3 * Copyright (C) 2008-2012 Alexander E. Patrakov
4 * 2010 Benjamin Larsson
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include "libavutil/avassert.h"
25 #include "libavutil/channel_layout.h"
26 #include "libavutil/common.h"
35 #define MAX_CHANNELS 6
36 #define DCA_MAX_FRAME_SIZE 16384
37 #define DCA_HEADER_SIZE 13
38 #define DCA_LFE_SAMPLES 8
40 #define DCAENC_SUBBANDS 32
42 #define SUBSUBFRAMES 2
43 #define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
46 typedef struct DCAEncContext {
50 int fullband_channels;
56 const int32_t *band_interpolation;
57 const int32_t *band_spectrum;
62 int32_t history[512][MAX_CHANNELS]; /* This is a circular buffer */
63 int32_t subband[SUBBAND_SAMPLES][DCAENC_SUBBANDS][MAX_CHANNELS];
64 int32_t quantized[SUBBAND_SAMPLES][DCAENC_SUBBANDS][MAX_CHANNELS];
65 int32_t peak_cb[DCAENC_SUBBANDS][MAX_CHANNELS];
66 int32_t downsampled_lfe[DCA_LFE_SAMPLES];
67 int32_t masking_curve_cb[SUBSUBFRAMES][256];
68 int abits[DCAENC_SUBBANDS][MAX_CHANNELS];
69 int scale_factor[DCAENC_SUBBANDS][MAX_CHANNELS];
70 softfloat quant[DCAENC_SUBBANDS][MAX_CHANNELS];
71 int32_t eff_masking_curve_cb[256];
72 int32_t band_masking_cb[32];
73 int32_t worst_quantization_noise;
74 int32_t worst_noise_ever;
78 static int32_t cos_table[2048];
79 static int32_t band_interpolation[2][512];
80 static int32_t band_spectrum[2][8];
81 static int32_t auf[9][AUBANDS][256];
82 static int32_t cb_to_add[256];
83 static int32_t cb_to_level[2048];
84 static int32_t lfe_fir_64i[512];
86 /* Transfer function of outer and middle ear, Hz -> dB */
87 static double hom(double f)
91 return -3.64 * pow(f1, -0.8)
92 + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
93 - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
94 - 0.0006 * (f1 * f1) * (f1 * f1);
97 static double gammafilter(int i, double f)
99 double h = (f - fc[i]) / erb[i];
103 return 20 * log10(h);
106 static int encode_init(AVCodecContext *avctx)
108 DCAEncContext *c = avctx->priv_data;
109 uint64_t layout = avctx->channel_layout;
110 int i, min_frame_bits;
112 c->fullband_channels = c->channels = avctx->channels;
113 c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
114 c->band_interpolation = band_interpolation[1];
115 c->band_spectrum = band_spectrum[1];
116 c->worst_quantization_noise = -2047;
117 c->worst_noise_ever = -2047;
120 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
121 "encoder will guess the layout, but it "
122 "might be incorrect.\n");
123 layout = av_get_default_channel_layout(avctx->channels);
126 case AV_CH_LAYOUT_MONO: c->channel_config = 0; break;
127 case AV_CH_LAYOUT_STEREO: c->channel_config = 2; break;
128 case AV_CH_LAYOUT_2_2: c->channel_config = 8; break;
129 case AV_CH_LAYOUT_5POINT0: c->channel_config = 9; break;
130 case AV_CH_LAYOUT_5POINT1: c->channel_config = 9; break;
132 av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
133 return AVERROR_PATCHWELCOME;
137 c->fullband_channels--;
139 for (i = 0; i < 9; i++) {
140 if (sample_rates[i] == avctx->sample_rate)
144 return AVERROR(EINVAL);
145 c->samplerate_index = i;
147 if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
148 av_log(avctx, AV_LOG_ERROR, "Bit rate %i not supported.", avctx->bit_rate);
149 return AVERROR(EINVAL);
151 for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
153 c->bitrate_index = i;
154 avctx->bit_rate = ff_dca_bit_rates[i];
155 c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
156 min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
157 if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
158 return AVERROR(EINVAL);
160 c->frame_size = (c->frame_bits + 7) / 8;
162 avctx->frame_size = 32 * SUBBAND_SAMPLES;
167 for (i = 0; i < 2048; i++) {
168 cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
169 cb_to_level[i] = (int32_t)(0x7fffffff * pow(10, -0.005 * i));
172 /* FIXME: probably incorrect */
173 for (i = 0; i < 256; i++) {
174 lfe_fir_64i[i] = (int32_t)(0x01ffffff * ff_dca_lfe_fir_64[i]);
175 lfe_fir_64i[511 - i] = (int32_t)(0x01ffffff * ff_dca_lfe_fir_64[i]);
178 for (i = 0; i < 512; i++) {
179 band_interpolation[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
180 band_interpolation[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
183 for (i = 0; i < 9; i++) {
184 for (j = 0; j < AUBANDS; j++) {
185 for (k = 0; k < 256; k++) {
186 double freq = sample_rates[i] * (k + 0.5) / 512;
188 auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
193 for (i = 0; i < 256; i++) {
194 double add = 1 + pow(10, -0.01 * i);
195 cb_to_add[i] = (int32_t)(100 * log10(add));
197 for (j = 0; j < 8; j++) {
199 for (i = 0; i < 512; i++) {
200 double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
201 accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
203 band_spectrum[0][j] = (int32_t)(200 * log10(accum));
205 for (j = 0; j < 8; j++) {
207 for (i = 0; i < 512; i++) {
208 double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
209 accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
211 band_spectrum[1][j] = (int32_t)(200 * log10(accum));
217 static inline int32_t cos_t(int x)
219 return cos_table[x & 2047];
222 static inline int32_t sin_t(int x)
224 return cos_t(x - 512);
227 static inline int32_t half32(int32_t a)
232 static inline int32_t mul32(int32_t a, int32_t b)
234 int64_t r = (int64_t)a * b + 0x80000000ULL;
238 static void subband_transform(DCAEncContext *c, const int32_t *input)
240 int ch, subs, i, k, j;
242 for (ch = 0; ch < c->fullband_channels; ch++) {
243 /* History is copied because it is also needed for PSY */
247 for (i = 0; i < 512; i++)
248 hist[i] = c->history[i][ch];
250 for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
255 /* Calculate the convolutions at once */
256 for (i = 0; i < 64; i++)
259 for (k = 0, i = hist_start, j = 0;
260 i < 512; k = (k + 1) & 63, i++, j++)
261 accum[k] += mul32(hist[i], c->band_interpolation[j]);
262 for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
263 accum[k] += mul32(hist[i], c->band_interpolation[j]);
265 for (k = 16; k < 32; k++)
266 accum[k] = accum[k] - accum[31 - k];
267 for (k = 32; k < 48; k++)
268 accum[k] = accum[k] + accum[95 - k];
270 for (band = 0; band < 32; band++) {
272 for (i = 16; i < 48; i++) {
273 int s = (2 * band + 1) * (2 * (i + 16) + 1);
274 resp += mul32(accum[i], cos_t(s << 3)) >> 3;
277 c->subband[subs][band][ch] = ((band + 1) & 2) ? -resp : resp;
280 /* Copy in 32 new samples from input */
281 for (i = 0; i < 32; i++)
282 hist[i + hist_start] = input[(subs * 32 + i) * c->channels + ch];
283 hist_start = (hist_start + 32) & 511;
288 static void lfe_downsample(DCAEncContext *c, const int32_t *input)
290 /* FIXME: make 128x LFE downsampling possible */
296 for (i = 0; i < 512; i++)
297 hist[i] = c->history[i][c->channels - 1];
299 for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
300 /* Calculate the convolution */
303 for (i = hist_start, j = 0; i < 512; i++, j++)
304 accum += mul32(hist[i], lfe_fir_64i[j]);
305 for (i = 0; i < hist_start; i++, j++)
306 accum += mul32(hist[i], lfe_fir_64i[j]);
308 c->downsampled_lfe[lfes] = accum;
310 /* Copy in 64 new samples from input */
311 for (i = 0; i < 64; i++)
312 hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + c->channels - 1];
314 hist_start = (hist_start + 64) & 511;
323 static void fft(const int32_t in[2 * 256], cplx32 out[256])
325 cplx32 buf[256], rin[256], rout[256];
328 /* do two transforms in parallel */
329 for (i = 0; i < 256; i++) {
330 /* Apply the Hann window */
331 rin[i].re = mul32(in[2 * i], 0x3fffffff - (cos_t(8 * i + 2) >> 1));
332 rin[i].im = mul32(in[2 * i + 1], 0x3fffffff - (cos_t(8 * i + 6) >> 1));
335 for (i = 0; i < 256; i++) {
336 buf[i].re = mul32(cos_t(4 * i + 2), rin[i].re)
337 - mul32(sin_t(4 * i + 2), rin[i].im);
338 buf[i].im = mul32(cos_t(4 * i + 2), rin[i].im)
339 + mul32(sin_t(4 * i + 2), rin[i].re);
342 for (j = 256, l = 1; j != 1; j >>= 1, l <<= 1) {
343 for (k = 0; k < 256; k += j) {
344 for (i = k; i < k + j / 2; i++) {
348 sum.re = buf[i].re + buf[i + j / 2].re;
349 sum.im = buf[i].im + buf[i + j / 2].im;
351 diff.re = buf[i].re - buf[i + j / 2].re;
352 diff.im = buf[i].im - buf[i + j / 2].im;
354 buf[i].re = half32(sum.re);
355 buf[i].im = half32(sum.im);
357 buf[i + j / 2].re = mul32(diff.re, cos_t(t))
358 - mul32(diff.im, sin_t(t));
359 buf[i + j / 2].im = mul32(diff.im, cos_t(t))
360 + mul32(diff.re, sin_t(t));
365 for (i = 0; i < 256; i++) {
366 int b = ff_reverse[i];
367 rout[i].re = mul32(buf[b].re, cos_t(4 * i))
368 - mul32(buf[b].im, sin_t(4 * i));
369 rout[i].im = mul32(buf[b].im, cos_t(4 * i))
370 + mul32(buf[b].re, sin_t(4 * i));
372 for (i = 0; i < 256; i++) {
373 /* separate the results of the two transforms */
376 o1.re = rout[i].re - rout[255 - i].re;
377 o1.im = rout[i].im + rout[255 - i].im;
379 o2.re = rout[i].im - rout[255 - i].im;
380 o2.im = -rout[i].re - rout[255 - i].re;
382 /* combine them into one long transform */
383 out[i].re = mul32( o1.re + o2.re, cos_t(2 * i + 1))
384 + mul32( o1.im - o2.im, sin_t(2 * i + 1));
385 out[i].im = mul32( o1.im + o2.im, cos_t(2 * i + 1))
386 + mul32(-o1.re + o2.re, sin_t(2 * i + 1));
390 static int32_t get_cb(int32_t in)
397 for (i = 1024; i > 0; i >>= 1) {
398 if (cb_to_level[i + res] >= in)
404 static int32_t add_cb(int32_t a, int32_t b)
407 FFSWAP(int32_t, a, b);
411 return a + cb_to_add[a - b];
414 static void adjust_jnd(int samplerate_index,
415 const int32_t in[512], int32_t out_cb[256])
419 int32_t out_cb_unnorm[256];
421 const int32_t ca_cb = -1114;
422 const int32_t cs_cb = 928;
427 for (j = 0; j < 256; j++) {
428 power[j] = add_cb(get_cb(out[j].re), get_cb(out[j].im));
429 out_cb_unnorm[j] = -2047; /* and can only grow */
432 for (i = 0; i < AUBANDS; i++) {
433 denom = ca_cb; /* and can only grow */
434 for (j = 0; j < 256; j++)
435 denom = add_cb(denom, power[j] + auf[samplerate_index][i][j]);
436 for (j = 0; j < 256; j++)
437 out_cb_unnorm[j] = add_cb(out_cb_unnorm[j],
438 -denom + auf[samplerate_index][i][j]);
441 for (j = 0; j < 256; j++)
442 out_cb[j] = add_cb(out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
445 typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
446 int32_t spectrum1, int32_t spectrum2, int channel,
449 static void walk_band_low(DCAEncContext *c, int band, int channel,
450 walk_band_t walk, int32_t *arg)
455 for (f = 0; f < 4; f++)
456 walk(c, 0, 0, f, 0, -2047, channel, arg);
458 for (f = 0; f < 8; f++)
459 walk(c, band, band - 1, 8 * band - 4 + f,
460 c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
464 static void walk_band_high(DCAEncContext *c, int band, int channel,
465 walk_band_t walk, int32_t *arg)
470 for (f = 0; f < 4; f++)
471 walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
473 for (f = 0; f < 8; f++)
474 walk(c, band, band + 1, 8 * band + 4 + f,
475 c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
479 static void update_band_masking(DCAEncContext *c, int band1, int band2,
480 int f, int32_t spectrum1, int32_t spectrum2,
481 int channel, int32_t * arg)
483 int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
485 if (value < c->band_masking_cb[band1])
486 c->band_masking_cb[band1] = value;
489 static void calc_masking(DCAEncContext *c, const int32_t *input)
491 int i, k, band, ch, ssf;
494 for (i = 0; i < 256; i++)
495 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
496 c->masking_curve_cb[ssf][i] = -2047;
498 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
499 for (ch = 0; ch < c->fullband_channels; ch++) {
500 for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
501 data[i] = c->history[k][ch];
502 for (k -= 512; i < 512; i++, k++)
503 data[i] = input[k * c->channels + ch];
504 adjust_jnd(c->samplerate_index, data, c->masking_curve_cb[ssf]);
506 for (i = 0; i < 256; i++) {
509 for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
510 if (c->masking_curve_cb[ssf][i] < m)
511 m = c->masking_curve_cb[ssf][i];
512 c->eff_masking_curve_cb[i] = m;
515 for (band = 0; band < 32; band++) {
516 c->band_masking_cb[band] = 2048;
517 walk_band_low(c, band, 0, update_band_masking, NULL);
518 walk_band_high(c, band, 0, update_band_masking, NULL);
522 static void find_peaks(DCAEncContext *c)
526 for (band = 0; band < 32; band++)
527 for (ch = 0; ch < c->fullband_channels; ch++) {
531 for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
532 int32_t s = abs(c->subband[sample][band][ch]);
536 c->peak_cb[band][ch] = get_cb(m);
539 if (c->lfe_channel) {
543 for (sample = 0; sample < DCA_LFE_SAMPLES; sample++)
544 if (m < abs(c->downsampled_lfe[sample]))
545 m = abs(c->downsampled_lfe[sample]);
546 c->lfe_peak_cb = get_cb(m);
550 static const int snr_fudge = 128;
551 #define USED_1ABITS 1
552 #define USED_NABITS 2
553 #define USED_26ABITS 4
555 static int init_quantization_noise(DCAEncContext *c, int noise)
557 int ch, band, ret = 0;
559 c->consumed_bits = 132 + 493 * c->fullband_channels;
561 c->consumed_bits += 72;
563 /* attempt to guess the bit distribution based on the prevoius frame */
564 for (ch = 0; ch < c->fullband_channels; ch++) {
565 for (band = 0; band < 32; band++) {
566 int snr_cb = c->peak_cb[band][ch] - c->band_masking_cb[band] - noise;
568 if (snr_cb >= 1312) {
569 c->abits[band][ch] = 26;
571 } else if (snr_cb >= 222) {
572 c->abits[band][ch] = 8 + mul32(snr_cb - 222, 69000000);
574 } else if (snr_cb >= 0) {
575 c->abits[band][ch] = 2 + mul32(snr_cb, 106000000);
578 c->abits[band][ch] = 1;
584 for (band = 0; band < 32; band++)
585 for (ch = 0; ch < c->fullband_channels; ch++) {
586 c->consumed_bits += bit_consumption[c->abits[band][ch]];
592 static void assign_bits(DCAEncContext *c)
594 /* Find the bounds where the binary search should work */
598 init_quantization_noise(c, c->worst_quantization_noise);
599 low = high = c->worst_quantization_noise;
600 if (c->consumed_bits > c->frame_bits) {
601 while (c->consumed_bits > c->frame_bits) {
602 av_assert0(used_abits != USED_1ABITS);
605 used_abits = init_quantization_noise(c, high);
608 while (c->consumed_bits <= c->frame_bits) {
610 if (used_abits == USED_26ABITS)
611 goto out; /* The requested bitrate is too high, pad with zeros */
613 used_abits = init_quantization_noise(c, low);
617 /* Now do a binary search between low and high to see what fits */
618 for (down = snr_fudge >> 1; down; down >>= 1) {
619 init_quantization_noise(c, high - down);
620 if (c->consumed_bits <= c->frame_bits)
623 init_quantization_noise(c, high);
625 c->worst_quantization_noise = high;
626 if (high > c->worst_noise_ever)
627 c->worst_noise_ever = high;
630 static void shift_history(DCAEncContext *c, const int32_t *input)
634 for (k = 0; k < 512; k++)
635 for (ch = 0; ch < c->channels; ch++)
636 c->history[k][ch] = input[k * c->channels + ch];
639 static int32_t quantize_value(int32_t value, softfloat quant)
641 int32_t offset = 1 << (quant.e - 1);
643 value = mul32(value, quant.m) + offset;
644 value = value >> quant.e;
648 static int calc_one_scale(int32_t peak_cb, int abits, softfloat *quant)
651 int our_nscale, try_remove;
654 av_assert0(peak_cb <= 0);
655 av_assert0(peak_cb >= -2047);
658 peak = cb_to_level[-peak_cb];
660 for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
661 if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
663 our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
664 our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
665 if ((quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
667 our_nscale -= try_remove;
670 if (our_nscale >= 125)
673 quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
674 quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
675 av_assert0((quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
680 static void calc_scales(DCAEncContext *c)
684 for (band = 0; band < 32; band++)
685 for (ch = 0; ch < c->fullband_channels; ch++)
686 c->scale_factor[band][ch] = calc_one_scale(c->peak_cb[band][ch],
688 &c->quant[band][ch]);
691 c->lfe_scale_factor = calc_one_scale(c->lfe_peak_cb, 11, &c->lfe_quant);
694 static void quantize_all(DCAEncContext *c)
696 int sample, band, ch;
698 for (sample = 0; sample < SUBBAND_SAMPLES; sample++)
699 for (band = 0; band < 32; band++)
700 for (ch = 0; ch < c->fullband_channels; ch++)
701 c->quantized[sample][band][ch] = quantize_value(c->subband[sample][band][ch], c->quant[band][ch]);
704 static void put_frame_header(DCAEncContext *c)
707 put_bits(&c->pb, 16, 0x7ffe);
708 put_bits(&c->pb, 16, 0x8001);
710 /* Frame type: normal */
711 put_bits(&c->pb, 1, 1);
713 /* Deficit sample count: none */
714 put_bits(&c->pb, 5, 31);
716 /* CRC is not present */
717 put_bits(&c->pb, 1, 0);
719 /* Number of PCM sample blocks */
720 put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
722 /* Primary frame byte size */
723 put_bits(&c->pb, 14, c->frame_size - 1);
725 /* Audio channel arrangement */
726 put_bits(&c->pb, 6, c->channel_config);
728 /* Core audio sampling frequency */
729 put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);
731 /* Transmission bit rate */
732 put_bits(&c->pb, 5, c->bitrate_index);
734 /* Embedded down mix: disabled */
735 put_bits(&c->pb, 1, 0);
737 /* Embedded dynamic range flag: not present */
738 put_bits(&c->pb, 1, 0);
740 /* Embedded time stamp flag: not present */
741 put_bits(&c->pb, 1, 0);
743 /* Auxiliary data flag: not present */
744 put_bits(&c->pb, 1, 0);
746 /* HDCD source: no */
747 put_bits(&c->pb, 1, 0);
749 /* Extension audio ID: N/A */
750 put_bits(&c->pb, 3, 0);
752 /* Extended audio data: not present */
753 put_bits(&c->pb, 1, 0);
755 /* Audio sync word insertion flag: after each sub-frame */
756 put_bits(&c->pb, 1, 0);
758 /* Low frequency effects flag: not present or 64x subsampling */
759 put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
761 /* Predictor history switch flag: on */
762 put_bits(&c->pb, 1, 1);
765 /* Multirate interpolator switch: non-perfect reconstruction */
766 put_bits(&c->pb, 1, 0);
768 /* Encoder software revision: 7 */
769 put_bits(&c->pb, 4, 7);
771 /* Copy history: 0 */
772 put_bits(&c->pb, 2, 0);
774 /* Source PCM resolution: 16 bits, not DTS ES */
775 put_bits(&c->pb, 3, 0);
777 /* Front sum/difference coding: no */
778 put_bits(&c->pb, 1, 0);
780 /* Surrounds sum/difference coding: no */
781 put_bits(&c->pb, 1, 0);
783 /* Dialog normalization: 0 dB */
784 put_bits(&c->pb, 4, 0);
787 static void put_primary_audio_header(DCAEncContext *c)
789 static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
790 static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
793 /* Number of subframes */
794 put_bits(&c->pb, 4, SUBFRAMES - 1);
796 /* Number of primary audio channels */
797 put_bits(&c->pb, 3, c->fullband_channels - 1);
799 /* Subband activity count */
800 for (ch = 0; ch < c->fullband_channels; ch++)
801 put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);
803 /* High frequency VQ start subband */
804 for (ch = 0; ch < c->fullband_channels; ch++)
805 put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);
807 /* Joint intensity coding index: 0, 0 */
808 for (ch = 0; ch < c->fullband_channels; ch++)
809 put_bits(&c->pb, 3, 0);
811 /* Transient mode codebook: A4, A4 (arbitrary) */
812 for (ch = 0; ch < c->fullband_channels; ch++)
813 put_bits(&c->pb, 2, 0);
815 /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
816 for (ch = 0; ch < c->fullband_channels; ch++)
817 put_bits(&c->pb, 3, 6);
819 /* Bit allocation quantizer select: linear 5-bit */
820 for (ch = 0; ch < c->fullband_channels; ch++)
821 put_bits(&c->pb, 3, 6);
823 /* Quantization index codebook select: dummy data
824 to avoid transmission of scale factor adjustment */
825 for (i = 1; i < 11; i++)
826 for (ch = 0; ch < c->fullband_channels; ch++)
827 put_bits(&c->pb, bitlen[i], thr[i]);
829 /* Scale factor adjustment index: not transmitted */
830 /* Audio header CRC check word: not transmitted */
833 static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
835 if (c->abits[band][ch] <= 7) {
837 for (i = 0; i < 8; i += 4) {
839 for (j = 3; j >= 0; j--) {
840 sum *= quant_levels[c->abits[band][ch]];
841 sum += c->quantized[ss * 8 + i + j][band][ch];
842 sum += (quant_levels[c->abits[band][ch]] - 1) / 2;
844 put_bits(&c->pb, bit_consumption[c->abits[band][ch]] / 4, sum);
848 for (i = 0; i < 8; i++) {
849 int bits = bit_consumption[c->abits[band][ch]] / 16;
850 int32_t mask = (1 << bits) - 1;
851 put_bits(&c->pb, bits, c->quantized[ss * 8 + i][band][ch] & mask);
856 static void put_subframe(DCAEncContext *c, int subframe)
860 /* Subsubframes count */
861 put_bits(&c->pb, 2, SUBSUBFRAMES -1);
863 /* Partial subsubframe sample count: dummy */
864 put_bits(&c->pb, 3, 0);
866 /* Prediction mode: no ADPCM, in each channel and subband */
867 for (ch = 0; ch < c->fullband_channels; ch++)
868 for (band = 0; band < DCAENC_SUBBANDS; band++)
869 put_bits(&c->pb, 1, 0);
871 /* Prediction VQ address: not transmitted */
872 /* Bit allocation index */
873 for (ch = 0; ch < c->fullband_channels; ch++)
874 for (band = 0; band < DCAENC_SUBBANDS; band++)
875 put_bits(&c->pb, 5, c->abits[band][ch]);
877 if (SUBSUBFRAMES > 1) {
878 /* Transition mode: none for each channel and subband */
879 for (ch = 0; ch < c->fullband_channels; ch++)
880 for (band = 0; band < DCAENC_SUBBANDS; band++)
881 put_bits(&c->pb, 1, 0); /* codebook A4 */
885 for (ch = 0; ch < c->fullband_channels; ch++)
886 for (band = 0; band < DCAENC_SUBBANDS; band++)
887 put_bits(&c->pb, 7, c->scale_factor[band][ch]);
889 /* Joint subband scale factor codebook select: not transmitted */
890 /* Scale factors for joint subband coding: not transmitted */
891 /* Stereo down-mix coefficients: not transmitted */
892 /* Dynamic range coefficient: not transmitted */
893 /* Stde information CRC check word: not transmitted */
894 /* VQ encoded high frequency subbands: not transmitted */
896 /* LFE data: 8 samples and scalefactor */
897 if (c->lfe_channel) {
898 for (i = 0; i < DCA_LFE_SAMPLES; i++)
899 put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
900 put_bits(&c->pb, 8, c->lfe_scale_factor);
903 /* Audio data (subsubframes) */
904 for (ss = 0; ss < SUBSUBFRAMES ; ss++)
905 for (ch = 0; ch < c->fullband_channels; ch++)
906 for (band = 0; band < DCAENC_SUBBANDS; band++)
907 put_subframe_samples(c, ss, band, ch);
910 put_bits(&c->pb, 16, 0xffff);
913 static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
914 const AVFrame *frame, int *got_packet_ptr)
916 DCAEncContext *c = avctx->priv_data;
917 const int32_t *samples;
920 if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size )) < 0)
923 samples = (const int32_t *)frame->data[0];
925 subband_transform(c, samples);
927 lfe_downsample(c, samples);
929 calc_masking(c, samples);
934 shift_history(c, samples);
936 init_put_bits(&c->pb, avpkt->data, avpkt->size);
938 put_primary_audio_header(c);
939 for (i = 0; i < SUBFRAMES; i++)
942 flush_put_bits(&c->pb);
944 avpkt->pts = frame->pts;
945 avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
946 avpkt->size = c->frame_size + 1;
951 static const AVCodecDefault defaults[] = {
956 AVCodec ff_dca_encoder = {
958 .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
959 .type = AVMEDIA_TYPE_AUDIO,
960 .id = AV_CODEC_ID_DTS,
961 .priv_data_size = sizeof(DCAEncContext),
963 .encode2 = encode_frame,
964 .capabilities = CODEC_CAP_EXPERIMENTAL,
965 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
966 AV_SAMPLE_FMT_NONE },
967 .supported_samplerates = sample_rates,
968 .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
971 AV_CH_LAYOUT_5POINT0,
972 AV_CH_LAYOUT_5POINT1,
974 .defaults = defaults,