3 * Copyright (c) 2002 Fabrice Bellard
4 * Copyright (c) 2004 Roman Shaposhnik
7 * Copyright (c) 2003 Roman Shaposhnik
9 * 50 Mbps (DVCPRO50) support
10 * Copyright (c) 2006 Daniel Maas <dmaas@maasdigital.com>
12 * 100 Mbps (DVCPRO HD) support
13 * Initial code by Daniel Maas <dmaas@maasdigital.com> (funded by BBC R&D)
14 * Final code by Roman Shaposhnik
16 * Many thanks to Dan Dennedy <dan@dennedy.org> for providing wealth
17 * of DV technical info.
19 * This file is part of FFmpeg.
21 * FFmpeg is free software; you can redistribute it and/or
22 * modify it under the terms of the GNU Lesser General Public
23 * License as published by the Free Software Foundation; either
24 * version 2.1 of the License, or (at your option) any later version.
26 * FFmpeg is distributed in the hope that it will be useful,
27 * but WITHOUT ANY WARRANTY; without even the implied warranty of
28 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
29 * Lesser General Public License for more details.
31 * You should have received a copy of the GNU Lesser General Public
32 * License along with FFmpeg; if not, write to the Free Software
33 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
41 #include "libavutil/internal.h"
42 #include "libavutil/pixdesc.h"
49 #include "simple_idct.h"
51 /* XXX: also include quantization */
52 RL_VLC_ELEM ff_dv_rl_vlc[1664];
54 static inline void dv_calc_mb_coordinates(const AVDVProfile *d, int chan,
55 int seq, int slot, uint16_t *tbl)
57 static const uint8_t off[] = { 2, 6, 8, 0, 4 };
58 static const uint8_t shuf1[] = { 36, 18, 54, 0, 72 };
59 static const uint8_t shuf2[] = { 24, 12, 36, 0, 48 };
60 static const uint8_t shuf3[] = { 18, 9, 27, 0, 36 };
62 static const uint8_t l_start[] = { 0, 4, 9, 13, 18, 22, 27, 31, 36, 40 };
63 static const uint8_t l_start_shuffled[] = { 9, 4, 13, 0, 18 };
65 static const uint8_t serpent1[] = {
72 static const uint8_t serpent2[] = {
73 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
74 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0,
78 static const uint8_t remap[][2] = {
79 { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, /* dummy */
80 { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 10, 0 },
81 { 10, 1 }, { 10, 2 }, { 10, 3 }, { 20, 0 }, { 20, 1 },
82 { 20, 2 }, { 20, 3 }, { 30, 0 }, { 30, 1 }, { 30, 2 },
83 { 30, 3 }, { 40, 0 }, { 40, 1 }, { 40, 2 }, { 40, 3 },
84 { 50, 0 }, { 50, 1 }, { 50, 2 }, { 50, 3 }, { 60, 0 },
85 { 60, 1 }, { 60, 2 }, { 60, 3 }, { 70, 0 }, { 70, 1 },
86 { 70, 2 }, { 70, 3 }, { 0, 64 }, { 0, 65 }, { 0, 66 },
87 { 10, 64 }, { 10, 65 }, { 10, 66 }, { 20, 64 }, { 20, 65 },
88 { 20, 66 }, { 30, 64 }, { 30, 65 }, { 30, 66 }, { 40, 64 },
89 { 40, 65 }, { 40, 66 }, { 50, 64 }, { 50, 65 }, { 50, 66 },
90 { 60, 64 }, { 60, 65 }, { 60, 66 }, { 70, 64 }, { 70, 65 },
91 { 70, 66 }, { 0, 67 }, { 20, 67 }, { 40, 67 }, { 60, 67 }
97 for (m = 0; m < 5; m++) {
100 blk = (chan * 11 + seq) * 27 + slot;
102 if (chan == 0 && seq == 11) {
111 i = (4 * chan + blk + off[m]) % 11;
114 x = shuf1[m] + (chan & 1) * 9 + k % 9;
115 y = (i * 3 + k / 9) * 2 + (chan >> 1) + 1;
117 tbl[m] = (x << 1) | (y << 9);
120 blk = (chan * 10 + seq) * 27 + slot;
122 i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
125 x = shuf1[m] + (chan & 1) * 9 + k % 9;
126 y = (i * 3 + k / 9) * 2 + (chan >> 1) + 4;
129 x = remap[y][0] + ((x - 80) << (y > 59));
132 tbl[m] = (x << 1) | (y << 9);
135 blk = (chan * 10 + seq) * 27 + slot;
137 i = (4 * chan + (seq / 5) + 2 * blk + off[m]) % 10;
138 k = (blk / 5) % 27 + (i & 1) * 3;
140 x = shuf2[m] + k % 6 + 6 * (chan & 1);
141 y = l_start[i] + k / 6 + 45 * (chan >> 1);
142 tbl[m] = (x << 1) | (y << 9);
145 switch (d->pix_fmt) {
146 case AV_PIX_FMT_YUV422P:
147 x = shuf3[m] + slot / 3;
149 ((((seq + off[m]) % d->difseg_size) << 1) + chan) * 3;
150 tbl[m] = (x << 1) | (y << 8);
152 case AV_PIX_FMT_YUV420P:
153 x = shuf3[m] + slot / 3;
155 ((seq + off[m]) % d->difseg_size) * 3;
156 tbl[m] = (x << 1) | (y << 9);
158 case AV_PIX_FMT_YUV411P:
159 i = (seq + off[m]) % d->difseg_size;
160 k = slot + ((m == 1 || m == 2) ? 3 : 0);
162 x = l_start_shuffled[m] + k / 6;
163 y = serpent2[k] + i * 6;
166 tbl[m] = (x << 2) | (y << 8);
175 int ff_dv_init_dynamic_tables(DVVideoContext *ctx, const AVDVProfile *d)
180 for (c = 0; c < d->n_difchan; c++) {
181 for (s = 0; s < d->difseg_size; s++) {
183 for (j = 0; j < 27; j++) {
185 if (!(DV_PROFILE_IS_1080i50(d) && c != 0 && s == 11) &&
186 !(DV_PROFILE_IS_720p50(d) && s > 9)) {
187 dv_calc_mb_coordinates(d, c, s, j, &ctx->work_chunks[i].mb_coordinates[0]);
188 ctx->work_chunks[i++].buf_offset = p;
198 av_cold int ff_dvvideo_init(AVCodecContext *avctx)
200 DVVideoContext *s = avctx->priv_data;
206 uint16_t new_dv_vlc_bits[NB_DV_VLC * 2];
207 uint8_t new_dv_vlc_len[NB_DV_VLC * 2];
208 uint8_t new_dv_vlc_run[NB_DV_VLC * 2];
209 int16_t new_dv_vlc_level[NB_DV_VLC * 2];
213 /* it's faster to include sign bit in a generic VLC parsing scheme */
214 for (i = 0, j = 0; i < NB_DV_VLC; i++, j++) {
215 new_dv_vlc_bits[j] = ff_dv_vlc_bits[i];
216 new_dv_vlc_len[j] = ff_dv_vlc_len[i];
217 new_dv_vlc_run[j] = ff_dv_vlc_run[i];
218 new_dv_vlc_level[j] = ff_dv_vlc_level[i];
220 if (ff_dv_vlc_level[i]) {
221 new_dv_vlc_bits[j] <<= 1;
225 new_dv_vlc_bits[j] = (ff_dv_vlc_bits[i] << 1) | 1;
226 new_dv_vlc_len[j] = ff_dv_vlc_len[i] + 1;
227 new_dv_vlc_run[j] = ff_dv_vlc_run[i];
228 new_dv_vlc_level[j] = -ff_dv_vlc_level[i];
232 /* NOTE: as a trick, we use the fact the no codes are unused
233 * to accelerate the parsing of partial codes */
234 init_vlc(&dv_vlc, TEX_VLC_BITS, j, new_dv_vlc_len,
235 1, 1, new_dv_vlc_bits, 2, 2, 0);
236 av_assert1(dv_vlc.table_size == 1664);
238 for (i = 0; i < dv_vlc.table_size; i++) {
239 int code = dv_vlc.table[i][0];
240 int len = dv_vlc.table[i][1];
243 if (len < 0) { // more bits needed
247 run = new_dv_vlc_run[code] + 1;
248 level = new_dv_vlc_level[code];
250 ff_dv_rl_vlc[i].len = len;
251 ff_dv_rl_vlc[i].level = level;
252 ff_dv_rl_vlc[i].run = run;
254 ff_free_vlc(&dv_vlc);
258 avctx->chroma_sample_location = AVCHROMA_LOC_TOPLEFT;