]> git.sesse.net Git - ffmpeg/blob - libavcodec/atrac1.c
atrac1: use optimized float_interleave() function for stereo interleaving
[ffmpeg] / libavcodec / atrac1.c
1 /*
2  * Atrac 1 compatible decoder
3  * Copyright (c) 2009 Maxim Poliakovski
4  * Copyright (c) 2009 Benjamin Larsson
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 /**
24  * @file
25  * Atrac 1 compatible decoder.
26  * This decoder handles raw ATRAC1 data and probably SDDS data.
27  */
28
29 /* Many thanks to Tim Craig for all the help! */
30
31 #include <math.h>
32 #include <stddef.h>
33 #include <stdio.h>
34
35 #include "avcodec.h"
36 #include "get_bits.h"
37 #include "dsputil.h"
38 #include "fft.h"
39 #include "fmtconvert.h"
40 #include "sinewin.h"
41
42 #include "atrac.h"
43 #include "atrac1data.h"
44
45 #define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
46 #define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
47 #define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
48 #define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
49 #define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
50 #define AT1_MAX_CHANNELS 2
51
52 #define AT1_QMF_BANDS    3
53 #define IDX_LOW_BAND     0
54 #define IDX_MID_BAND     1
55 #define IDX_HIGH_BAND    2
56
57 /**
58  * Sound unit struct, one unit is used per channel
59  */
60 typedef struct {
61     int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
62     int                 num_bfus;                           ///< number of Block Floating Units
63     float*              spectrum[2];
64     DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
65     DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
66     DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
67     DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
68     DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23];    ///< delay line for the last stacked QMF filter
69 } AT1SUCtx;
70
71 /**
72  * The atrac1 context, holds all needed parameters for decoding
73  */
74 typedef struct {
75     AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
76     DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
77
78     DECLARE_ALIGNED(32, float,  low)[256];
79     DECLARE_ALIGNED(32, float,  mid)[256];
80     DECLARE_ALIGNED(32, float, high)[512];
81     float*              bands[3];
82     float              *out_samples[AT1_MAX_CHANNELS];
83     FFTContext          mdct_ctx[3];
84     int                 channels;
85     DSPContext          dsp;
86     FmtConvertContext   fmt_conv;
87 } AT1Ctx;
88
89 /** size of the transform in samples in the long mode for each QMF band */
90 static const uint16_t samples_per_band[3] = {128, 128, 256};
91 static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
92
93
94 static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
95                       int rev_spec)
96 {
97     FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
98     int transf_size = 1 << nbits;
99
100     if (rev_spec) {
101         int i;
102         for (i = 0; i < transf_size / 2; i++)
103             FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
104     }
105     mdct_context->imdct_half(mdct_context, out, spec);
106 }
107
108
109 static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
110 {
111     int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
112     unsigned int start_pos, ref_pos = 0, pos = 0;
113
114     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
115         float *prev_buf;
116         int j;
117
118         band_samples = samples_per_band[band_num];
119         log2_block_count = su->log2_block_count[band_num];
120
121         /* number of mdct blocks in the current QMF band: 1 - for long mode */
122         /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
123         num_blocks = 1 << log2_block_count;
124
125         if (num_blocks == 1) {
126             /* mdct block size in samples: 128 (long mode, low & mid bands), */
127             /* 256 (long mode, high band) and 32 (short mode, all bands) */
128             block_size = band_samples >> log2_block_count;
129
130             /* calc transform size in bits according to the block_size_mode */
131             nbits = mdct_long_nbits[band_num] - log2_block_count;
132
133             if (nbits != 5 && nbits != 7 && nbits != 8)
134                 return -1;
135         } else {
136             block_size = 32;
137             nbits = 5;
138         }
139
140         start_pos = 0;
141         prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
142         for (j=0; j < num_blocks; j++) {
143             at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
144
145             /* overlap and window */
146             q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
147                                       &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
148
149             prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
150             start_pos += block_size;
151             pos += block_size;
152         }
153
154         if (num_blocks == 1)
155             memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
156
157         ref_pos += band_samples;
158     }
159
160     /* Swap buffers so the mdct overlap works */
161     FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
162
163     return 0;
164 }
165
166 /**
167  * Parse the block size mode byte
168  */
169
170 static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
171 {
172     int log2_block_count_tmp, i;
173
174     for (i = 0; i < 2; i++) {
175         /* low and mid band */
176         log2_block_count_tmp = get_bits(gb, 2);
177         if (log2_block_count_tmp & 1)
178             return -1;
179         log2_block_cnt[i] = 2 - log2_block_count_tmp;
180     }
181
182     /* high band */
183     log2_block_count_tmp = get_bits(gb, 2);
184     if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
185         return -1;
186     log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
187
188     skip_bits(gb, 2);
189     return 0;
190 }
191
192
193 static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
194                               float spec[AT1_SU_SAMPLES])
195 {
196     int bits_used, band_num, bfu_num, i;
197     uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
198     uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
199
200     /* parse the info byte (2nd byte) telling how much BFUs were coded */
201     su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
202
203     /* calc number of consumed bits:
204         num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
205         + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
206     bits_used = su->num_bfus * 10 + 32 +
207                 bfu_amount_tab2[get_bits(gb, 2)] +
208                 (bfu_amount_tab3[get_bits(gb, 3)] << 1);
209
210     /* get word length index (idwl) for each BFU */
211     for (i = 0; i < su->num_bfus; i++)
212         idwls[i] = get_bits(gb, 4);
213
214     /* get scalefactor index (idsf) for each BFU */
215     for (i = 0; i < su->num_bfus; i++)
216         idsfs[i] = get_bits(gb, 6);
217
218     /* zero idwl/idsf for empty BFUs */
219     for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
220         idwls[i] = idsfs[i] = 0;
221
222     /* read in the spectral data and reconstruct MDCT spectrum of this channel */
223     for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
224         for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
225             int pos;
226
227             int num_specs = specs_per_bfu[bfu_num];
228             int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
229             float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
230             bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
231
232             /* check for bitstream overflow */
233             if (bits_used > AT1_SU_MAX_BITS)
234                 return -1;
235
236             /* get the position of the 1st spec according to the block size mode */
237             pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
238
239             if (word_len) {
240                 float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
241
242                 for (i = 0; i < num_specs; i++) {
243                     /* read in a quantized spec and convert it to
244                      * signed int and then inverse quantization
245                      */
246                     spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
247                 }
248             } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
249                 memset(&spec[pos], 0, num_specs * sizeof(float));
250             }
251         }
252     }
253
254     return 0;
255 }
256
257
258 static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
259 {
260     float temp[256];
261     float iqmf_temp[512 + 46];
262
263     /* combine low and middle bands */
264     atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
265
266     /* delay the signal of the high band by 23 samples */
267     memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  23);
268     memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float) * 256);
269
270     /* combine (low + middle) and high bands */
271     atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
272 }
273
274
275 static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
276                                int *data_size, AVPacket *avpkt)
277 {
278     const uint8_t *buf = avpkt->data;
279     int buf_size       = avpkt->size;
280     AT1Ctx *q          = avctx->priv_data;
281     int ch, ret, out_size;
282     GetBitContext gb;
283     float* samples = data;
284
285
286     if (buf_size < 212 * q->channels) {
287         av_log(q,AV_LOG_ERROR,"Not enough data to decode!\n");
288         return -1;
289     }
290
291     out_size = q->channels * AT1_SU_SAMPLES *
292                av_get_bytes_per_sample(avctx->sample_fmt);
293     if (*data_size < out_size) {
294         av_log(avctx, AV_LOG_ERROR, "Output buffer is too small\n");
295         return AVERROR(EINVAL);
296     }
297
298     for (ch = 0; ch < q->channels; ch++) {
299         AT1SUCtx* su = &q->SUs[ch];
300
301         init_get_bits(&gb, &buf[212 * ch], 212 * 8);
302
303         /* parse block_size_mode, 1st byte */
304         ret = at1_parse_bsm(&gb, su->log2_block_count);
305         if (ret < 0)
306             return ret;
307
308         ret = at1_unpack_dequant(&gb, su, q->spec);
309         if (ret < 0)
310             return ret;
311
312         ret = at1_imdct_block(su, q);
313         if (ret < 0)
314             return ret;
315         at1_subband_synthesis(q, su, q->channels == 1 ? samples : q->out_samples[ch]);
316     }
317
318     /* interleave */
319     if (q->channels == 2) {
320         q->fmt_conv.float_interleave(samples, (const float **)q->out_samples,
321                                      AT1_SU_SAMPLES, 2);
322     }
323
324     *data_size = out_size;
325     return avctx->block_align;
326 }
327
328
329 static av_cold int atrac1_decode_init(AVCodecContext *avctx)
330 {
331     AT1Ctx *q = avctx->priv_data;
332
333     avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
334
335     if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
336         av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
337                avctx->channels);
338         return AVERROR(EINVAL);
339     }
340     q->channels = avctx->channels;
341
342     if (avctx->channels == 2) {
343         q->out_samples[0] = av_malloc(2 * AT1_SU_SAMPLES * sizeof(*q->out_samples[0]));
344         q->out_samples[1] = q->out_samples[0] + AT1_SU_SAMPLES;
345         if (!q->out_samples[0]) {
346             av_freep(&q->out_samples[0]);
347             return AVERROR(ENOMEM);
348         }
349     }
350
351     /* Init the mdct transforms */
352     ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
353     ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
354     ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
355
356     ff_init_ff_sine_windows(5);
357
358     atrac_generate_tables();
359
360     dsputil_init(&q->dsp, avctx);
361     ff_fmt_convert_init(&q->fmt_conv, avctx);
362
363     q->bands[0] = q->low;
364     q->bands[1] = q->mid;
365     q->bands[2] = q->high;
366
367     /* Prepare the mdct overlap buffers */
368     q->SUs[0].spectrum[0] = q->SUs[0].spec1;
369     q->SUs[0].spectrum[1] = q->SUs[0].spec2;
370     q->SUs[1].spectrum[0] = q->SUs[1].spec1;
371     q->SUs[1].spectrum[1] = q->SUs[1].spec2;
372
373     return 0;
374 }
375
376
377 static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
378     AT1Ctx *q = avctx->priv_data;
379
380     av_freep(&q->out_samples[0]);
381
382     ff_mdct_end(&q->mdct_ctx[0]);
383     ff_mdct_end(&q->mdct_ctx[1]);
384     ff_mdct_end(&q->mdct_ctx[2]);
385     return 0;
386 }
387
388
389 AVCodec ff_atrac1_decoder = {
390     .name = "atrac1",
391     .type = AVMEDIA_TYPE_AUDIO,
392     .id = CODEC_ID_ATRAC1,
393     .priv_data_size = sizeof(AT1Ctx),
394     .init = atrac1_decode_init,
395     .close = atrac1_decode_end,
396     .decode = atrac1_decode_frame,
397     .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
398 };