]> git.sesse.net Git - ffmpeg/blob - libavcodec/evrcdec.c
Merge commit 'aeaa108bafa11db290f1ada0e22dbfbd655cf2ba'
[ffmpeg] / libavcodec / evrcdec.c
1 /*
2  * Enhanced Variable Rate Codec, Service Option 3 decoder
3  * Copyright (c) 2013 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Enhanced Variable Rate Codec, Service Option 3 decoder
25  * @author Paul B Mahol
26  */
27
28 #include "libavutil/mathematics.h"
29 #include "libavutil/opt.h"
30 #include "avcodec.h"
31 #include "internal.h"
32 #include "get_bits.h"
33 #include "evrcdata.h"
34 #include "acelp_vectors.h"
35 #include "lsp.h"
36
37 #define MIN_LSP_SEP (0.05 / (2.0 * M_PI))
38 #define MIN_DELAY      20
39 #define MAX_DELAY     120
40 #define NB_SUBFRAMES    3
41 #define SUBFRAME_SIZE  54
42 #define FILTER_ORDER   10
43 #define ACB_SIZE      128
44
45 typedef enum {
46     RATE_ERRS = -1,
47     SILENCE,
48     RATE_QUANT,
49     RATE_QUARTER,
50     RATE_HALF,
51     RATE_FULL,
52 } evrc_packet_rate;
53
54 /**
55  * EVRC-A unpacked data frame
56  */
57 typedef struct EVRCAFrame {
58     uint8_t  lpc_flag;        ///< spectral change indicator
59     uint16_t lsp[4];          ///< index into LSP codebook
60     uint8_t  pitch_delay;     ///< pitch delay for entire frame
61     uint8_t  delay_diff;      ///< delay difference for entire frame
62     uint8_t  acb_gain[3];     ///< adaptive codebook gain
63     uint16_t fcb_shape[3][4]; ///< fixed codebook shape
64     uint8_t  fcb_gain[3];     ///< fixed codebook gain index
65     uint8_t  energy_gain;     ///< frame energy gain index
66     uint8_t  tty;             ///< tty baud rate bit
67 } EVRCAFrame;
68
69 typedef struct EVRCContext {
70     AVClass *class;
71
72     int              postfilter;
73
74     GetBitContext    gb;
75     evrc_packet_rate bitrate;
76     evrc_packet_rate last_valid_bitrate;
77     EVRCAFrame       frame;
78
79     float            lspf[FILTER_ORDER];
80     float            prev_lspf[FILTER_ORDER];
81     float            synthesis[FILTER_ORDER];
82     float            postfilter_fir[FILTER_ORDER];
83     float            postfilter_iir[FILTER_ORDER];
84     float            postfilter_residual[ACB_SIZE + SUBFRAME_SIZE];
85     float            pitch_delay;
86     float            prev_pitch_delay;
87     float            avg_acb_gain;  ///< average adaptive codebook gain
88     float            avg_fcb_gain;  ///< average fixed codebook gain
89     float            pitch[ACB_SIZE + FILTER_ORDER + SUBFRAME_SIZE];
90     float            pitch_back[ACB_SIZE];
91     float            interpolation_coeffs[136];
92     float            energy_vector[NB_SUBFRAMES];
93     float            fade_scale;
94     float            last;
95
96     uint8_t          prev_energy_gain;
97     uint8_t          prev_error_flag;
98     uint8_t          warned_buf_mismatch_bitrate;
99 } EVRCContext;
100
101 /**
102  * Frame unpacking for RATE_FULL, RATE_HALF and RATE_QUANT
103  *
104  * @param e the context
105  *
106  * TIA/IS-127 Table 4.21-1
107  */
108 static void unpack_frame(EVRCContext *e)
109 {
110     EVRCAFrame *frame = &e->frame;
111     GetBitContext *gb = &e->gb;
112
113     switch (e->bitrate) {
114     case RATE_FULL:
115         frame->lpc_flag        = get_bits1(gb);
116         frame->lsp[0]          = get_bits(gb,  6);
117         frame->lsp[1]          = get_bits(gb,  6);
118         frame->lsp[2]          = get_bits(gb,  9);
119         frame->lsp[3]          = get_bits(gb,  7);
120         frame->pitch_delay     = get_bits(gb,  7);
121         frame->delay_diff      = get_bits(gb,  5);
122         frame->acb_gain[0]     = get_bits(gb,  3);
123         frame->fcb_shape[0][0] = get_bits(gb,  8);
124         frame->fcb_shape[0][1] = get_bits(gb,  8);
125         frame->fcb_shape[0][2] = get_bits(gb,  8);
126         frame->fcb_shape[0][3] = get_bits(gb, 11);
127         frame->fcb_gain[0]     = get_bits(gb,  5);
128         frame->acb_gain[1]     = get_bits(gb,  3);
129         frame->fcb_shape[1][0] = get_bits(gb,  8);
130         frame->fcb_shape[1][1] = get_bits(gb,  8);
131         frame->fcb_shape[1][2] = get_bits(gb,  8);
132         frame->fcb_shape[1][3] = get_bits(gb, 11);
133         frame->fcb_gain    [1] = get_bits(gb,  5);
134         frame->acb_gain    [2] = get_bits(gb,  3);
135         frame->fcb_shape[2][0] = get_bits(gb,  8);
136         frame->fcb_shape[2][1] = get_bits(gb,  8);
137         frame->fcb_shape[2][2] = get_bits(gb,  8);
138         frame->fcb_shape[2][3] = get_bits(gb, 11);
139         frame->fcb_gain    [2] = get_bits(gb,  5);
140         frame->tty             = get_bits1(gb);
141         break;
142     case RATE_HALF:
143         frame->lsp         [0] = get_bits(gb,  7);
144         frame->lsp         [1] = get_bits(gb,  7);
145         frame->lsp         [2] = get_bits(gb,  8);
146         frame->pitch_delay     = get_bits(gb,  7);
147         frame->acb_gain    [0] = get_bits(gb,  3);
148         frame->fcb_shape[0][0] = get_bits(gb, 10);
149         frame->fcb_gain    [0] = get_bits(gb,  4);
150         frame->acb_gain    [1] = get_bits(gb,  3);
151         frame->fcb_shape[1][0] = get_bits(gb, 10);
152         frame->fcb_gain    [1] = get_bits(gb,  4);
153         frame->acb_gain    [2] = get_bits(gb,  3);
154         frame->fcb_shape[2][0] = get_bits(gb, 10);
155         frame->fcb_gain    [2] = get_bits(gb,  4);
156         break;
157     case RATE_QUANT:
158         frame->lsp         [0] = get_bits(gb, 4);
159         frame->lsp         [1] = get_bits(gb, 4);
160         frame->energy_gain     = get_bits(gb, 8);
161         break;
162     }
163 }
164
165 static evrc_packet_rate buf_size2bitrate(const int buf_size)
166 {
167     switch (buf_size) {
168     case 23: return RATE_FULL;
169     case 11: return RATE_HALF;
170     case  6: return RATE_QUARTER;
171     case  3: return RATE_QUANT;
172     case  1: return SILENCE;
173     }
174
175     return RATE_ERRS;
176 }
177
178 /**
179  * Determine the bitrate from the frame size and/or the first byte of the frame.
180  *
181  * @param avctx the AV codec context
182  * @param buf_size length of the buffer
183  * @param buf the bufffer
184  *
185  * @return the bitrate on success,
186  *         RATE_ERRS  if the bitrate cannot be satisfactorily determined
187  */
188 static evrc_packet_rate determine_bitrate(AVCodecContext *avctx,
189                                           int *buf_size,
190                                           const uint8_t **buf)
191 {
192     evrc_packet_rate bitrate;
193
194     if ((bitrate = buf_size2bitrate(*buf_size)) >= 0) {
195         if (bitrate > **buf) {
196             EVRCContext *e = avctx->priv_data;
197             if (!e->warned_buf_mismatch_bitrate) {
198                 av_log(avctx, AV_LOG_WARNING,
199                        "Claimed bitrate and buffer size mismatch.\n");
200                 e->warned_buf_mismatch_bitrate = 1;
201             }
202             bitrate = **buf;
203         } else if (bitrate < **buf) {
204             av_log(avctx, AV_LOG_ERROR,
205                    "Buffer is too small for the claimed bitrate.\n");
206             return RATE_ERRS;
207         }
208         (*buf)++;
209         *buf_size -= 1;
210     } else if ((bitrate = buf_size2bitrate(*buf_size + 1)) >= 0) {
211         av_log(avctx, AV_LOG_DEBUG,
212                "Bitrate byte is missing, guessing the bitrate from packet size.\n");
213     } else
214         return RATE_ERRS;
215
216     return bitrate;
217 }
218
219 static void warn_insufficient_frame_quality(AVCodecContext *avctx,
220                                             const char *message)
221 {
222     av_log(avctx, AV_LOG_WARNING, "Frame #%d, %s\n",
223            avctx->frame_number, message);
224 }
225
226 /**
227  * Initialize the speech codec according to the specification.
228  *
229  * TIA/IS-127 5.2
230  */
231 static av_cold int evrc_decode_init(AVCodecContext *avctx)
232 {
233     EVRCContext *e = avctx->priv_data;
234     int i, n, idx = 0;
235     float denom = 2.0 / (2.0 * 8.0 + 1.0);
236
237     avctx->channels       = 1;
238     avctx->channel_layout = AV_CH_LAYOUT_MONO;
239     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
240
241     for (i = 0; i < FILTER_ORDER; i++) {
242         e->prev_lspf[i] = (i + 1) * 0.048;
243         e->synthesis[i] = 0.0;
244     }
245
246     for (i = 0; i < ACB_SIZE; i++)
247         e->pitch[i] = e->pitch_back[i] = 0.0;
248
249     e->last_valid_bitrate = RATE_QUANT;
250     e->prev_pitch_delay   = 40.0;
251     e->fade_scale         = 1.0;
252     e->prev_error_flag    = 0;
253     e->avg_acb_gain = e->avg_fcb_gain = 0.0;
254
255     for (i = 0; i < 8; i++) {
256         float tt = ((float)i - 8.0 / 2.0) / 8.0;
257
258         for (n = -8; n <= 8; n++, idx++) {
259             float arg1 = M_PI * 0.9 * (tt - n);
260             float arg2 = M_PI * (tt - n);
261
262             e->interpolation_coeffs[idx] = 0.9;
263             if (arg1)
264                 e->interpolation_coeffs[idx] *= (0.54 + 0.46 * cos(arg2 * denom)) *
265                                                  sin(arg1) / arg1;
266         }
267     }
268
269     return 0;
270 }
271
272 /**
273  * Decode the 10 vector quantized line spectral pair frequencies from the LSP
274  * transmission codes of any bitrate and check for badly received packets.
275  *
276  * @param e the context
277  *
278  * @return 0 on success, -1 if the packet is badly received
279  *
280  * TIA/IS-127 5.2.1, 5.7.1
281  */
282 static int decode_lspf(EVRCContext *e)
283 {
284     const float * const *codebooks = evrc_lspq_codebooks[e->bitrate];
285     int i, j, k = 0;
286
287     for (i = 0; i < evrc_lspq_nb_codebooks[e->bitrate]; i++) {
288         int row_size = evrc_lspq_codebooks_row_sizes[e->bitrate][i];
289         const float *codebook = codebooks[i];
290
291         for (j = 0; j < row_size; j++)
292             e->lspf[k++] = codebook[e->frame.lsp[i] * row_size + j];
293     }
294
295     // check for monotonic LSPs
296     for (i = 1; i < FILTER_ORDER; i++)
297         if (e->lspf[i] <= e->lspf[i - 1])
298             return -1;
299
300     // check for minimum separation of LSPs at the splits
301     for (i = 0, k = 0; i < evrc_lspq_nb_codebooks[e->bitrate] - 1; i++) {
302         k += evrc_lspq_codebooks_row_sizes[e->bitrate][i];
303         if (e->lspf[k] - e->lspf[k - 1] <= MIN_LSP_SEP)
304             return -1;
305     }
306
307     return 0;
308 }
309
310 /*
311  * Interpolation of LSP parameters.
312  *
313  * TIA/IS-127 5.2.3.1, 5.7.3.2
314  */
315 static void interpolate_lsp(float *ilsp, const float *lsp,
316                             const float *prev, int index)
317 {
318     static const float lsp_interpolation_factors[] = { 0.1667, 0.5, 0.8333 };
319     ff_weighted_vector_sumf(ilsp, prev, lsp,
320                             1.0 - lsp_interpolation_factors[index],
321                             lsp_interpolation_factors[index], FILTER_ORDER);
322 }
323
324 /*
325  * Reconstruction of the delay contour.
326  *
327  * TIA/IS-127 5.2.2.3.2
328  */
329 static void interpolate_delay(float *dst, float current, float prev, int index)
330 {
331     static const float d_interpolation_factors[] = { 0, 0.3313, 0.6625, 1, 1 };
332     dst[0] = (1.0 - d_interpolation_factors[index    ]) * prev
333                   + d_interpolation_factors[index    ]  * current;
334     dst[1] = (1.0 - d_interpolation_factors[index + 1]) * prev
335                   + d_interpolation_factors[index + 1]  * current;
336     dst[2] = (1.0 - d_interpolation_factors[index + 2]) * prev
337                   + d_interpolation_factors[index + 2]  * current;
338 }
339
340 /*
341  * Convert the quantized, interpolated line spectral frequencies,
342  * to prediction coefficients.
343  *
344  * TIA/IS-127 5.2.3.2, 4.7.2.2
345  */
346 static void decode_predictor_coeffs(const float *ilspf, float *ilpc)
347 {
348     double lsp[FILTER_ORDER];
349     float a[FILTER_ORDER / 2 + 1], b[FILTER_ORDER / 2 + 1];
350     float a1[FILTER_ORDER / 2] = { 0 };
351     float a2[FILTER_ORDER / 2] = { 0 };
352     float b1[FILTER_ORDER / 2] = { 0 };
353     float b2[FILTER_ORDER / 2] = { 0 };
354     int i, k;
355
356     ff_acelp_lsf2lspd(lsp, ilspf, FILTER_ORDER);
357
358     for (k = 0; k <= FILTER_ORDER; k++) {
359         a[0] = k < 2 ? 0.25 : 0;
360         b[0] = k < 2 ? k < 1 ? 0.25 : -0.25 : 0;
361
362         for (i = 0; i < FILTER_ORDER / 2; i++) {
363             a[i + 1] = a[i] - 2 * lsp[i * 2    ] * a1[i] + a2[i];
364             b[i + 1] = b[i] - 2 * lsp[i * 2 + 1] * b1[i] + b2[i];
365             a2[i] = a1[i];
366             a1[i] = a[i];
367             b2[i] = b1[i];
368             b1[i] = b[i];
369         }
370
371         if (k)
372             ilpc[k - 1] = 2.0 * (a[FILTER_ORDER / 2] + b[FILTER_ORDER / 2]);
373     }
374 }
375
376 static void bl_intrp(EVRCContext *e, float *ex, float delay)
377 {
378     float *f;
379     int offset, i, coef_idx;
380     int16_t t;
381
382     offset = lrintf(delay);
383
384     t = (offset - delay + 0.5) * 8.0 + 0.5;
385     if (t == 8) {
386         t = 0;
387         offset--;
388     }
389
390     f = ex - offset - 8;
391
392     coef_idx = t * (2 * 8 + 1);
393
394     ex[0] = 0.0;
395     for (i = 0; i < 2 * 8 + 1; i++)
396         ex[0] += e->interpolation_coeffs[coef_idx + i] * f[i];
397 }
398
399 /*
400  * Adaptive codebook excitation.
401  *
402  * TIA/IS-127 5.2.2.3.3, 4.12.5.2
403  */
404 static void acb_excitation(EVRCContext *e, float *excitation, float gain,
405                            const float delay[3], int length)
406 {
407     float denom, locdelay, dpr, invl;
408     int i;
409
410     invl = 1.0 / ((float) length);
411     dpr = length;
412
413     /* first at-most extra samples */
414     denom = (delay[1] - delay[0]) * invl;
415     for (i = 0; i < dpr; i++) {
416         locdelay = delay[0] + i * denom;
417         bl_intrp(e, excitation + i, locdelay);
418     }
419
420     denom = (delay[2] - delay[1]) * invl;
421     /* interpolation */
422     for (i = dpr; i < dpr + 10; i++) {
423         locdelay = delay[1] + (i - dpr) * denom;
424         bl_intrp(e, excitation + i, locdelay);
425     }
426
427     for (i = 0; i < length; i++)
428         excitation[i] *= gain;
429 }
430
431 static void decode_8_pulses_35bits(const uint16_t *fixed_index, float *cod)
432 {
433     int i, pos1, pos2, offset;
434
435     offset = (fixed_index[3] >> 9) & 3;
436
437     for (i = 0; i < 3; i++) {
438         pos1 = ((fixed_index[i] & 0x7f) / 11) * 5 + ((i + offset) % 5);
439         pos2 = ((fixed_index[i] & 0x7f) % 11) * 5 + ((i + offset) % 5);
440
441         cod[pos1] = (fixed_index[i] & 0x80) ? -1.0 : 1.0;
442
443         if (pos2 < pos1)
444             cod[pos2]  = -cod[pos1];
445         else
446             cod[pos2] +=  cod[pos1];
447     }
448
449     pos1 = ((fixed_index[3] & 0x7f) / 11) * 5 + ((3 + offset) % 5);
450     pos2 = ((fixed_index[3] & 0x7f) % 11) * 5 + ((4 + offset) % 5);
451
452     cod[pos1] = (fixed_index[3] & 0x100) ? -1.0 : 1.0;
453     cod[pos2] = (fixed_index[3] & 0x80 ) ? -1.0 : 1.0;
454 }
455
456 static void decode_3_pulses_10bits(uint16_t fixed_index, float *cod)
457 {
458     float sign;
459     int pos;
460
461     sign = (fixed_index & 0x200) ? -1.0 : 1.0;
462
463     pos = ((fixed_index        & 0x7) * 7) + 4;
464     cod[pos] += sign;
465     pos = (((fixed_index >> 3) & 0x7) * 7) + 2;
466     cod[pos] -= sign;
467     pos = (((fixed_index >> 6) & 0x7) * 7);
468     cod[pos] += sign;
469 }
470
471 /*
472  * Reconstruction of ACELP fixed codebook excitation for full and half rate.
473  *
474  * TIA/IS-127 5.2.3.7
475  */
476 static void fcb_excitation(EVRCContext *e, const uint16_t *codebook,
477                            float *excitation, float pitch_gain,
478                            int pitch_lag, int subframe_size)
479 {
480     int i;
481
482     if (e->bitrate == RATE_FULL)
483         decode_8_pulses_35bits(codebook, excitation);
484     else
485         decode_3_pulses_10bits(*codebook, excitation);
486
487     pitch_gain = av_clipf(pitch_gain, 0.2, 0.9);
488
489     for (i = pitch_lag; i < subframe_size; i++)
490         excitation[i] += pitch_gain * excitation[i - pitch_lag];
491 }
492
493 /**
494  * Synthesis of the decoder output signal.
495  *
496  * param[in]     in              input signal
497  * param[in]     filter_coeffs   LPC coefficients
498  * param[in/out] memory          synthesis filter memory
499  * param         buffer_length   amount of data to process
500  * param[out]    samples         output samples
501  *
502  * TIA/IS-127 5.2.3.15, 5.7.3.4
503  */
504 static void synthesis_filter(const float *in, const float *filter_coeffs,
505                              float *memory, int buffer_length, float *samples)
506 {
507     int i, j;
508
509     for (i = 0; i < buffer_length; i++) {
510         samples[i] = in[i];
511         for (j = FILTER_ORDER - 1; j > 0; j--) {
512             samples[i] -= filter_coeffs[j] * memory[j];
513             memory[j]   = memory[j - 1];
514         }
515         samples[i] -= filter_coeffs[0] * memory[0];
516         memory[0]   = samples[i];
517     }
518 }
519
520 static void bandwidth_expansion(float *coeff, const float *inbuf, float gamma)
521 {
522     double fac = gamma;
523     int i;
524
525     for (i = 0; i < FILTER_ORDER; i++) {
526         coeff[i] = inbuf[i] * fac;
527         fac *= gamma;
528     }
529 }
530
531 static void residual_filter(float *output, const float *input,
532                             const float *coef, float *memory, int length)
533 {
534     float sum;
535     int i, j;
536
537     for (i = 0; i < length; i++) {
538         sum = input[i];
539
540         for (j = FILTER_ORDER - 1; j > 0; j--) {
541             sum      += coef[j] * memory[j];
542             memory[j] = memory[j - 1];
543         }
544         sum += coef[0] * memory[0];
545         memory[0] = input[i];
546         output[i] = sum;
547     }
548 }
549
550 /*
551  * TIA/IS-127 Table 5.9.1-1.
552  */
553 static const struct PfCoeff {
554     float tilt;
555     float ltgain;
556     float p1;
557     float p2;
558 } postfilter_coeffs[5] = {
559     { 0.0 , 0.0 , 0.0 , 0.0  },
560     { 0.0 , 0.0 , 0.57, 0.57 },
561     { 0.0 , 0.0 , 0.0 , 0.0  },
562     { 0.35, 0.50, 0.50, 0.75 },
563     { 0.20, 0.50, 0.57, 0.75 },
564 };
565
566 /*
567  * Adaptive postfilter.
568  *
569  * TIA/IS-127 5.9
570  */
571 static void postfilter(EVRCContext *e, float *in, const float *coeff,
572                        float *out, int idx, const struct PfCoeff *pfc,
573                        int length)
574 {
575     float wcoef1[FILTER_ORDER], wcoef2[FILTER_ORDER],
576           scratch[SUBFRAME_SIZE], temp[SUBFRAME_SIZE],
577           mem[SUBFRAME_SIZE];
578     float sum1 = 0.0, sum2 = 0.0, gamma, gain;
579     float tilt = pfc->tilt;
580     int i, n, best;
581
582     bandwidth_expansion(wcoef1, coeff, pfc->p1);
583     bandwidth_expansion(wcoef2, coeff, pfc->p2);
584
585     /* Tilt compensation filter, TIA/IS-127 5.9.1 */
586     for (i = 0; i < length - 1; i++)
587         sum2 += in[i] * in[i + 1];
588     if (sum2 < 0.0)
589         tilt = 0.0;
590
591     for (i = 0; i < length; i++) {
592         scratch[i] = in[i] - tilt * e->last;
593         e->last = in[i];
594     }
595
596     /* Short term residual filter, TIA/IS-127 5.9.2 */
597     residual_filter(&e->postfilter_residual[ACB_SIZE], scratch, wcoef1, e->postfilter_fir, length);
598
599     /* Long term postfilter */
600     best = idx;
601     for (i = FFMIN(MIN_DELAY, idx - 3); i <= FFMAX(MAX_DELAY, idx + 3); i++) {
602         for (n = ACB_SIZE, sum2 = 0; n < ACB_SIZE + length; n++)
603             sum2 += e->postfilter_residual[n] * e->postfilter_residual[n - i];
604         if (sum2 > sum1) {
605             sum1 = sum2;
606             best = i;
607         }
608     }
609
610     for (i = ACB_SIZE, sum1 = 0; i < ACB_SIZE + length; i++)
611         sum1 += e->postfilter_residual[i - best] * e->postfilter_residual[i - best];
612     for (i = ACB_SIZE, sum2 = 0; i < ACB_SIZE + length; i++)
613         sum2 += e->postfilter_residual[i] * e->postfilter_residual[i - best];
614
615     if (sum2 * sum1 == 0 || e->bitrate == RATE_QUANT) {
616         memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
617     } else {
618         gamma = sum2 / sum1;
619         if (gamma < 0.5)
620             memcpy(temp, e->postfilter_residual + ACB_SIZE, length * sizeof(float));
621         else {
622             gamma = FFMIN(gamma, 1.0);
623
624             for (i = 0; i < length; i++) {
625                 temp[i] = e->postfilter_residual[ACB_SIZE + i] + gamma *
626                     pfc->ltgain * e->postfilter_residual[ACB_SIZE + i - best];
627             }
628         }
629     }
630
631     memcpy(scratch, temp, length * sizeof(float));
632     memcpy(mem, e->postfilter_iir, FILTER_ORDER * sizeof(float));
633     synthesis_filter(scratch, wcoef2, mem, length, scratch);
634
635     /* Gain computation, TIA/IS-127 5.9.4-2 */
636     for (i = 0, sum1 = 0, sum2 = 0; i < length; i++) {
637         sum1 += in[i] * in[i];
638         sum2 += scratch[i] * scratch[i];
639     }
640     gain = sum2 ? sqrt(sum1 / sum2) : 1.0;
641
642     for (i = 0; i < length; i++)
643         temp[i] *= gain;
644
645     /* Short term postfilter */
646     synthesis_filter(temp, wcoef2, e->postfilter_iir, length, out);
647
648     memmove(e->postfilter_residual,
649            e->postfilter_residual + length, ACB_SIZE * sizeof(float));
650 }
651
652 static void frame_erasure(EVRCContext *e, float *samples)
653 {
654     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES],
655           tmp[SUBFRAME_SIZE + 6], f;
656     int i, j;
657
658     for (i = 0; i < FILTER_ORDER; i++) {
659         if (e->bitrate != RATE_QUANT)
660             e->lspf[i] = e->prev_lspf[i] * 0.875 + 0.125 * (i + 1) * 0.048;
661         else
662             e->lspf[i] = e->prev_lspf[i];
663     }
664
665     if (e->prev_error_flag)
666         e->avg_acb_gain *= 0.75;
667     if (e->bitrate == RATE_FULL)
668         memcpy(e->pitch_back, e->pitch, ACB_SIZE * sizeof(float));
669     if (e->last_valid_bitrate == RATE_QUANT)
670         e->bitrate = RATE_QUANT;
671     else
672         e->bitrate = RATE_FULL;
673
674     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
675         e->pitch_delay = e->prev_pitch_delay;
676     } else {
677         float sum = 0;
678
679         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
680
681         for (i = 0; i < NB_SUBFRAMES; i++)
682             sum += evrc_energy_quant[e->prev_energy_gain][i];
683         sum /= (float) NB_SUBFRAMES;
684         sum  = pow(10, sum);
685         for (i = 0; i < NB_SUBFRAMES; i++)
686             e->energy_vector[i] = sum;
687     }
688
689     if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
690         e->prev_pitch_delay = e->pitch_delay;
691
692     for (i = 0; i < NB_SUBFRAMES; i++) {
693         int subframe_size = subframe_sizes[i];
694         int pitch_lag;
695
696         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
697
698         if (e->bitrate != RATE_QUANT) {
699             if (e->avg_acb_gain < 0.3) {
700                 idelay[0] = estimation_delay[i];
701                 idelay[1] = estimation_delay[i + 1];
702                 idelay[2] = estimation_delay[i + 2];
703             } else {
704                 interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
705             }
706         }
707
708         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
709         decode_predictor_coeffs(ilspf, ilpc);
710
711         if (e->bitrate != RATE_QUANT) {
712             acb_excitation(e, e->pitch + ACB_SIZE,
713                            e->avg_acb_gain, idelay, subframe_size);
714             for (j = 0; j < subframe_size; j++)
715                 e->pitch[ACB_SIZE + j] *= e->fade_scale;
716             e->fade_scale = FFMAX(e->fade_scale - 0.05, 0.0);
717         } else {
718             for (j = 0; j < subframe_size; j++)
719                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
720         }
721
722         memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
723
724         if (e->bitrate != RATE_QUANT && e->avg_acb_gain < 0.4) {
725             f = 0.1 * e->avg_fcb_gain;
726             for (j = 0; j < subframe_size; j++)
727                 e->pitch[ACB_SIZE + j] += f;
728         } else if (e->bitrate == RATE_QUANT) {
729             for (j = 0; j < subframe_size; j++)
730                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
731         }
732
733         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
734                          e->synthesis, subframe_size, tmp);
735         postfilter(e, tmp, ilpc, samples, pitch_lag,
736                    &postfilter_coeffs[e->bitrate], subframe_size);
737
738         samples += subframe_size;
739     }
740 }
741
742 static int evrc_decode_frame(AVCodecContext *avctx, void *data,
743                              int *got_frame_ptr, AVPacket *avpkt)
744 {
745     const uint8_t *buf = avpkt->data;
746     AVFrame *frame     = data;
747     EVRCContext *e     = avctx->priv_data;
748     int buf_size       = avpkt->size;
749     float ilspf[FILTER_ORDER], ilpc[FILTER_ORDER], idelay[NB_SUBFRAMES];
750     float *samples;
751     int   i, j, ret, error_flag = 0;
752
753     frame->nb_samples = 160;
754     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
755         return ret;
756     samples = (float *)frame->data[0];
757
758     if ((e->bitrate = determine_bitrate(avctx, &buf_size, &buf)) == RATE_ERRS) {
759         warn_insufficient_frame_quality(avctx, "bitrate cannot be determined.");
760         goto erasure;
761     }
762     if (e->bitrate <= SILENCE || e->bitrate == RATE_QUARTER)
763         goto erasure;
764     if (e->bitrate == RATE_QUANT && e->last_valid_bitrate == RATE_FULL
765                                  && !e->prev_error_flag)
766         goto erasure;
767
768     if ((ret = init_get_bits8(&e->gb, buf, buf_size)) < 0)
769         return ret;
770     memset(&e->frame, 0, sizeof(EVRCAFrame));
771
772     unpack_frame(e);
773
774     if (e->bitrate != RATE_QUANT) {
775         uint8_t *p = (uint8_t *) &e->frame;
776         for (i = 0; i < sizeof(EVRCAFrame); i++) {
777             if (p[i])
778                 break;
779         }
780         if (i == sizeof(EVRCAFrame))
781             goto erasure;
782     } else if (e->frame.lsp[0] == 0xf &&
783                e->frame.lsp[1] == 0xf &&
784                e->frame.energy_gain == 0xff) {
785         goto erasure;
786     }
787
788     if (decode_lspf(e) < 0)
789         goto erasure;
790
791     if (e->bitrate == RATE_FULL || e->bitrate == RATE_HALF) {
792         /* Pitch delay parameter checking as per TIA/IS-127 5.1.5.1 */
793         if (e->frame.pitch_delay > MAX_DELAY - MIN_DELAY)
794             goto erasure;
795
796         e->pitch_delay = e->frame.pitch_delay + MIN_DELAY;
797
798         /* Delay diff parameter checking as per TIA/IS-127 5.1.5.2 */
799         if (e->frame.delay_diff) {
800             int p = e->pitch_delay - e->frame.delay_diff + 16;
801             if (p < MIN_DELAY || p > MAX_DELAY)
802                 goto erasure;
803         }
804
805         /* Delay contour reconstruction as per TIA/IS-127 5.2.2.2 */
806         if (e->frame.delay_diff &&
807             e->bitrate == RATE_FULL && e->prev_error_flag) {
808             float delay;
809
810             memcpy(e->pitch, e->pitch_back, ACB_SIZE * sizeof(float));
811
812             delay = e->prev_pitch_delay;
813             e->prev_pitch_delay = delay - e->frame.delay_diff + 16.0;
814
815             if (fabs(e->pitch_delay - delay) > 15)
816                 delay = e->pitch_delay;
817
818             for (i = 0; i < NB_SUBFRAMES; i++) {
819                 int subframe_size = subframe_sizes[i];
820
821                 interpolate_delay(idelay, delay, e->prev_pitch_delay, i);
822                 acb_excitation(e, e->pitch + ACB_SIZE, e->avg_acb_gain, idelay, subframe_size);
823                 memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
824             }
825         }
826
827         /* Smoothing of the decoded delay as per TIA/IS-127 5.2.2.5 */
828         if (fabs(e->pitch_delay - e->prev_pitch_delay) > 15)
829             e->prev_pitch_delay = e->pitch_delay;
830
831         e->avg_acb_gain = e->avg_fcb_gain = 0.0;
832     } else {
833         idelay[0] = idelay[1] = idelay[2] = MIN_DELAY;
834
835         /* Decode frame energy vectors as per TIA/IS-127 5.7.2 */
836         for (i = 0; i < NB_SUBFRAMES; i++)
837             e->energy_vector[i] = pow(10, evrc_energy_quant[e->frame.energy_gain][i]);
838         e->prev_energy_gain = e->frame.energy_gain;
839     }
840
841     for (i = 0; i < NB_SUBFRAMES; i++) {
842         float tmp[SUBFRAME_SIZE + 6] = { 0 };
843         int subframe_size = subframe_sizes[i];
844         int pitch_lag;
845
846         interpolate_lsp(ilspf, e->lspf, e->prev_lspf, i);
847
848         if (e->bitrate != RATE_QUANT)
849             interpolate_delay(idelay, e->pitch_delay, e->prev_pitch_delay, i);
850
851         pitch_lag = lrintf((idelay[1] + idelay[0]) / 2.0);
852         decode_predictor_coeffs(ilspf, ilpc);
853
854         /* Bandwidth expansion as per TIA/IS-127 5.2.3.3 */
855         if (e->frame.lpc_flag && e->prev_error_flag)
856             bandwidth_expansion(ilpc, ilpc, 0.75);
857
858         if (e->bitrate != RATE_QUANT) {
859             float acb_sum, f;
860
861             f = exp((e->bitrate == RATE_HALF ? 0.5 : 0.25)
862                          * (e->frame.fcb_gain[i] + 1));
863             acb_sum = pitch_gain_vq[e->frame.acb_gain[i]];
864             e->avg_acb_gain += acb_sum / NB_SUBFRAMES;
865             e->avg_fcb_gain += f / NB_SUBFRAMES;
866
867             acb_excitation(e, e->pitch + ACB_SIZE,
868                            acb_sum, idelay, subframe_size);
869             fcb_excitation(e, e->frame.fcb_shape[i], tmp,
870                            acb_sum, pitch_lag, subframe_size);
871
872             /* Total excitation generation as per TIA/IS-127 5.2.3.9 */
873             for (j = 0; j < subframe_size; j++)
874                 e->pitch[ACB_SIZE + j] += f * tmp[j];
875             e->fade_scale = FFMIN(e->fade_scale + 0.2, 1.0);
876         } else {
877             for (j = 0; j < subframe_size; j++)
878                 e->pitch[ACB_SIZE + j] = e->energy_vector[i];
879         }
880
881         memmove(e->pitch, e->pitch + subframe_size, ACB_SIZE * sizeof(float));
882
883         synthesis_filter(e->pitch + ACB_SIZE, ilpc,
884                          e->synthesis, subframe_size,
885                          e->postfilter ? tmp : samples);
886         if (e->postfilter)
887             postfilter(e, tmp, ilpc, samples, pitch_lag,
888                        &postfilter_coeffs[e->bitrate], subframe_size);
889
890         samples += subframe_size;
891     }
892
893     if (error_flag) {
894 erasure:
895         error_flag = 1;
896         av_log(avctx, AV_LOG_WARNING, "frame erasure\n");
897         frame_erasure(e, samples);
898     }
899
900     memcpy(e->prev_lspf, e->lspf, sizeof(e->prev_lspf));
901     e->prev_error_flag    = error_flag;
902     e->last_valid_bitrate = e->bitrate;
903
904     if (e->bitrate != RATE_QUANT)
905         e->prev_pitch_delay = e->pitch_delay;
906
907     samples = (float *)frame->data[0];
908     for (i = 0; i < 160; i++)
909         samples[i] /= 32768;
910
911     *got_frame_ptr   = 1;
912
913     return avpkt->size;
914 }
915
916 #define OFFSET(x) offsetof(EVRCContext, x)
917 #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
918
919 static const AVOption options[] = {
920     { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, AD },
921     { NULL }
922 };
923
924 static const AVClass evrcdec_class = {
925     .class_name = "evrc",
926     .item_name  = av_default_item_name,
927     .option     = options,
928     .version    = LIBAVUTIL_VERSION_INT,
929 };
930
931 AVCodec ff_evrc_decoder = {
932     .name           = "evrc",
933     .long_name      = NULL_IF_CONFIG_SMALL("EVRC (Enhanced Variable Rate Codec)"),
934     .type           = AVMEDIA_TYPE_AUDIO,
935     .id             = AV_CODEC_ID_EVRC,
936     .init           = evrc_decode_init,
937     .decode         = evrc_decode_frame,
938     .capabilities   = AV_CODEC_CAP_DR1,
939     .priv_data_size = sizeof(EVRCContext),
940     .priv_class     = &evrcdec_class,
941 };