]> git.sesse.net Git - ffmpeg/blob - libavcodec/elbg.c
Merge commit 'be1db21ba88fe86036fea9f8d2c1a5f47c2a0a7e'
[ffmpeg] / libavcodec / elbg.c
1 /*
2  * Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 /**
22  * @file
23  * Codebook Generator using the ELBG algorithm
24  */
25
26 #include <string.h>
27
28 #include "libavutil/avassert.h"
29 #include "libavutil/common.h"
30 #include "libavutil/lfg.h"
31 #include "elbg.h"
32 #include "avcodec.h"
33
34 #define DELTA_ERR_MAX 0.1  ///< Precision of the ELBG algorithm (as percentage error)
35
36 /**
37  * In the ELBG jargon, a cell is the set of points that are closest to a
38  * codebook entry. Not to be confused with a RoQ Video cell. */
39 typedef struct cell_s {
40     int index;
41     struct cell_s *next;
42 } cell;
43
44 /**
45  * ELBG internal data
46  */
47 typedef struct elbg_data {
48     int error;
49     int dim;
50     int numCB;
51     int *codebook;
52     cell **cells;
53     int *utility;
54     int64_t *utility_inc;
55     int *nearest_cb;
56     int *points;
57     AVLFG *rand_state;
58     int *scratchbuf;
59 } elbg_data;
60
61 static inline int distance_limited(int *a, int *b, int dim, int limit)
62 {
63     int i, dist=0;
64     for (i=0; i<dim; i++) {
65         dist += (a[i] - b[i])*(a[i] - b[i]);
66         if (dist > limit)
67             return INT_MAX;
68     }
69
70     return dist;
71 }
72
73 static inline void vect_division(int *res, int *vect, int div, int dim)
74 {
75     int i;
76     if (div > 1)
77         for (i=0; i<dim; i++)
78             res[i] = ROUNDED_DIV(vect[i],div);
79     else if (res != vect)
80         memcpy(res, vect, dim*sizeof(int));
81
82 }
83
84 static int eval_error_cell(elbg_data *elbg, int *centroid, cell *cells)
85 {
86     int error=0;
87     for (; cells; cells=cells->next)
88         error += distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
89
90     return error;
91 }
92
93 static int get_closest_codebook(elbg_data *elbg, int index)
94 {
95     int i, pick=0, diff, diff_min = INT_MAX;
96     for (i=0; i<elbg->numCB; i++)
97         if (i != index) {
98             diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
99             if (diff < diff_min) {
100                 pick = i;
101                 diff_min = diff;
102             }
103         }
104     return pick;
105 }
106
107 static int get_high_utility_cell(elbg_data *elbg)
108 {
109     int i=0;
110     /* Using linear search, do binary if it ever turns to be speed critical */
111     uint64_t r;
112
113     if (elbg->utility_inc[elbg->numCB-1] < INT_MAX) {
114         r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->numCB-1] + 1;
115     } else {
116         r = av_lfg_get(elbg->rand_state);
117         r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->numCB-1] + 1;
118     }
119
120     while (elbg->utility_inc[i] < r) {
121         i++;
122     }
123
124     av_assert2(elbg->cells[i]);
125
126     return i;
127 }
128
129 /**
130  * Implementation of the simple LBG algorithm for just two codebooks
131  */
132 static int simple_lbg(elbg_data *elbg,
133                       int dim,
134                       int *centroid[3],
135                       int newutility[3],
136                       int *points,
137                       cell *cells)
138 {
139     int i, idx;
140     int numpoints[2] = {0,0};
141     int *newcentroid[2] = {
142         elbg->scratchbuf + 3*dim,
143         elbg->scratchbuf + 4*dim
144     };
145     cell *tempcell;
146
147     memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0]));
148
149     newutility[0] =
150     newutility[1] = 0;
151
152     for (tempcell = cells; tempcell; tempcell=tempcell->next) {
153         idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
154               distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
155         numpoints[idx]++;
156         for (i=0; i<dim; i++)
157             newcentroid[idx][i] += points[tempcell->index*dim + i];
158     }
159
160     vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
161     vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
162
163     for (tempcell = cells; tempcell; tempcell=tempcell->next) {
164         int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
165                        distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
166         int idx = dist[0] > dist[1];
167         newutility[idx] += dist[idx];
168     }
169
170     return newutility[0] + newutility[1];
171 }
172
173 static void get_new_centroids(elbg_data *elbg, int huc, int *newcentroid_i,
174                               int *newcentroid_p)
175 {
176     cell *tempcell;
177     int *min = newcentroid_i;
178     int *max = newcentroid_p;
179     int i;
180
181     for (i=0; i< elbg->dim; i++) {
182         min[i]=INT_MAX;
183         max[i]=0;
184     }
185
186     for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
187         for(i=0; i<elbg->dim; i++) {
188             min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
189             max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
190         }
191
192     for (i=0; i<elbg->dim; i++) {
193         int ni = min[i] + (max[i] - min[i])/3;
194         int np = min[i] + (2*(max[i] - min[i]))/3;
195         newcentroid_i[i] = ni;
196         newcentroid_p[i] = np;
197     }
198 }
199
200 /**
201  * Add the points in the low utility cell to its closest cell. Split the high
202  * utility cell, putting the separated points in the (now empty) low utility
203  * cell.
204  *
205  * @param elbg         Internal elbg data
206  * @param indexes      {luc, huc, cluc}
207  * @param newcentroid  A vector with the position of the new centroids
208  */
209 static void shift_codebook(elbg_data *elbg, int *indexes,
210                            int *newcentroid[3])
211 {
212     cell *tempdata;
213     cell **pp = &elbg->cells[indexes[2]];
214
215     while(*pp)
216         pp= &(*pp)->next;
217
218     *pp = elbg->cells[indexes[0]];
219
220     elbg->cells[indexes[0]] = NULL;
221     tempdata = elbg->cells[indexes[1]];
222     elbg->cells[indexes[1]] = NULL;
223
224     while(tempdata) {
225         cell *tempcell2 = tempdata->next;
226         int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
227                            newcentroid[0], elbg->dim, INT_MAX) >
228                   distance_limited(elbg->points + tempdata->index*elbg->dim,
229                            newcentroid[1], elbg->dim, INT_MAX);
230
231         tempdata->next = elbg->cells[indexes[idx]];
232         elbg->cells[indexes[idx]] = tempdata;
233         tempdata = tempcell2;
234     }
235 }
236
237 static void evaluate_utility_inc(elbg_data *elbg)
238 {
239     int i;
240     int64_t inc=0;
241
242     for (i=0; i < elbg->numCB; i++) {
243         if (elbg->numCB*elbg->utility[i] > elbg->error)
244             inc += elbg->utility[i];
245         elbg->utility_inc[i] = inc;
246     }
247 }
248
249
250 static void update_utility_and_n_cb(elbg_data *elbg, int idx, int newutility)
251 {
252     cell *tempcell;
253
254     elbg->utility[idx] = newutility;
255     for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
256         elbg->nearest_cb[tempcell->index] = idx;
257 }
258
259 /**
260  * Evaluate if a shift lower the error. If it does, call shift_codebooks
261  * and update elbg->error, elbg->utility and elbg->nearest_cb.
262  *
263  * @param elbg  Internal elbg data
264  * @param idx   {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
265  */
266 static void try_shift_candidate(elbg_data *elbg, int idx[3])
267 {
268     int j, k, olderror=0, newerror, cont=0;
269     int newutility[3];
270     int *newcentroid[3] = {
271         elbg->scratchbuf,
272         elbg->scratchbuf + elbg->dim,
273         elbg->scratchbuf + 2*elbg->dim
274     };
275     cell *tempcell;
276
277     for (j=0; j<3; j++)
278         olderror += elbg->utility[idx[j]];
279
280     memset(newcentroid[2], 0, elbg->dim*sizeof(int));
281
282     for (k=0; k<2; k++)
283         for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
284             cont++;
285             for (j=0; j<elbg->dim; j++)
286                 newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
287         }
288
289     vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
290
291     get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
292
293     newutility[2]  = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
294     newutility[2] += eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
295
296     newerror = newutility[2];
297
298     newerror += simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points,
299                            elbg->cells[idx[1]]);
300
301     if (olderror > newerror) {
302         shift_codebook(elbg, idx, newcentroid);
303
304         elbg->error += newerror - olderror;
305
306         for (j=0; j<3; j++)
307             update_utility_and_n_cb(elbg, idx[j], newutility[j]);
308
309         evaluate_utility_inc(elbg);
310     }
311  }
312
313 /**
314  * Implementation of the ELBG block
315  */
316 static void do_shiftings(elbg_data *elbg)
317 {
318     int idx[3];
319
320     evaluate_utility_inc(elbg);
321
322     for (idx[0]=0; idx[0] < elbg->numCB; idx[0]++)
323         if (elbg->numCB*elbg->utility[idx[0]] < elbg->error) {
324             if (elbg->utility_inc[elbg->numCB-1] == 0)
325                 return;
326
327             idx[1] = get_high_utility_cell(elbg);
328             idx[2] = get_closest_codebook(elbg, idx[0]);
329
330             if (idx[1] != idx[0] && idx[1] != idx[2])
331                 try_shift_candidate(elbg, idx);
332         }
333 }
334
335 #define BIG_PRIME 433494437LL
336
337 int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook,
338                  int numCB, int max_steps, int *closest_cb,
339                  AVLFG *rand_state)
340 {
341     int i, k, ret = 0;
342
343     if (numpoints > 24*numCB) {
344         /* ELBG is very costly for a big number of points. So if we have a lot
345            of them, get a good initial codebook to save on iterations       */
346         int *temp_points = av_malloc_array(dim, (numpoints/8)*sizeof(int));
347         if (!temp_points)
348             return AVERROR(ENOMEM);
349         for (i=0; i<numpoints/8; i++) {
350             k = (i*BIG_PRIME) % numpoints;
351             memcpy(temp_points + i*dim, points + k*dim, dim*sizeof(int));
352         }
353
354         ret = avpriv_init_elbg(temp_points, dim, numpoints / 8, codebook,
355                                numCB, 2 * max_steps, closest_cb, rand_state);
356         if (ret < 0) {
357             av_freep(&temp_points);
358             return ret;
359         }
360         ret = avpriv_do_elbg(temp_points, dim, numpoints / 8, codebook,
361                              numCB, 2 * max_steps, closest_cb, rand_state);
362         av_free(temp_points);
363
364     } else  // If not, initialize the codebook with random positions
365         for (i=0; i < numCB; i++)
366             memcpy(codebook + i*dim, points + ((i*BIG_PRIME)%numpoints)*dim,
367                    dim*sizeof(int));
368     return ret;
369 }
370
371 int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook,
372                 int numCB, int max_steps, int *closest_cb,
373                 AVLFG *rand_state)
374 {
375     int dist;
376     elbg_data elbg_d;
377     elbg_data *elbg = &elbg_d;
378     int i, j, k, last_error, steps = 0, ret = 0;
379     int *dist_cb = av_malloc_array(numpoints, sizeof(int));
380     int *size_part = av_malloc_array(numCB, sizeof(int));
381     cell *list_buffer = av_malloc_array(numpoints, sizeof(cell));
382     cell *free_cells;
383     int best_dist, best_idx = 0;
384
385     elbg->error = INT_MAX;
386     elbg->dim = dim;
387     elbg->numCB = numCB;
388     elbg->codebook = codebook;
389     elbg->cells = av_malloc_array(numCB, sizeof(cell *));
390     elbg->utility = av_malloc_array(numCB, sizeof(int));
391     elbg->nearest_cb = closest_cb;
392     elbg->points = points;
393     elbg->utility_inc = av_malloc_array(numCB, sizeof(*elbg->utility_inc));
394     elbg->scratchbuf = av_malloc_array(5*dim, sizeof(int));
395
396     if (!dist_cb || !size_part || !list_buffer || !elbg->cells ||
397         !elbg->utility || !elbg->utility_inc || !elbg->scratchbuf) {
398         ret = AVERROR(ENOMEM);
399         goto out;
400     }
401
402     elbg->rand_state = rand_state;
403
404     do {
405         free_cells = list_buffer;
406         last_error = elbg->error;
407         steps++;
408         memset(elbg->utility, 0, numCB*sizeof(int));
409         memset(elbg->cells, 0, numCB*sizeof(cell *));
410
411         elbg->error = 0;
412
413         /* This loop evaluate the actual Voronoi partition. It is the most
414            costly part of the algorithm. */
415         for (i=0; i < numpoints; i++) {
416             best_dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + best_idx*elbg->dim, dim, INT_MAX);
417             for (k=0; k < elbg->numCB; k++) {
418                 dist = distance_limited(elbg->points + i*elbg->dim, elbg->codebook + k*elbg->dim, dim, best_dist);
419                 if (dist < best_dist) {
420                     best_dist = dist;
421                     best_idx = k;
422                 }
423             }
424             elbg->nearest_cb[i] = best_idx;
425             dist_cb[i] = best_dist;
426             elbg->error += dist_cb[i];
427             elbg->utility[elbg->nearest_cb[i]] += dist_cb[i];
428             free_cells->index = i;
429             free_cells->next = elbg->cells[elbg->nearest_cb[i]];
430             elbg->cells[elbg->nearest_cb[i]] = free_cells;
431             free_cells++;
432         }
433
434         do_shiftings(elbg);
435
436         memset(size_part, 0, numCB*sizeof(int));
437
438         memset(elbg->codebook, 0, elbg->numCB*dim*sizeof(int));
439
440         for (i=0; i < numpoints; i++) {
441             size_part[elbg->nearest_cb[i]]++;
442             for (j=0; j < elbg->dim; j++)
443                 elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
444                     elbg->points[i*elbg->dim + j];
445         }
446
447         for (i=0; i < elbg->numCB; i++)
448             vect_division(elbg->codebook + i*elbg->dim,
449                           elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
450
451     } while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
452             (steps < max_steps));
453
454 out:
455     av_free(dist_cb);
456     av_free(size_part);
457     av_free(elbg->utility);
458     av_free(list_buffer);
459     av_free(elbg->cells);
460     av_free(elbg->utility_inc);
461     av_free(elbg->scratchbuf);
462     return ret;
463 }