]> git.sesse.net Git - ffmpeg/blob - libavcodec/cook.c
added support for DVHS (192) packet size
[ffmpeg] / libavcodec / cook.c
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21
22 /**
23  * @file cook.c
24  * Cook compatible decoder.
25  * This decoder handles RealNetworks, RealAudio G2 data.
26  * Cook is identified by the codec name cook in RM files.
27  *
28  * To use this decoder, a calling application must supply the extradata
29  * bytes provided from the RM container; 8+ bytes for mono streams and
30  * 16+ for stereo streams (maybe more).
31  *
32  * Codec technicalities (all this assume a buffer length of 1024):
33  * Cook works with several different techniques to achieve its compression.
34  * In the timedomain the buffer is divided into 8 pieces and quantized. If
35  * two neighboring pieces have different quantization index a smooth
36  * quantization curve is used to get a smooth overlap between the different
37  * pieces.
38  * To get to the transformdomain Cook uses a modulated lapped transform.
39  * The transform domain has 50 subbands with 20 elements each. This
40  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41  * available.
42  */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #define ALT_BITSTREAM_READER
49 #include "avcodec.h"
50 #include "bitstream.h"
51 #include "dsputil.h"
52
53 #include "cookdata.h"
54
55 /* the different Cook versions */
56 #define MONO_COOK1      0x1000001
57 #define MONO_COOK2      0x1000002
58 #define JOINT_STEREO    0x1000003
59 #define MC_COOK         0x2000000   //multichannel Cook, not supported
60
61 #define SUBBAND_SIZE    20
62 //#define COOKDEBUG
63
64 typedef struct {
65     int     size;
66     int     qidx_table1[8];
67     int     qidx_table2[8];
68 } COOKgain;
69
70 typedef struct __attribute__((__packed__)){
71     /* codec data start */
72     uint32_t cookversion;               //in network order, bigendian
73     uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
74     uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
75     /* Mono extradata ends here. */
76     uint32_t unused;
77     uint16_t js_subband_start;          //bigendian
78     uint16_t js_vlc_bits;               //bigendian
79     /* Stereo extradata ends here. */
80 } COOKextradata;
81
82
83 typedef struct {
84     GetBitContext       gb;
85     /* stream data */
86     int                 nb_channels;
87     int                 joint_stereo;
88     int                 bit_rate;
89     int                 sample_rate;
90     int                 samples_per_channel;
91     int                 samples_per_frame;
92     int                 subbands;
93     int                 numvector_bits;
94     int                 numvector_size;                //1 << numvector_bits;
95     int                 js_subband_start;
96     int                 total_subbands;
97     int                 num_vectors;
98     int                 bits_per_subpacket;
99     /* states */
100     int                 random_state;
101
102     /* transform data */
103     FFTContext          fft_ctx;
104     FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
105     float*              mlt_window;
106     float*              mlt_precos;
107     float*              mlt_presin;
108     float*              mlt_postcos;
109     int                 fft_size;
110     int                 fft_order;
111     int                 mlt_size;       //modulated lapped transform size
112
113     /* gain buffers */
114     COOKgain*           gain_now_ptr;
115     COOKgain*           gain_previous_ptr;
116     COOKgain            gain_copy;
117     COOKgain            gain_current;
118     COOKgain            gain_now;
119     COOKgain            gain_previous;
120
121     /* VLC data */
122     int                 js_vlc_bits;
123     VLC                 envelope_quant_index[13];
124     VLC                 sqvh[7];          //scalar quantization
125     VLC                 ccpl;             //channel coupling
126
127     /* generatable tables and related variables */
128     int                 gain_size_factor;
129     float               gain_table[23];
130     float               pow2tab[127];
131     float               rootpow2tab[127];
132
133     /* data buffers */
134     uint8_t*            frame_reorder_buffer;
135     int*                frame_reorder_index;
136     int                 frame_reorder_counter;
137     int                 frame_reorder_complete;
138     int                 frame_reorder_index_size;
139
140     uint8_t*            decoded_bytes_buffer;
141     float               mono_mdct_output[2048] __attribute__((aligned(16)));
142     float*              previous_buffer_ptr[2];
143     float               mono_previous_buffer1[1024];
144     float               mono_previous_buffer2[1024];
145     float*              decode_buf_ptr[4];
146     float               decode_buffer_1[1024];
147     float               decode_buffer_2[1024];
148     float               decode_buffer_3[1024];
149     float               decode_buffer_4[1024];
150 } COOKContext;
151
152 /* debug functions */
153
154 #ifdef COOKDEBUG
155 static void dump_float_table(float* table, int size, int delimiter) {
156     int i=0;
157     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
158     for (i=0 ; i<size ; i++) {
159         av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
160         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
161     }
162 }
163
164 static void dump_int_table(int* table, int size, int delimiter) {
165     int i=0;
166     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
167     for (i=0 ; i<size ; i++) {
168         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
169         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
170     }
171 }
172
173 static void dump_short_table(short* table, int size, int delimiter) {
174     int i=0;
175     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
176     for (i=0 ; i<size ; i++) {
177         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
178         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
179     }
180 }
181
182 #endif
183
184 /*************** init functions ***************/
185
186 /* table generator */
187 static void init_pow2table(COOKContext *q){
188     int i;
189     q->pow2tab[63] = 1.0;
190     for (i=1 ; i<64 ; i++){
191         q->pow2tab[63+i]=(float)pow(2.0,(double)i);
192         q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
193     }
194 }
195
196 /* table generator */
197 static void init_rootpow2table(COOKContext *q){
198     int i;
199     q->rootpow2tab[63] = 1.0;
200     for (i=1 ; i<64 ; i++){
201         q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
202         q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
203     }
204 }
205
206 /* table generator */
207 static void init_gain_table(COOKContext *q) {
208     int i;
209     q->gain_size_factor = q->samples_per_channel/8;
210     for (i=0 ; i<23 ; i++) {
211         q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
212                                (1.0/(double)q->gain_size_factor));
213     }
214     memset(&q->gain_copy, 0, sizeof(COOKgain));
215     memset(&q->gain_current, 0, sizeof(COOKgain));
216     memset(&q->gain_now, 0, sizeof(COOKgain));
217     memset(&q->gain_previous, 0, sizeof(COOKgain));
218 }
219
220
221 static int init_cook_vlc_tables(COOKContext *q) {
222     int i, result;
223
224     result = 0;
225     for (i=0 ; i<13 ; i++) {
226         result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
227             envelope_quant_index_huffbits[i], 1, 1,
228             envelope_quant_index_huffcodes[i], 2, 2, 0);
229     }
230     av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
231     for (i=0 ; i<7 ; i++) {
232         result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233             cvh_huffbits[i], 1, 1,
234             cvh_huffcodes[i], 2, 2, 0);
235     }
236
237     if (q->nb_channels==2 && q->joint_stereo==1){
238         result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
239             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
240             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
241         av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
242     }
243
244     av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
245     return result;
246 }
247
248 static int init_cook_mlt(COOKContext *q) {
249     int j;
250     float alpha;
251
252     /* Allocate the buffers, could be replaced with a static [512]
253        array if needed. */
254     q->mlt_size = q->samples_per_channel;
255     q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
256     q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
257     q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
258     q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
259
260     /* Initialize the MLT window: simple sine window. */
261     alpha = M_PI / (2.0 * (float)q->mlt_size);
262     for(j=0 ; j<q->mlt_size ; j++) {
263         q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
264     }
265
266     /* pre/post twiddle factors */
267     for (j=0 ; j<q->mlt_size/2 ; j++){
268         q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
269         q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
270         q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
271     }
272
273     /* Initialize the FFT. */
274     ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
275     av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
276            av_log2(q->samples_per_channel)-1);
277
278     return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
279 }
280
281 /*************** init functions end ***********/
282
283 /**
284  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
285  * Why? No idea, some checksum/error detection method maybe.
286  * Nice way to waste CPU cycles.
287  *
288  * @param in        pointer to 32bit array of indata
289  * @param bits      amount of bits
290  * @param out       pointer to 32bit array of outdata
291  */
292
293 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
294     int i;
295     uint32_t* buf = (uint32_t*) inbuffer;
296     uint32_t* obuf = (uint32_t*) out;
297     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
298      * I'm too lazy though, should be something like
299      * for(i=0 ; i<bitamount/64 ; i++)
300      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
301      * Buffer alignment needs to be checked. */
302
303
304     for(i=0 ; i<bytes/4 ; i++){
305 #ifdef WORDS_BIGENDIAN
306         obuf[i] = 0x37c511f2^buf[i];
307 #else
308         obuf[i] = 0xf211c537^buf[i];
309 #endif
310     }
311 }
312
313 /**
314  * Cook uninit
315  */
316
317 static int cook_decode_close(AVCodecContext *avctx)
318 {
319     int i;
320     COOKContext *q = avctx->priv_data;
321     av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
322
323     /* Free allocated memory buffers. */
324     av_free(q->mlt_window);
325     av_free(q->mlt_precos);
326     av_free(q->mlt_presin);
327     av_free(q->mlt_postcos);
328     av_free(q->frame_reorder_index);
329     av_free(q->frame_reorder_buffer);
330     av_free(q->decoded_bytes_buffer);
331
332     /* Free the transform. */
333     ff_fft_end(&q->fft_ctx);
334
335     /* Free the VLC tables. */
336     for (i=0 ; i<13 ; i++) {
337         free_vlc(&q->envelope_quant_index[i]);
338     }
339     for (i=0 ; i<7 ; i++) {
340         free_vlc(&q->sqvh[i]);
341     }
342     if(q->nb_channels==2 && q->joint_stereo==1 ){
343         free_vlc(&q->ccpl);
344     }
345
346     av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
347
348     return 0;
349 }
350
351 /**
352  * Fill the COOKgain structure for the timedomain quantization.
353  *
354  * @param q                 pointer to the COOKContext
355  * @param gaininfo          pointer to the COOKgain
356  */
357
358 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
359     int i;
360
361     while (get_bits1(gb)) {}
362
363     gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
364
365     if (get_bits_count(gb) - 1 <= 0) return;
366
367     for (i=0 ; i<gaininfo->size ; i++){
368         gaininfo->qidx_table1[i] = get_bits(gb,3);
369         if (get_bits1(gb)) {
370             gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
371         } else {
372             gaininfo->qidx_table2[i] = -1;
373         }
374     }
375 }
376
377 /**
378  * Create the quant index table needed for the envelope.
379  *
380  * @param q                 pointer to the COOKContext
381  * @param quant_index_table pointer to the array
382  */
383
384 static void decode_envelope(COOKContext *q, int* quant_index_table) {
385     int i,j, vlc_index;
386     int bitbias;
387
388     bitbias = get_bits_count(&q->gb);
389     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
390
391     for (i=1 ; i < q->total_subbands ; i++){
392         vlc_index=i;
393         if (i >= q->js_subband_start * 2) {
394             vlc_index-=q->js_subband_start;
395         } else {
396             vlc_index/=2;
397             if(vlc_index < 1) vlc_index = 1;
398         }
399         if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
400
401         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
402                      q->envelope_quant_index[vlc_index-1].bits,2);
403         quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
404     }
405 }
406
407 /**
408  * Create the quant value table.
409  *
410  * @param q                 pointer to the COOKContext
411  * @param quant_value_table pointer to the array
412  */
413
414 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
415                                     float* quant_value_table){
416
417     int i;
418     for(i=0 ; i < q->total_subbands ; i++){
419         quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
420     }
421 }
422
423 /**
424  * Calculate the category and category_index vector.
425  *
426  * @param q                     pointer to the COOKContext
427  * @param quant_index_table     pointer to the array
428  * @param category              pointer to the category array
429  * @param category_index        pointer to the category_index array
430  */
431
432 static void categorize(COOKContext *q, int* quant_index_table,
433                        int* category, int* category_index){
434     int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
435     int exp_index2[102];
436     int exp_index1[102];
437
438     int tmp_categorize_array1[128];
439     int tmp_categorize_array1_idx=0;
440     int tmp_categorize_array2[128];
441     int tmp_categorize_array2_idx=0;
442     int category_index_size=0;
443
444     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
445
446     if(bits_left > q->samples_per_channel) {
447         bits_left = q->samples_per_channel +
448                     ((bits_left - q->samples_per_channel)*5)/8;
449         //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
450     }
451
452     memset(&exp_index1,0,102*sizeof(int));
453     memset(&exp_index2,0,102*sizeof(int));
454     memset(&tmp_categorize_array1,0,128*sizeof(int));
455     memset(&tmp_categorize_array2,0,128*sizeof(int));
456
457     bias=-32;
458
459     /* Estimate bias. */
460     for (i=32 ; i>0 ; i=i/2){
461         num_bits = 0;
462         index = 0;
463         for (j=q->total_subbands ; j>0 ; j--){
464             exp_idx = (i - quant_index_table[index] + bias) / 2;
465             if (exp_idx<0){
466                 exp_idx=0;
467             } else if(exp_idx >7) {
468                 exp_idx=7;
469             }
470             index++;
471             num_bits+=expbits_tab[exp_idx];
472         }
473         if(num_bits >= bits_left - 32){
474             bias+=i;
475         }
476     }
477
478     /* Calculate total number of bits. */
479     num_bits=0;
480     for (i=0 ; i<q->total_subbands ; i++) {
481         exp_idx = (bias - quant_index_table[i]) / 2;
482         if (exp_idx<0) {
483             exp_idx=0;
484         } else if(exp_idx >7) {
485             exp_idx=7;
486         }
487         num_bits += expbits_tab[exp_idx];
488         exp_index1[i] = exp_idx;
489         exp_index2[i] = exp_idx;
490     }
491     tmpbias = bias = num_bits;
492
493     for (j = 1 ; j < q->numvector_size ; j++) {
494         if (tmpbias + bias > 2*bits_left) {  /* ---> */
495             int max = -999999;
496             index=-1;
497             for (i=0 ; i<q->total_subbands ; i++){
498                 if (exp_index1[i] < 7) {
499                     v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
500                     if ( v >= max) {
501                         max = v;
502                         index = i;
503                     }
504                 }
505             }
506             if(index==-1)break;
507             tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
508             tmpbias -= expbits_tab[exp_index1[index]] -
509                        expbits_tab[exp_index1[index]+1];
510             ++exp_index1[index];
511         } else {  /* <--- */
512             int min = 999999;
513             index=-1;
514             for (i=0 ; i<q->total_subbands ; i++){
515                 if(exp_index2[i] > 0){
516                     v = (-2*exp_index2[i])-quant_index_table[i];
517                     if ( v < min) {
518                         min = v;
519                         index = i;
520                     }
521                 }
522             }
523             if(index == -1)break;
524             tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
525             tmpbias -= expbits_tab[exp_index2[index]] -
526                        expbits_tab[exp_index2[index]-1];
527             --exp_index2[index];
528         }
529     }
530
531     for(i=0 ; i<q->total_subbands ; i++)
532         category[i] = exp_index2[i];
533
534     /* Concatenate the two arrays. */
535     for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
536         category_index[category_index_size++] =  tmp_categorize_array2[i];
537
538     for(i=0;i<tmp_categorize_array1_idx;i++)
539         category_index[category_index_size++ ] =  tmp_categorize_array1[i];
540
541     /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
542        should fill the remaining bytes. */
543     for(i=category_index_size;i<q->numvector_size;i++)
544         category_index[i]=0;
545
546 }
547
548
549 /**
550  * Expand the category vector.
551  *
552  * @param q                     pointer to the COOKContext
553  * @param category              pointer to the category array
554  * @param category_index        pointer to the category_index array
555  */
556
557 static void inline expand_category(COOKContext *q, int* category,
558                                    int* category_index){
559     int i;
560     for(i=0 ; i<q->num_vectors ; i++){
561         ++category[category_index[i]];
562     }
563 }
564
565 /**
566  * The real requantization of the mltcoefs
567  *
568  * @param q                     pointer to the COOKContext
569  * @param index                 index
570  * @param band                  current subband
571  * @param quant_value_table     pointer to the array
572  * @param subband_coef_index    array of indexes to quant_centroid_tab
573  * @param subband_coef_noise    use random noise instead of predetermined value
574  * @param mlt_buffer            pointer to the mlt buffer
575  */
576
577
578 static void scalar_dequant(COOKContext *q, int index, int band,
579                            float* quant_value_table, int* subband_coef_index,
580                            int* subband_coef_noise, float* mlt_buffer){
581     int i;
582     float f1;
583
584     for(i=0 ; i<SUBBAND_SIZE ; i++) {
585         if (subband_coef_index[i]) {
586             if (subband_coef_noise[i]) {
587                 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
588             } else {
589                 f1 = quant_centroid_tab[index][subband_coef_index[i]];
590             }
591         } else {
592             /* noise coding if subband_coef_noise[i] == 0 */
593             q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
594             f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
595         }
596         mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
597     }
598 }
599 /**
600  * Unpack the subband_coef_index and subband_coef_noise vectors.
601  *
602  * @param q                     pointer to the COOKContext
603  * @param category              pointer to the category array
604  * @param subband_coef_index    array of indexes to quant_centroid_tab
605  * @param subband_coef_noise    use random noise instead of predetermined value
606  */
607
608 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
609                        int* subband_coef_noise) {
610     int i,j;
611     int vlc, vd ,tmp, result;
612     int ub;
613     int cb;
614
615     vd = vd_tab[category];
616     result = 0;
617     for(i=0 ; i<vpr_tab[category] ; i++){
618         ub = get_bits_count(&q->gb);
619         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
620         cb = get_bits_count(&q->gb);
621         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
622             vlc = 0;
623             result = 1;
624         }
625         for(j=vd-1 ; j>=0 ; j--){
626             tmp = (vlc * invradix_tab[category])/0x100000;
627             subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
628             vlc = tmp;
629         }
630         for(j=0 ; j<vd ; j++){
631             if (subband_coef_index[i*vd + j]) {
632                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
633                     subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
634                 } else {
635                     result=1;
636                     subband_coef_noise[i*vd+j]=0;
637                 }
638             } else {
639                 subband_coef_noise[i*vd+j]=0;
640             }
641         }
642     }
643     return result;
644 }
645
646
647 /**
648  * Fill the mlt_buffer with mlt coefficients.
649  *
650  * @param q                 pointer to the COOKContext
651  * @param category          pointer to the category array
652  * @param quant_value_table pointer to the array
653  * @param mlt_buffer        pointer to mlt coefficients
654  */
655
656
657 static void decode_vectors(COOKContext* q, int* category,
658                            float* quant_value_table, float* mlt_buffer){
659     /* A zero in this table means that the subband coefficient is
660        random noise coded. */
661     int subband_coef_noise[SUBBAND_SIZE];
662     /* A zero in this table means that the subband coefficient is a
663        positive multiplicator. */
664     int subband_coef_index[SUBBAND_SIZE];
665     int band, j;
666     int index=0;
667
668     for(band=0 ; band<q->total_subbands ; band++){
669         index = category[band];
670         if(category[band] < 7){
671             if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
672                 index=7;
673                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
674             }
675         }
676         if(index==7) {
677             memset(subband_coef_index, 0, sizeof(subband_coef_index));
678             memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
679         }
680         scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
681                        subband_coef_noise, mlt_buffer);
682     }
683
684     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
685         return;
686     }
687 }
688
689
690 /**
691  * function for decoding mono data
692  *
693  * @param q                 pointer to the COOKContext
694  * @param mlt_buffer1       pointer to left channel mlt coefficients
695  * @param mlt_buffer2       pointer to right channel mlt coefficients
696  */
697
698 static void mono_decode(COOKContext *q, float* mlt_buffer) {
699
700     int category_index[128];
701     float quant_value_table[102];
702     int quant_index_table[102];
703     int category[128];
704
705     memset(&category, 0, 128*sizeof(int));
706     memset(&quant_value_table, 0, 102*sizeof(int));
707     memset(&category_index, 0, 128*sizeof(int));
708
709     decode_envelope(q, quant_index_table);
710     q->num_vectors = get_bits(&q->gb,q->numvector_bits);
711     dequant_envelope(q, quant_index_table, quant_value_table);
712     categorize(q, quant_index_table, category, category_index);
713     expand_category(q, category, category_index);
714     decode_vectors(q, category, quant_value_table, mlt_buffer);
715 }
716
717
718 /**
719  * The modulated lapped transform, this takes transform coefficients
720  * and transforms them into timedomain samples. This is done through
721  * an FFT-based algorithm with pre- and postrotation steps.
722  * A window and reorder step is also included.
723  *
724  * @param q                 pointer to the COOKContext
725  * @param inbuffer          pointer to the mltcoefficients
726  * @param outbuffer         pointer to the timedomain buffer
727  * @param mlt_tmp           pointer to temporary storage space
728  */
729
730 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
731                       float* mlt_tmp){
732     int i;
733
734     /* prerotation */
735     for(i=0 ; i<q->mlt_size ; i+=2){
736         outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
737                        (q->mlt_precos[i/2] * inbuffer[i]);
738         outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
739                          (q->mlt_presin[i/2] * inbuffer[i]);
740     }
741
742     /* FFT */
743     ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
744     ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
745
746     /* postrotation */
747     for(i=0 ; i<q->mlt_size ; i+=2){
748         mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
749                                    (q->mlt_postcos[i/2] * outbuffer[i]);
750         mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
751                                    (q->mlt_postcos[i/2] * outbuffer[i+1]);
752     }
753
754     /* window and reorder */
755     for(i=0 ; i<q->mlt_size/2 ; i++){
756         outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
757         outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
758                                     q->mlt_window[q->mlt_size-1-i];
759         outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
760                                   q->mlt_window[q->mlt_size-1-i];
761         outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
762                                       q->mlt_window[i]);
763     }
764 }
765
766
767 /**
768  * the actual requantization of the timedomain samples
769  *
770  * @param q                 pointer to the COOKContext
771  * @param buffer            pointer to the timedomain buffer
772  * @param gain_index        index for the block multiplier
773  * @param gain_index_next   index for the next block multiplier
774  */
775
776 static void interpolate(COOKContext *q, float* buffer,
777                         int gain_index, int gain_index_next){
778     int i;
779     float fc1, fc2;
780     fc1 = q->pow2tab[gain_index+63];
781
782     if(gain_index == gain_index_next){              //static gain
783         for(i=0 ; i<q->gain_size_factor ; i++){
784             buffer[i]*=fc1;
785         }
786         return;
787     } else {                                        //smooth gain
788         fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
789         for(i=0 ; i<q->gain_size_factor ; i++){
790             buffer[i]*=fc1;
791             fc1*=fc2;
792         }
793         return;
794     }
795 }
796
797 /**
798  * timedomain requantization of the timedomain samples
799  *
800  * @param q                 pointer to the COOKContext
801  * @param buffer            pointer to the timedomain buffer
802  * @param gain_now          current gain structure
803  * @param gain_previous     previous gain structure
804  */
805
806 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
807                         COOKgain* gain_previous){
808     int i, index;
809     int gain_index[9];
810     int tmp_gain_index;
811
812     gain_index[8]=0;
813     index = gain_previous->size;
814     for (i=7 ; i>=0 ; i--) {
815         if(index && gain_previous->qidx_table1[index-1]==i) {
816             gain_index[i] = gain_previous->qidx_table2[index-1];
817             index--;
818         } else {
819             gain_index[i]=gain_index[i+1];
820         }
821     }
822     /* This is applied to the to be previous data buffer. */
823     for(i=0;i<8;i++){
824         interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
825                     gain_index[i], gain_index[i+1]);
826     }
827
828     tmp_gain_index = gain_index[0];
829     index = gain_now->size;
830     for (i=7 ; i>=0 ; i--) {
831         if(index && gain_now->qidx_table1[index-1]==i) {
832             gain_index[i]= gain_now->qidx_table2[index-1];
833             index--;
834         } else {
835             gain_index[i]=gain_index[i+1];
836         }
837     }
838
839     /* This is applied to the to be current block. */
840     for(i=0;i<8;i++){
841         interpolate(q, &buffer[i*q->gain_size_factor],
842                     tmp_gain_index+gain_index[i],
843                     tmp_gain_index+gain_index[i+1]);
844     }
845 }
846
847
848 /**
849  * mlt overlapping and buffer management
850  *
851  * @param q                 pointer to the COOKContext
852  * @param buffer            pointer to the timedomain buffer
853  * @param gain_now          current gain structure
854  * @param gain_previous     previous gain structure
855  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
856  *
857  */
858
859 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
860                             COOKgain* gain_previous, float* previous_buffer) {
861     int i;
862     if((gain_now->size  || gain_previous->size)) {
863         gain_window(q, buffer, gain_now, gain_previous);
864     }
865
866     /* Overlap with the previous block. */
867     for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
868
869     /* Save away the current to be previous block. */
870     memcpy(previous_buffer, buffer+q->samples_per_channel,
871            sizeof(float)*q->samples_per_channel);
872 }
873
874
875 /**
876  * function for getting the jointstereo coupling information
877  *
878  * @param q                 pointer to the COOKContext
879  * @param decouple_tab      decoupling array
880  *
881  */
882
883 static void decouple_info(COOKContext *q, int* decouple_tab){
884     int length, i;
885
886     if(get_bits1(&q->gb)) {
887         if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
888
889         length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
890         for (i=0 ; i<length ; i++) {
891             decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
892         }
893         return;
894     }
895
896     if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
897
898     length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
899     for (i=0 ; i<length ; i++) {
900        decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
901     }
902     return;
903 }
904
905
906 /**
907  * function for decoding joint stereo data
908  *
909  * @param q                 pointer to the COOKContext
910  * @param mlt_buffer1       pointer to left channel mlt coefficients
911  * @param mlt_buffer2       pointer to right channel mlt coefficients
912  */
913
914 static void joint_decode(COOKContext *q, float* mlt_buffer1,
915                          float* mlt_buffer2) {
916     int i,j;
917     int decouple_tab[SUBBAND_SIZE];
918     float decode_buffer[2048];  //Only 1060 might be needed.
919     int idx, cpl_tmp,tmp_idx;
920     float f1,f2;
921     float* cplscale;
922
923     memset(decouple_tab, 0, sizeof(decouple_tab));
924     memset(decode_buffer, 0, sizeof(decode_buffer));
925
926     /* Make sure the buffers are zeroed out. */
927     memset(mlt_buffer1,0, 1024*sizeof(float));
928     memset(mlt_buffer2,0, 1024*sizeof(float));
929     decouple_info(q, decouple_tab);
930     mono_decode(q, decode_buffer);
931
932     /* The two channels are stored interleaved in decode_buffer. */
933     for (i=0 ; i<q->js_subband_start ; i++) {
934         for (j=0 ; j<SUBBAND_SIZE ; j++) {
935             mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
936             mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
937         }
938     }
939
940     /* When we reach js_subband_start (the higher frequencies)
941        the coefficients are stored in a coupling scheme. */
942     idx = (1 << q->js_vlc_bits) - 1;
943     if (q->js_subband_start < q->subbands) {
944         for (i=0 ; i<q->subbands ; i++) {
945             cpl_tmp = cplband[i + q->js_subband_start];
946             idx -=decouple_tab[cpl_tmp];
947             cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
948             f1 = cplscale[decouple_tab[cpl_tmp]];
949             f2 = cplscale[idx-1];
950             for (j=0 ; j<SUBBAND_SIZE ; j++) {
951                 tmp_idx = ((2*q->js_subband_start + i)*20)+j;
952                 mlt_buffer1[20*(i+q->js_subband_start) + j] = f1 * decode_buffer[tmp_idx];
953                 mlt_buffer2[20*(i+q->js_subband_start) + j] = f2 * decode_buffer[tmp_idx];
954             }
955             idx = (1 << q->js_vlc_bits) - 1;
956         }
957     }
958 }
959
960 /**
961  * Cook subpacket decoding. This function returns one decoded subpacket,
962  * usually 1024 samples per channel.
963  *
964  * @param q                 pointer to the COOKContext
965  * @param inbuffer          pointer to the inbuffer
966  * @param sub_packet_size   subpacket size
967  * @param outbuffer         pointer to the outbuffer
968  * @param pos               the subpacket number in the frame
969  */
970
971
972 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
973                             int sub_packet_size, int16_t *outbuffer) {
974     int i,j;
975     int value;
976     float* tmp_ptr;
977
978     /* packet dump */
979 //    for (i=0 ; i<sub_packet_size ; i++) {
980 //        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
981 //    }
982 //    av_log(NULL, AV_LOG_ERROR, "\n");
983
984     decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
985     init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
986     decode_gain_info(&q->gb, &q->gain_current);
987     memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));  //This copy does not seem to be used. FIXME
988
989     if(q->nb_channels==2 && q->joint_stereo==1){
990         joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
991
992         /* Swap buffer pointers. */
993         tmp_ptr = q->decode_buf_ptr[1];
994         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
995         q->decode_buf_ptr[0] = tmp_ptr;
996         tmp_ptr = q->decode_buf_ptr[3];
997         q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
998         q->decode_buf_ptr[2] = tmp_ptr;
999
1000         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1001            now/previous swap */
1002         q->gain_now_ptr = &q->gain_now;
1003         q->gain_previous_ptr = &q->gain_previous;
1004         for (i=0 ; i<q->nb_channels ; i++){
1005
1006             cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
1007             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1008                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1009
1010             /* Swap out the previous buffer. */
1011             tmp_ptr = q->previous_buffer_ptr[0];
1012             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1013             q->previous_buffer_ptr[1] = tmp_ptr;
1014
1015             /* Clip and convert the floats to 16 bits. */
1016             for (j=0 ; j<q->samples_per_frame ; j++){
1017                 value = lrintf(q->mono_mdct_output[j]);
1018                 if(value < -32768) value = -32768;
1019                 else if(value > 32767) value = 32767;
1020                 outbuffer[2*j+i] = value;
1021             }
1022         }
1023
1024         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1025         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1026
1027     } else if (q->nb_channels==2 && q->joint_stereo==0) {
1028             /* channel 0 */
1029             mono_decode(q, q->decode_buf_ptr[0]);
1030
1031             tmp_ptr = q->decode_buf_ptr[0];
1032             q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1033             q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1034             q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1035             q->decode_buf_ptr[3] = tmp_ptr;
1036
1037             q->gain_now_ptr = &q->gain_now;
1038             q->gain_previous_ptr = &q->gain_previous;
1039
1040             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1041             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1042                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1043             /* Swap out the previous buffer. */
1044             tmp_ptr = q->previous_buffer_ptr[0];
1045             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1046             q->previous_buffer_ptr[1] = tmp_ptr;
1047
1048             for (j=0 ; j<q->samples_per_frame ; j++){
1049                 value = lrintf(q->mono_mdct_output[j]);
1050                 if(value < -32768) value = -32768;
1051                 else if(value > 32767) value = 32767;
1052                 outbuffer[2*j+1] = value;
1053             }
1054
1055             /* channel 1 */
1056             //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1057             init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1058             decode_gain_info(&q->gb, &q->gain_current);
1059             //memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));
1060             mono_decode(q, q->decode_buf_ptr[0]);
1061             tmp_ptr = q->decode_buf_ptr[0];
1062             q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1063             q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1064             q->decode_buf_ptr[3] = tmp_ptr;
1065
1066             q->gain_now_ptr = &q->gain_now;
1067             q->gain_previous_ptr = &q->gain_previous;
1068
1069             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1070             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr, q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1071
1072             /* Swap out the previous buffer. */
1073             tmp_ptr = q->previous_buffer_ptr[0];
1074             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1075             q->previous_buffer_ptr[1] = tmp_ptr;
1076
1077             for (j=0 ; j<q->samples_per_frame ; j++){
1078                 value = lrintf(q->mono_mdct_output[j]);
1079                 if(value < -32768) value = -32768;
1080                 else if(value > 32767) value = 32767;
1081                 outbuffer[2*j] = value;
1082             }
1083
1084
1085             /* Swap out the previous buffer. */
1086             memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1087             memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1088
1089     } else {
1090         mono_decode(q, q->decode_buf_ptr[0]);
1091
1092         /* Swap buffer pointers. */
1093         tmp_ptr = q->decode_buf_ptr[1];
1094         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1095         q->decode_buf_ptr[0] = tmp_ptr;
1096
1097         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1098            now/previous swap */
1099         q->gain_now_ptr = &q->gain_now;
1100         q->gain_previous_ptr = &q->gain_previous;
1101
1102         cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1103         gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1104                         q->gain_previous_ptr, q->mono_previous_buffer1);
1105
1106         /* Clip and convert the floats to 16 bits */
1107         for (j=0 ; j<q->samples_per_frame ; j++){
1108             value = lrintf(q->mono_mdct_output[j]);
1109             if(value < -32768) value = -32768;
1110             else if(value > 32767) value = 32767;
1111             outbuffer[j] = value;
1112         }
1113         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1114         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1115     }
1116     return q->samples_per_frame * sizeof(int16_t);
1117 }
1118
1119
1120 /**
1121  * Cook frame decoding
1122  *
1123  * @param avctx     pointer to the AVCodecContext
1124  */
1125
1126 static int cook_decode_frame(AVCodecContext *avctx,
1127             void *data, int *data_size,
1128             uint8_t *buf, int buf_size) {
1129     COOKContext *q = avctx->priv_data;
1130
1131     if (buf_size < avctx->block_align)
1132         return buf_size;
1133
1134     *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1135
1136     return avctx->block_align;
1137 }
1138 #ifdef COOKDEBUG
1139 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1140 {
1141     //int i=0;
1142 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1143     av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1144     av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1145     if (e->cookversion > MONO_COOK2) {
1146         PRINT("js_subband_start",e->js_subband_start);
1147         PRINT("js_vlc_bits",e->js_vlc_bits);
1148     }
1149     av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1150     PRINT("nb_channels",q->nb_channels);
1151     PRINT("bit_rate",q->bit_rate);
1152     PRINT("sample_rate",q->sample_rate);
1153     PRINT("samples_per_channel",q->samples_per_channel);
1154     PRINT("samples_per_frame",q->samples_per_frame);
1155     PRINT("subbands",q->subbands);
1156     PRINT("random_state",q->random_state);
1157     PRINT("mlt_size",q->mlt_size);
1158     PRINT("js_subband_start",q->js_subband_start);
1159     PRINT("numvector_bits",q->numvector_bits);
1160     PRINT("numvector_size",q->numvector_size);
1161     PRINT("total_subbands",q->total_subbands);
1162     PRINT("frame_reorder_counter",q->frame_reorder_counter);
1163     PRINT("frame_reorder_index_size",q->frame_reorder_index_size);
1164 }
1165 #endif
1166 /**
1167  * Cook initialization
1168  *
1169  * @param avctx     pointer to the AVCodecContext
1170  */
1171
1172 static int cook_decode_init(AVCodecContext *avctx)
1173 {
1174     COOKextradata *e = avctx->extradata;
1175     COOKContext *q = avctx->priv_data;
1176
1177     /* Take care of the codec specific extradata. */
1178     if (avctx->extradata_size <= 0) {
1179         av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1180         return -1;
1181     } else {
1182         /* 8 for mono, 16 for stereo, ? for multichannel
1183            Swap to right endianness so we don't need to care later on. */
1184         av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1185         if (avctx->extradata_size >= 8){
1186             e->cookversion = be2me_32(e->cookversion);
1187             e->samples_per_frame = be2me_16(e->samples_per_frame);
1188             e->subbands = be2me_16(e->subbands);
1189         }
1190         if (avctx->extradata_size >= 16){
1191             e->js_subband_start = be2me_16(e->js_subband_start);
1192             e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1193         }
1194     }
1195
1196     /* Take data from the AVCodecContext (RM container). */
1197     q->sample_rate = avctx->sample_rate;
1198     q->nb_channels = avctx->channels;
1199     q->bit_rate = avctx->bit_rate;
1200
1201     /* Initialize state. */
1202     q->random_state = 1;
1203
1204     /* Initialize extradata related variables. */
1205     q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1206     q->samples_per_frame = e->samples_per_frame;
1207     q->subbands = e->subbands;
1208     q->bits_per_subpacket = avctx->block_align * 8;
1209
1210     /* Initialize default data states. */
1211     q->js_subband_start = 0;
1212     q->numvector_bits = 5;
1213     q->total_subbands = q->subbands;
1214
1215     /* Initialize version-dependent variables */
1216     av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1217     switch (e->cookversion) {
1218         case MONO_COOK1:
1219             if (q->nb_channels != 1) {
1220                 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1221                 return -1;
1222             }
1223             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1224             break;
1225         case MONO_COOK2:
1226             if (q->nb_channels != 1) {
1227                 q->joint_stereo = 0;
1228                 av_log(NULL,AV_LOG_ERROR,"Non-joint-stereo files are decoded with wrong gain at the moment!\n");
1229                 q->bits_per_subpacket = q->bits_per_subpacket/2;
1230
1231             }
1232             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1233             break;
1234         case JOINT_STEREO:
1235             if (q->nb_channels != 2) {
1236                 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1237                 return -1;
1238             }
1239             av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1240             if (avctx->extradata_size >= 16){
1241                 q->total_subbands = q->subbands + e->js_subband_start;
1242                 q->js_subband_start = e->js_subband_start;
1243                 q->joint_stereo = 1;
1244                 q->js_vlc_bits = e->js_vlc_bits;
1245             }
1246             if (q->samples_per_channel > 256) {
1247                 q->numvector_bits++;   // q->numvector_bits  = 6
1248             }
1249             if (q->samples_per_channel > 512) {
1250                 q->numvector_bits++;   // q->numvector_bits  = 7
1251             }
1252             break;
1253         case MC_COOK:
1254             av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1255             return -1;
1256             break;
1257         default:
1258             av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1259             return -1;
1260             break;
1261     }
1262
1263     /* Initialize variable relations */
1264     q->mlt_size = q->samples_per_channel;
1265     q->numvector_size = (1 << q->numvector_bits);
1266
1267     /* Generate tables */
1268     init_rootpow2table(q);
1269     init_pow2table(q);
1270     init_gain_table(q);
1271
1272     if (init_cook_vlc_tables(q) != 0)
1273         return -1;
1274
1275     /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1276        this is for the bitstreamreader. */
1277     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
1278         return -1;
1279
1280     q->decode_buf_ptr[0] = q->decode_buffer_1;
1281     q->decode_buf_ptr[1] = q->decode_buffer_2;
1282     q->decode_buf_ptr[2] = q->decode_buffer_3;
1283     q->decode_buf_ptr[3] = q->decode_buffer_4;
1284
1285     q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1286     q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1287
1288     memset(q->decode_buffer_1,0,1024*sizeof(float));
1289     memset(q->decode_buffer_2,0,1024*sizeof(float));
1290     memset(q->decode_buffer_3,0,1024*sizeof(float));
1291     memset(q->decode_buffer_4,0,1024*sizeof(float));
1292
1293     /* Initialize transform. */
1294     if ( init_cook_mlt(q) == 0 )
1295         return -1;
1296
1297     //dump_cook_context(q,e);
1298     return 0;
1299 }
1300
1301
1302 AVCodec cook_decoder =
1303 {
1304     .name = "cook",
1305     .type = CODEC_TYPE_AUDIO,
1306     .id = CODEC_ID_COOK,
1307     .priv_data_size = sizeof(COOKContext),
1308     .init = cook_decode_init,
1309     .close = cook_decode_close,
1310     .decode = cook_decode_frame,
1311 };