2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
45 #include "libavutil/channel_layout.h"
46 #include "libavutil/lfg.h"
51 #include "bytestream.h"
59 /* the different Cook versions */
60 #define MONO 0x1000001
61 #define STEREO 0x1000002
62 #define JOINT_STEREO 0x1000003
63 #define MC_COOK 0x2000000 // multichannel Cook, not supported
65 #define SUBBAND_SIZE 20
66 #define MAX_SUBPACKETS 5
68 typedef struct cook_gains {
73 typedef struct COOKSubpacket {
81 int samples_per_channel;
82 int log2_numvector_size;
83 unsigned int channel_mask;
86 int bits_per_subpacket;
89 int numvector_size; // 1 << log2_numvector_size;
91 float mono_previous_buffer1[1024];
92 float mono_previous_buffer2[1024];
102 typedef struct cook {
104 * The following 5 functions provide the lowlevel arithmetic on
105 * the internal audio buffers.
107 void (*scalar_dequant)(struct cook *q, int index, int quant_index,
108 int *subband_coef_index, int *subband_coef_sign,
111 void (*decouple)(struct cook *q,
115 float *decode_buffer,
116 float *mlt_buffer1, float *mlt_buffer2);
118 void (*imlt_window)(struct cook *q, float *buffer1,
119 cook_gains *gains_ptr, float *previous_buffer);
121 void (*interpolate)(struct cook *q, float *buffer,
122 int gain_index, int gain_index_next);
124 void (*saturate_output)(struct cook *q, float *out);
126 AVCodecContext* avctx;
127 AudioDSPContext adsp;
131 int samples_per_channel;
134 int discarded_packets;
141 VLC envelope_quant_index[13];
142 VLC sqvh[7]; // scalar quantization
144 /* generatable tables and related variables */
145 int gain_size_factor;
146 float gain_table[23];
150 uint8_t* decoded_bytes_buffer;
151 DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
152 float decode_buffer_1[1024];
153 float decode_buffer_2[1024];
154 float decode_buffer_0[1060]; /* static allocation for joint decode */
156 const float *cplscales[5];
158 COOKSubpacket subpacket[MAX_SUBPACKETS];
161 static float pow2tab[127];
162 static float rootpow2tab[127];
164 /*************** init functions ***************/
166 /* table generator */
167 static av_cold void init_pow2table(void)
170 for (i = -63; i < 64; i++) {
171 pow2tab[63 + i] = pow(2, i);
172 rootpow2tab[63 + i] = sqrt(pow(2, i));
176 /* table generator */
177 static av_cold void init_gain_table(COOKContext *q)
180 q->gain_size_factor = q->samples_per_channel / 8;
181 for (i = 0; i < 23; i++)
182 q->gain_table[i] = pow(pow2tab[i + 52],
183 (1.0 / (double) q->gain_size_factor));
187 static av_cold int init_cook_vlc_tables(COOKContext *q)
192 for (i = 0; i < 13; i++) {
193 result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
194 envelope_quant_index_huffbits[i], 1, 1,
195 envelope_quant_index_huffcodes[i], 2, 2, 0);
197 av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
198 for (i = 0; i < 7; i++) {
199 result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
200 cvh_huffbits[i], 1, 1,
201 cvh_huffcodes[i], 2, 2, 0);
204 for (i = 0; i < q->num_subpackets; i++) {
205 if (q->subpacket[i].joint_stereo == 1) {
206 result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
207 (1 << q->subpacket[i].js_vlc_bits) - 1,
208 ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
209 ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
210 av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
214 av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
218 static av_cold int init_cook_mlt(COOKContext *q)
221 int mlt_size = q->samples_per_channel;
223 if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0)
224 return AVERROR(ENOMEM);
226 /* Initialize the MLT window: simple sine window. */
227 ff_sine_window_init(q->mlt_window, mlt_size);
228 for (j = 0; j < mlt_size; j++)
229 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
231 /* Initialize the MDCT. */
232 if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
233 av_freep(&q->mlt_window);
236 av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
237 av_log2(mlt_size) + 1);
242 static av_cold void init_cplscales_table(COOKContext *q)
245 for (i = 0; i < 5; i++)
246 q->cplscales[i] = cplscales[i];
249 /*************** init functions end ***********/
251 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
252 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
255 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
256 * Why? No idea, some checksum/error detection method maybe.
258 * Out buffer size: extra bytes are needed to cope with
259 * padding/misalignment.
260 * Subpackets passed to the decoder can contain two, consecutive
261 * half-subpackets, of identical but arbitrary size.
262 * 1234 1234 1234 1234 extraA extraB
263 * Case 1: AAAA BBBB 0 0
264 * Case 2: AAAA ABBB BB-- 3 3
265 * Case 3: AAAA AABB BBBB 2 2
266 * Case 4: AAAA AAAB BBBB BB-- 1 5
268 * Nice way to waste CPU cycles.
270 * @param inbuffer pointer to byte array of indata
271 * @param out pointer to byte array of outdata
272 * @param bytes number of bytes
274 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
276 static const uint32_t tab[4] = {
277 AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
278 AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
283 uint32_t *obuf = (uint32_t *) out;
284 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
285 * I'm too lazy though, should be something like
286 * for (i = 0; i < bitamount / 64; i++)
287 * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
288 * Buffer alignment needs to be checked. */
290 off = (intptr_t) inbuffer & 3;
291 buf = (const uint32_t *) (inbuffer - off);
294 for (i = 0; i < bytes / 4; i++)
295 obuf[i] = c ^ buf[i];
300 static av_cold int cook_decode_close(AVCodecContext *avctx)
303 COOKContext *q = avctx->priv_data;
304 av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
306 /* Free allocated memory buffers. */
307 av_freep(&q->mlt_window);
308 av_freep(&q->decoded_bytes_buffer);
310 /* Free the transform. */
311 ff_mdct_end(&q->mdct_ctx);
313 /* Free the VLC tables. */
314 for (i = 0; i < 13; i++)
315 ff_free_vlc(&q->envelope_quant_index[i]);
316 for (i = 0; i < 7; i++)
317 ff_free_vlc(&q->sqvh[i]);
318 for (i = 0; i < q->num_subpackets; i++)
319 ff_free_vlc(&q->subpacket[i].channel_coupling);
321 av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
327 * Fill the gain array for the timedomain quantization.
329 * @param gb pointer to the GetBitContext
330 * @param gaininfo array[9] of gain indexes
332 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
336 n = get_unary(gb, 0, get_bits_left(gb)); // amount of elements*2 to update
340 int index = get_bits(gb, 3);
341 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
344 gaininfo[i++] = gain;
351 * Create the quant index table needed for the envelope.
353 * @param q pointer to the COOKContext
354 * @param quant_index_table pointer to the array
356 static int decode_envelope(COOKContext *q, COOKSubpacket *p,
357 int *quant_index_table)
361 quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
363 for (i = 1; i < p->total_subbands; i++) {
365 if (i >= p->js_subband_start * 2) {
366 vlc_index -= p->js_subband_start;
373 vlc_index = 13; // the VLC tables >13 are identical to No. 13
375 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
376 q->envelope_quant_index[vlc_index - 1].bits, 2);
377 quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
378 if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
379 av_log(q->avctx, AV_LOG_ERROR,
380 "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
381 quant_index_table[i], i);
382 return AVERROR_INVALIDDATA;
390 * Calculate the category and category_index vector.
392 * @param q pointer to the COOKContext
393 * @param quant_index_table pointer to the array
394 * @param category pointer to the category array
395 * @param category_index pointer to the category_index array
397 static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
398 int *category, int *category_index)
400 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
401 int exp_index2[102] = { 0 };
402 int exp_index1[102] = { 0 };
404 int tmp_categorize_array[128 * 2] = { 0 };
405 int tmp_categorize_array1_idx = p->numvector_size;
406 int tmp_categorize_array2_idx = p->numvector_size;
408 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
410 if (bits_left > q->samples_per_channel)
411 bits_left = q->samples_per_channel +
412 ((bits_left - q->samples_per_channel) * 5) / 8;
417 for (i = 32; i > 0; i = i / 2) {
420 for (j = p->total_subbands; j > 0; j--) {
421 exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
423 num_bits += expbits_tab[exp_idx];
425 if (num_bits >= bits_left - 32)
429 /* Calculate total number of bits. */
431 for (i = 0; i < p->total_subbands; i++) {
432 exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
433 num_bits += expbits_tab[exp_idx];
434 exp_index1[i] = exp_idx;
435 exp_index2[i] = exp_idx;
437 tmpbias1 = tmpbias2 = num_bits;
439 for (j = 1; j < p->numvector_size; j++) {
440 if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
443 for (i = 0; i < p->total_subbands; i++) {
444 if (exp_index1[i] < 7) {
445 v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
454 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
455 tmpbias1 -= expbits_tab[exp_index1[index]] -
456 expbits_tab[exp_index1[index] + 1];
461 for (i = 0; i < p->total_subbands; i++) {
462 if (exp_index2[i] > 0) {
463 v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
472 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
473 tmpbias2 -= expbits_tab[exp_index2[index]] -
474 expbits_tab[exp_index2[index] - 1];
479 for (i = 0; i < p->total_subbands; i++)
480 category[i] = exp_index2[i];
482 for (i = 0; i < p->numvector_size - 1; i++)
483 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
488 * Expand the category vector.
490 * @param q pointer to the COOKContext
491 * @param category pointer to the category array
492 * @param category_index pointer to the category_index array
494 static inline void expand_category(COOKContext *q, int *category,
498 for (i = 0; i < q->num_vectors; i++)
500 int idx = category_index[i];
501 if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
507 * The real requantization of the mltcoefs
509 * @param q pointer to the COOKContext
511 * @param quant_index quantisation index
512 * @param subband_coef_index array of indexes to quant_centroid_tab
513 * @param subband_coef_sign signs of coefficients
514 * @param mlt_p pointer into the mlt buffer
516 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
517 int *subband_coef_index, int *subband_coef_sign,
523 for (i = 0; i < SUBBAND_SIZE; i++) {
524 if (subband_coef_index[i]) {
525 f1 = quant_centroid_tab[index][subband_coef_index[i]];
526 if (subband_coef_sign[i])
529 /* noise coding if subband_coef_index[i] == 0 */
530 f1 = dither_tab[index];
531 if (av_lfg_get(&q->random_state) < 0x80000000)
534 mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
538 * Unpack the subband_coef_index and subband_coef_sign vectors.
540 * @param q pointer to the COOKContext
541 * @param category pointer to the category array
542 * @param subband_coef_index array of indexes to quant_centroid_tab
543 * @param subband_coef_sign signs of coefficients
545 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
546 int *subband_coef_index, int *subband_coef_sign)
549 int vlc, vd, tmp, result;
551 vd = vd_tab[category];
553 for (i = 0; i < vpr_tab[category]; i++) {
554 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
555 if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
559 for (j = vd - 1; j >= 0; j--) {
560 tmp = (vlc * invradix_tab[category]) / 0x100000;
561 subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
564 for (j = 0; j < vd; j++) {
565 if (subband_coef_index[i * vd + j]) {
566 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
567 subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
570 subband_coef_sign[i * vd + j] = 0;
573 subband_coef_sign[i * vd + j] = 0;
582 * Fill the mlt_buffer with mlt coefficients.
584 * @param q pointer to the COOKContext
585 * @param category pointer to the category array
586 * @param quant_index_table pointer to the array
587 * @param mlt_buffer pointer to mlt coefficients
589 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
590 int *quant_index_table, float *mlt_buffer)
592 /* A zero in this table means that the subband coefficient is
593 random noise coded. */
594 int subband_coef_index[SUBBAND_SIZE];
595 /* A zero in this table means that the subband coefficient is a
596 positive multiplicator. */
597 int subband_coef_sign[SUBBAND_SIZE];
601 for (band = 0; band < p->total_subbands; band++) {
602 index = category[band];
603 if (category[band] < 7) {
604 if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
606 for (j = 0; j < p->total_subbands; j++)
607 category[band + j] = 7;
611 memset(subband_coef_index, 0, sizeof(subband_coef_index));
612 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
614 q->scalar_dequant(q, index, quant_index_table[band],
615 subband_coef_index, subband_coef_sign,
616 &mlt_buffer[band * SUBBAND_SIZE]);
619 /* FIXME: should this be removed, or moved into loop above? */
620 if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
625 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
627 int category_index[128] = { 0 };
628 int category[128] = { 0 };
629 int quant_index_table[102];
632 if ((res = decode_envelope(q, p, quant_index_table)) < 0)
634 q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
635 categorize(q, p, quant_index_table, category, category_index);
636 expand_category(q, category, category_index);
637 for (i=0; i<p->total_subbands; i++) {
639 return AVERROR_INVALIDDATA;
641 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
648 * the actual requantization of the timedomain samples
650 * @param q pointer to the COOKContext
651 * @param buffer pointer to the timedomain buffer
652 * @param gain_index index for the block multiplier
653 * @param gain_index_next index for the next block multiplier
655 static void interpolate_float(COOKContext *q, float *buffer,
656 int gain_index, int gain_index_next)
660 fc1 = pow2tab[gain_index + 63];
662 if (gain_index == gain_index_next) { // static gain
663 for (i = 0; i < q->gain_size_factor; i++)
665 } else { // smooth gain
666 fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
667 for (i = 0; i < q->gain_size_factor; i++) {
675 * Apply transform window, overlap buffers.
677 * @param q pointer to the COOKContext
678 * @param inbuffer pointer to the mltcoefficients
679 * @param gains_ptr current and previous gains
680 * @param previous_buffer pointer to the previous buffer to be used for overlapping
682 static void imlt_window_float(COOKContext *q, float *inbuffer,
683 cook_gains *gains_ptr, float *previous_buffer)
685 const float fc = pow2tab[gains_ptr->previous[0] + 63];
687 /* The weird thing here, is that the two halves of the time domain
688 * buffer are swapped. Also, the newest data, that we save away for
689 * next frame, has the wrong sign. Hence the subtraction below.
690 * Almost sounds like a complex conjugate/reverse data/FFT effect.
693 /* Apply window and overlap */
694 for (i = 0; i < q->samples_per_channel; i++)
695 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
696 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
700 * The modulated lapped transform, this takes transform coefficients
701 * and transforms them into timedomain samples.
702 * Apply transform window, overlap buffers, apply gain profile
703 * and buffer management.
705 * @param q pointer to the COOKContext
706 * @param inbuffer pointer to the mltcoefficients
707 * @param gains_ptr current and previous gains
708 * @param previous_buffer pointer to the previous buffer to be used for overlapping
710 static void imlt_gain(COOKContext *q, float *inbuffer,
711 cook_gains *gains_ptr, float *previous_buffer)
713 float *buffer0 = q->mono_mdct_output;
714 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
717 /* Inverse modified discrete cosine transform */
718 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
720 q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
722 /* Apply gain profile */
723 for (i = 0; i < 8; i++)
724 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
725 q->interpolate(q, &buffer1[q->gain_size_factor * i],
726 gains_ptr->now[i], gains_ptr->now[i + 1]);
728 /* Save away the current to be previous block. */
729 memcpy(previous_buffer, buffer0,
730 q->samples_per_channel * sizeof(*previous_buffer));
735 * function for getting the jointstereo coupling information
737 * @param q pointer to the COOKContext
738 * @param decouple_tab decoupling array
740 static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
743 int vlc = get_bits1(&q->gb);
744 int start = cplband[p->js_subband_start];
745 int end = cplband[p->subbands - 1];
746 int length = end - start + 1;
752 for (i = 0; i < length; i++)
753 decouple_tab[start + i] = get_vlc2(&q->gb,
754 p->channel_coupling.table,
755 p->channel_coupling.bits, 2);
757 for (i = 0; i < length; i++) {
758 int v = get_bits(&q->gb, p->js_vlc_bits);
759 if (v == (1<<p->js_vlc_bits)-1) {
760 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
761 return AVERROR_INVALIDDATA;
763 decouple_tab[start + i] = v;
769 * function decouples a pair of signals from a single signal via multiplication.
771 * @param q pointer to the COOKContext
772 * @param subband index of the current subband
773 * @param f1 multiplier for channel 1 extraction
774 * @param f2 multiplier for channel 2 extraction
775 * @param decode_buffer input buffer
776 * @param mlt_buffer1 pointer to left channel mlt coefficients
777 * @param mlt_buffer2 pointer to right channel mlt coefficients
779 static void decouple_float(COOKContext *q,
783 float *decode_buffer,
784 float *mlt_buffer1, float *mlt_buffer2)
787 for (j = 0; j < SUBBAND_SIZE; j++) {
788 tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
789 mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
790 mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
795 * function for decoding joint stereo data
797 * @param q pointer to the COOKContext
798 * @param mlt_buffer1 pointer to left channel mlt coefficients
799 * @param mlt_buffer2 pointer to right channel mlt coefficients
801 static int joint_decode(COOKContext *q, COOKSubpacket *p,
802 float *mlt_buffer_left, float *mlt_buffer_right)
805 int decouple_tab[SUBBAND_SIZE] = { 0 };
806 float *decode_buffer = q->decode_buffer_0;
809 const float *cplscale;
811 memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
813 /* Make sure the buffers are zeroed out. */
814 memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left));
815 memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
816 if ((res = decouple_info(q, p, decouple_tab)) < 0)
818 if ((res = mono_decode(q, p, decode_buffer)) < 0)
820 /* The two channels are stored interleaved in decode_buffer. */
821 for (i = 0; i < p->js_subband_start; i++) {
822 for (j = 0; j < SUBBAND_SIZE; j++) {
823 mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j];
824 mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
828 /* When we reach js_subband_start (the higher frequencies)
829 the coefficients are stored in a coupling scheme. */
830 idx = (1 << p->js_vlc_bits) - 1;
831 for (i = p->js_subband_start; i < p->subbands; i++) {
832 cpl_tmp = cplband[i];
833 idx -= decouple_tab[cpl_tmp];
834 cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
835 f1 = cplscale[decouple_tab[cpl_tmp] + 1];
837 q->decouple(q, p, i, f1, f2, decode_buffer,
838 mlt_buffer_left, mlt_buffer_right);
839 idx = (1 << p->js_vlc_bits) - 1;
846 * First part of subpacket decoding:
847 * decode raw stream bytes and read gain info.
849 * @param q pointer to the COOKContext
850 * @param inbuffer pointer to raw stream data
851 * @param gains_ptr array of current/prev gain pointers
853 static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
854 const uint8_t *inbuffer,
855 cook_gains *gains_ptr)
859 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
860 p->bits_per_subpacket / 8);
861 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
862 p->bits_per_subpacket);
863 decode_gain_info(&q->gb, gains_ptr->now);
865 /* Swap current and previous gains */
866 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
870 * Saturate the output signal and interleave.
872 * @param q pointer to the COOKContext
873 * @param out pointer to the output vector
875 static void saturate_output_float(COOKContext *q, float *out)
877 q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
878 -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
883 * Final part of subpacket decoding:
884 * Apply modulated lapped transform, gain compensation,
885 * clip and convert to integer.
887 * @param q pointer to the COOKContext
888 * @param decode_buffer pointer to the mlt coefficients
889 * @param gains_ptr array of current/prev gain pointers
890 * @param previous_buffer pointer to the previous buffer to be used for overlapping
891 * @param out pointer to the output buffer
893 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
894 cook_gains *gains_ptr, float *previous_buffer,
897 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
899 q->saturate_output(q, out);
904 * Cook subpacket decoding. This function returns one decoded subpacket,
905 * usually 1024 samples per channel.
907 * @param q pointer to the COOKContext
908 * @param inbuffer pointer to the inbuffer
909 * @param outbuffer pointer to the outbuffer
911 static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
912 const uint8_t *inbuffer, float **outbuffer)
914 int sub_packet_size = p->size;
917 memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
918 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
920 if (p->joint_stereo) {
921 if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
924 if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
927 if (p->num_channels == 2) {
928 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
929 if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
934 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
935 p->mono_previous_buffer1,
936 outbuffer ? outbuffer[p->ch_idx] : NULL);
938 if (p->num_channels == 2) {
940 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
941 p->mono_previous_buffer2,
942 outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
944 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
945 p->mono_previous_buffer2,
946 outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
953 static int cook_decode_frame(AVCodecContext *avctx, void *data,
954 int *got_frame_ptr, AVPacket *avpkt)
956 AVFrame *frame = data;
957 const uint8_t *buf = avpkt->data;
958 int buf_size = avpkt->size;
959 COOKContext *q = avctx->priv_data;
960 float **samples = NULL;
965 if (buf_size < avctx->block_align)
968 /* get output buffer */
969 if (q->discarded_packets >= 2) {
970 frame->nb_samples = q->samples_per_channel;
971 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
973 samples = (float **)frame->extended_data;
976 /* estimate subpacket sizes */
977 q->subpacket[0].size = avctx->block_align;
979 for (i = 1; i < q->num_subpackets; i++) {
980 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
981 q->subpacket[0].size -= q->subpacket[i].size + 1;
982 if (q->subpacket[0].size < 0) {
983 av_log(avctx, AV_LOG_DEBUG,
984 "frame subpacket size total > avctx->block_align!\n");
985 return AVERROR_INVALIDDATA;
989 /* decode supbackets */
990 for (i = 0; i < q->num_subpackets; i++) {
991 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
992 q->subpacket[i].bits_per_subpdiv;
993 q->subpacket[i].ch_idx = chidx;
994 av_log(avctx, AV_LOG_DEBUG,
995 "subpacket[%i] size %i js %i %i block_align %i\n",
996 i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
999 if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1001 offset += q->subpacket[i].size;
1002 chidx += q->subpacket[i].num_channels;
1003 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1004 i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1007 /* Discard the first two frames: no valid audio. */
1008 if (q->discarded_packets < 2) {
1009 q->discarded_packets++;
1011 return avctx->block_align;
1016 return avctx->block_align;
1020 static void dump_cook_context(COOKContext *q)
1023 #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1024 ff_dlog(q->avctx, "COOKextradata\n");
1025 ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1026 if (q->subpacket[0].cookversion > STEREO) {
1027 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1028 PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1030 ff_dlog(q->avctx, "COOKContext\n");
1031 PRINT("nb_channels", q->avctx->channels);
1032 PRINT("bit_rate", q->avctx->bit_rate);
1033 PRINT("sample_rate", q->avctx->sample_rate);
1034 PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1035 PRINT("subbands", q->subpacket[0].subbands);
1036 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1037 PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1038 PRINT("numvector_size", q->subpacket[0].numvector_size);
1039 PRINT("total_subbands", q->subpacket[0].total_subbands);
1044 * Cook initialization
1046 * @param avctx pointer to the AVCodecContext
1048 static av_cold int cook_decode_init(AVCodecContext *avctx)
1050 COOKContext *q = avctx->priv_data;
1051 const uint8_t *edata_ptr = avctx->extradata;
1052 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1053 int extradata_size = avctx->extradata_size;
1055 unsigned int channel_mask = 0;
1056 int samples_per_frame = 0;
1060 /* Take care of the codec specific extradata. */
1061 if (extradata_size < 8) {
1062 av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1063 return AVERROR_INVALIDDATA;
1065 av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1067 /* Take data from the AVCodecContext (RM container). */
1068 if (!avctx->channels) {
1069 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1070 return AVERROR_INVALIDDATA;
1073 /* Initialize RNG. */
1074 av_lfg_init(&q->random_state, 0);
1076 ff_audiodsp_init(&q->adsp);
1078 while (edata_ptr < edata_ptr_end) {
1079 /* 8 for mono, 16 for stereo, ? for multichannel
1080 Swap to right endianness so we don't need to care later on. */
1081 if (extradata_size >= 8) {
1082 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1083 samples_per_frame = bytestream_get_be16(&edata_ptr);
1084 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1085 extradata_size -= 8;
1087 if (extradata_size >= 8) {
1088 bytestream_get_be32(&edata_ptr); // Unknown unused
1089 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1090 if (q->subpacket[s].js_subband_start >= 51) {
1091 av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1092 return AVERROR_INVALIDDATA;
1095 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1096 extradata_size -= 8;
1099 /* Initialize extradata related variables. */
1100 q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1101 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1103 /* Initialize default data states. */
1104 q->subpacket[s].log2_numvector_size = 5;
1105 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1106 q->subpacket[s].num_channels = 1;
1108 /* Initialize version-dependent variables */
1110 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1111 q->subpacket[s].cookversion);
1112 q->subpacket[s].joint_stereo = 0;
1113 switch (q->subpacket[s].cookversion) {
1115 if (avctx->channels != 1) {
1116 avpriv_request_sample(avctx, "Container channels != 1");
1117 return AVERROR_PATCHWELCOME;
1119 av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1122 if (avctx->channels != 1) {
1123 q->subpacket[s].bits_per_subpdiv = 1;
1124 q->subpacket[s].num_channels = 2;
1126 av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1129 if (avctx->channels != 2) {
1130 avpriv_request_sample(avctx, "Container channels != 2");
1131 return AVERROR_PATCHWELCOME;
1133 av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1134 if (avctx->extradata_size >= 16) {
1135 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1136 q->subpacket[s].js_subband_start;
1137 q->subpacket[s].joint_stereo = 1;
1138 q->subpacket[s].num_channels = 2;
1140 if (q->subpacket[s].samples_per_channel > 256) {
1141 q->subpacket[s].log2_numvector_size = 6;
1143 if (q->subpacket[s].samples_per_channel > 512) {
1144 q->subpacket[s].log2_numvector_size = 7;
1148 av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1149 if (extradata_size >= 4)
1150 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1152 if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
1153 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1154 q->subpacket[s].js_subband_start;
1155 q->subpacket[s].joint_stereo = 1;
1156 q->subpacket[s].num_channels = 2;
1157 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1159 if (q->subpacket[s].samples_per_channel > 256) {
1160 q->subpacket[s].log2_numvector_size = 6;
1162 if (q->subpacket[s].samples_per_channel > 512) {
1163 q->subpacket[s].log2_numvector_size = 7;
1166 q->subpacket[s].samples_per_channel = samples_per_frame;
1170 avpriv_request_sample(avctx, "Cook version %d",
1171 q->subpacket[s].cookversion);
1172 return AVERROR_PATCHWELCOME;
1175 if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1176 av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1177 return AVERROR_INVALIDDATA;
1179 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1182 /* Initialize variable relations */
1183 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1185 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1186 if (q->subpacket[s].total_subbands > 53) {
1187 avpriv_request_sample(avctx, "total_subbands > 53");
1188 return AVERROR_PATCHWELCOME;
1191 if ((q->subpacket[s].js_vlc_bits > 6) ||
1192 (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1193 av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1194 q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1195 return AVERROR_INVALIDDATA;
1198 if (q->subpacket[s].subbands > 50) {
1199 avpriv_request_sample(avctx, "subbands > 50");
1200 return AVERROR_PATCHWELCOME;
1202 if (q->subpacket[s].subbands == 0) {
1203 avpriv_request_sample(avctx, "subbands = 0");
1204 return AVERROR_PATCHWELCOME;
1206 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1207 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1208 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1209 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1211 if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
1212 av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
1213 return AVERROR_INVALIDDATA;
1216 q->num_subpackets++;
1218 if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
1219 avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
1220 return AVERROR_PATCHWELCOME;
1223 /* Generate tables */
1226 init_cplscales_table(q);
1228 if ((ret = init_cook_vlc_tables(q)))
1232 if (avctx->block_align >= UINT_MAX / 2)
1233 return AVERROR(EINVAL);
1235 /* Pad the databuffer with:
1236 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1237 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1238 q->decoded_bytes_buffer =
1239 av_mallocz(avctx->block_align
1240 + DECODE_BYTES_PAD1(avctx->block_align)
1241 + FF_INPUT_BUFFER_PADDING_SIZE);
1242 if (!q->decoded_bytes_buffer)
1243 return AVERROR(ENOMEM);
1245 /* Initialize transform. */
1246 if ((ret = init_cook_mlt(q)))
1249 /* Initialize COOK signal arithmetic handling */
1251 q->scalar_dequant = scalar_dequant_float;
1252 q->decouple = decouple_float;
1253 q->imlt_window = imlt_window_float;
1254 q->interpolate = interpolate_float;
1255 q->saturate_output = saturate_output_float;
1258 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1259 if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1260 q->samples_per_channel != 1024) {
1261 avpriv_request_sample(avctx, "samples_per_channel = %d",
1262 q->samples_per_channel);
1263 return AVERROR_PATCHWELCOME;
1266 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1268 avctx->channel_layout = channel_mask;
1270 avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1273 dump_cook_context(q);
1278 AVCodec ff_cook_decoder = {
1280 .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1281 .type = AVMEDIA_TYPE_AUDIO,
1282 .id = AV_CODEC_ID_COOK,
1283 .priv_data_size = sizeof(COOKContext),
1284 .init = cook_decode_init,
1285 .close = cook_decode_close,
1286 .decode = cook_decode_frame,
1287 .capabilities = CODEC_CAP_DR1,
1288 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1289 AV_SAMPLE_FMT_NONE },