         ctx->reverted_channels = av_malloc_array(num_buffers,
2083                                                  sizeof(*ctx->reverted_channels));
2084
2085         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2086             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2087             ret = AVERROR(ENOMEM);
2088             goto fail;
2089         }
2090
2091         for (c = 0; c < num_buffers; c++)
2092             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2093     } else {
2094         ctx->chan_data         = NULL;
2095         ctx->chan_data_buffer  = NULL;
2096         ctx->reverted_channels = NULL;
2097     }
2098
2099     channel_size      = sconf->frame_length + sconf->max_order;
2100
2101     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2102     ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2103     ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2104
2105     if (sconf->floating) {
2106         ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2107         ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2108         ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2109         ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2110         ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2111
2112         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2113         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2114         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
2115
2116         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2117             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2118             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2119             ret = AVERROR(ENOMEM);
2120             goto fail;
2121         }
2122
2123         ff_mlz_init_dict(avctx, ctx->mlz);
2124         ff_mlz_flush_dict(ctx->mlz);
2125
2126         for (c = 0; c < avctx->channels; ++c) {
2127             ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2128         }
2129     }
2130
2131     // allocate previous raw sample buffer
2132     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2133         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2134         ret = AVERROR(ENOMEM);
2135         goto fail;
2136     }
2137
2138     // assign raw samples buffers
2139     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2140     for (c = 1; c < avctx->channels; c++)
2141         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2142
2143     // allocate crc buffer
2144     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2145         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2146         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2147                                           avctx->channels *
2148                                           av_get_bytes_per_sample(avctx->sample_fmt),
2149                                           sizeof(*ctx->crc_buffer));
2150         if (!ctx->crc_buffer) {
2151             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2152             ret = AVERROR(ENOMEM);
2153             goto fail;
2154         }
2155     }
2156
2157     ff_bswapdsp_init(&ctx->bdsp);
2158
2159     return 0;
2160
2161 fail:
2162     return ret;
2163 }
2164
2165
2166 /** Flush (reset) the frame ID after seeking.
2167  */
2168 static av_cold void flush(AVCodecContext *avctx)
2169 {
2170     ALSDecContext *ctx = avctx->priv_data;
2171
2172     ctx->frame_id = 0;
2173 }
2174
2175
2176 AVCodec ff_als_decoder = {
2177     .name           = "als",
2178     .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2179     .type           = AVMEDIA_TYPE_AUDIO,
2180     .id             = AV_CODEC_ID_MP4ALS,
2181     .priv_data_size = sizeof(ALSDecContext),
2182     .init           = decode_init,
2183     .close          = decode_end,
2184     .decode         = decode_frame,
2185     .flush          = flush,
2186     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
2187     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
2188 };