2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4 * Copyright (c) 2009 Jimmy Christensen
6 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
8 * This file is part of FFmpeg.
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
28 * @author Jimmy Christensen
30 * For more information on the OpenEXR format, visit:
33 * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
34 * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
40 #include "libavutil/avassert.h"
41 #include "libavutil/common.h"
42 #include "libavutil/imgutils.h"
43 #include "libavutil/intfloat.h"
44 #include "libavutil/opt.h"
45 #include "libavutil/color_utils.h"
48 #include "bytestream.h"
81 enum ExrTileLevelMode {
83 EXR_TILE_LEVEL_MIPMAP,
84 EXR_TILE_LEVEL_RIPMAP,
85 EXR_TILE_LEVEL_UNKNOWN,
88 enum ExrTileLevelRound {
91 EXR_TILE_ROUND_UNKNOWN,
94 typedef struct EXRChannel {
96 enum ExrPixelType pixel_type;
99 typedef struct EXRTileAttribute {
102 enum ExrTileLevelMode level_mode;
103 enum ExrTileLevelRound level_round;
106 typedef struct EXRThreadData {
107 uint8_t *uncompressed_data;
108 int uncompressed_size;
118 int channel_line_size;
121 typedef struct EXRContext {
124 AVCodecContext *avctx;
128 BswapDSPContext bbdsp;
131 enum ExrCompr compression;
132 enum ExrPixelType pixel_type;
133 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
134 const AVPixFmtDescriptor *desc;
139 uint32_t xdelta, ydelta;
141 int scan_lines_per_block;
143 EXRTileAttribute tile_attr; /* header data attribute of tile */
144 int is_tile; /* 0 if scanline, 1 if tile */
146 int is_luma;/* 1 if there is an Y plane */
152 EXRChannel *channels;
154 int current_channel_offset;
156 EXRThreadData *thread_data;
160 enum AVColorTransferCharacteristic apply_trc_type;
162 uint16_t gamma_table[65536];
165 /* -15 stored using a single precision bias of 127 */
166 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
168 /* max exponent value in single precision that will be converted
169 * to Inf or Nan when stored as a half-float */
170 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
172 /* 255 is the max exponent biased value */
173 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
175 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
178 * Convert a half float as a uint16_t into a full float.
180 * @param hf half float as uint16_t
182 * @return float value
184 static union av_intfloat32 exr_half2float(uint16_t hf)
186 unsigned int sign = (unsigned int) (hf >> 15);
187 unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
188 unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
189 union av_intfloat32 f;
191 if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
192 // we have a half-float NaN or Inf
193 // half-float NaNs will be converted to a single precision NaN
194 // half-float Infs will be converted to a single precision Inf
195 exp = FLOAT_MAX_BIASED_EXP;
197 mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
198 } else if (exp == 0x0) {
199 // convert half-float zero/denorm to single precision value
202 exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
203 // check for leading 1 in denorm mantissa
204 while ((mantissa & (1 << 10))) {
205 // for every leading 0, decrement single precision exponent by 1
206 // and shift half-float mantissa value to the left
210 // clamp the mantissa to 10 bits
211 mantissa &= ((1 << 10) - 1);
212 // shift left to generate single-precision mantissa of 23 bits
216 // shift left to generate single-precision mantissa of 23 bits
218 // generate single precision biased exponent value
219 exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
222 f.i = (sign << 31) | exp | mantissa;
229 * Convert from 32-bit float as uint32_t to uint16_t.
231 * @param v 32-bit float
233 * @return normalized 16-bit unsigned int
235 static inline uint16_t exr_flt2uint(int32_t v)
237 int32_t exp = v >> 23;
238 // "HACK": negative values result in exp< 0, so clipping them to 0
239 // is also handled by this condition, avoids explicit check for sign bit.
240 if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
245 return (v + (1 << 23)) >> (127 + 7 - exp);
249 * Convert from 16-bit float as uint16_t to uint16_t.
251 * @param v 16-bit float
253 * @return normalized 16-bit unsigned int
255 static inline uint16_t exr_halflt2uint(uint16_t v)
257 unsigned exp = 14 - (v >> 10);
262 return (v & 0x8000) ? 0 : 0xffff;
265 return (v + (1 << 16)) >> (exp + 1);
268 static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
269 int uncompressed_size, EXRThreadData *td)
271 unsigned long dest_len = uncompressed_size;
273 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
274 dest_len != uncompressed_size)
275 return AVERROR_INVALIDDATA;
277 av_assert1(uncompressed_size % 2 == 0);
279 s->dsp.predictor(td->tmp, uncompressed_size);
280 s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
285 static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
286 int uncompressed_size, EXRThreadData *td)
288 uint8_t *d = td->tmp;
289 const int8_t *s = src;
290 int ssize = compressed_size;
291 int dsize = uncompressed_size;
292 uint8_t *dend = d + dsize;
301 if ((dsize -= count) < 0 ||
302 (ssize -= count + 1) < 0)
303 return AVERROR_INVALIDDATA;
310 if ((dsize -= count) < 0 ||
312 return AVERROR_INVALIDDATA;
322 return AVERROR_INVALIDDATA;
324 av_assert1(uncompressed_size % 2 == 0);
326 ctx->dsp.predictor(td->tmp, uncompressed_size);
327 ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
332 #define USHORT_RANGE (1 << 16)
333 #define BITMAP_SIZE (1 << 13)
335 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
339 for (i = 0; i < USHORT_RANGE; i++)
340 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
345 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
350 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
354 for (i = 0; i < dsize; ++i)
355 dst[i] = lut[dst[i]];
358 #define HUF_ENCBITS 16 // literal (value) bit length
359 #define HUF_DECBITS 14 // decoding bit size (>= 8)
361 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
362 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
363 #define HUF_DECMASK (HUF_DECSIZE - 1)
365 typedef struct HufDec {
371 static void huf_canonical_code_table(uint64_t *hcode)
373 uint64_t c, n[59] = { 0 };
376 for (i = 0; i < HUF_ENCSIZE; ++i)
380 for (i = 58; i > 0; --i) {
381 uint64_t nc = ((c + n[i]) >> 1);
386 for (i = 0; i < HUF_ENCSIZE; ++i) {
390 hcode[i] = l | (n[l]++ << 6);
394 #define SHORT_ZEROCODE_RUN 59
395 #define LONG_ZEROCODE_RUN 63
396 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
397 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
399 static int huf_unpack_enc_table(GetByteContext *gb,
400 int32_t im, int32_t iM, uint64_t *hcode)
403 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
407 for (; im <= iM; im++) {
408 uint64_t l = hcode[im] = get_bits(&gbit, 6);
410 if (l == LONG_ZEROCODE_RUN) {
411 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
413 if (im + zerun > iM + 1)
414 return AVERROR_INVALIDDATA;
420 } else if (l >= SHORT_ZEROCODE_RUN) {
421 int zerun = l - SHORT_ZEROCODE_RUN + 2;
423 if (im + zerun > iM + 1)
424 return AVERROR_INVALIDDATA;
433 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
434 huf_canonical_code_table(hcode);
439 static int huf_build_dec_table(const uint64_t *hcode, int im,
440 int iM, HufDec *hdecod)
442 for (; im <= iM; im++) {
443 uint64_t c = hcode[im] >> 6;
444 int i, l = hcode[im] & 63;
447 return AVERROR_INVALIDDATA;
449 if (l > HUF_DECBITS) {
450 HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
452 return AVERROR_INVALIDDATA;
456 pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
458 return AVERROR(ENOMEM);
460 pl->p[pl->lit - 1] = im;
462 HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
464 for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
465 if (pl->len || pl->p)
466 return AVERROR_INVALIDDATA;
476 #define get_char(c, lc, gb) \
478 c = (c << 8) | bytestream2_get_byte(gb); \
482 #define get_code(po, rlc, c, lc, gb, out, oe, outb) \
486 get_char(c, lc, gb); \
491 if (out + cs > oe || out == outb) \
492 return AVERROR_INVALIDDATA; \
498 } else if (out < oe) { \
501 return AVERROR_INVALIDDATA; \
505 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
506 GetByteContext *gb, int nbits,
507 int rlc, int no, uint16_t *out)
510 uint16_t *outb = out;
511 uint16_t *oe = out + no;
512 const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
517 while (gb->buffer < ie) {
520 while (lc >= HUF_DECBITS) {
521 const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
525 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
530 return AVERROR_INVALIDDATA;
532 for (j = 0; j < pl.lit; j++) {
533 int l = hcode[pl.p[j]] & 63;
535 while (lc < l && bytestream2_get_bytes_left(gb) > 0)
539 if ((hcode[pl.p[j]] >> 6) ==
540 ((c >> (lc - l)) & ((1LL << l) - 1))) {
542 get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
549 return AVERROR_INVALIDDATA;
559 const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
561 if (pl.len && lc >= pl.len) {
563 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
565 return AVERROR_INVALIDDATA;
569 if (out - outb != no)
570 return AVERROR_INVALIDDATA;
574 static int huf_uncompress(GetByteContext *gb,
575 uint16_t *dst, int dst_size)
577 int32_t src_size, im, iM;
583 src_size = bytestream2_get_le32(gb);
584 im = bytestream2_get_le32(gb);
585 iM = bytestream2_get_le32(gb);
586 bytestream2_skip(gb, 4);
587 nBits = bytestream2_get_le32(gb);
588 if (im < 0 || im >= HUF_ENCSIZE ||
589 iM < 0 || iM >= HUF_ENCSIZE ||
591 return AVERROR_INVALIDDATA;
593 bytestream2_skip(gb, 4);
595 freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
596 hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
597 if (!freq || !hdec) {
598 ret = AVERROR(ENOMEM);
602 if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
605 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
606 ret = AVERROR_INVALIDDATA;
610 if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
612 ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
615 for (i = 0; i < HUF_DECSIZE; i++)
617 av_freep(&hdec[i].p);
625 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
630 int ai = ls + (hi & 1) + (hi >> 1);
632 int16_t bs = ai - hi;
639 #define A_OFFSET (1 << (NBITS - 1))
640 #define MOD_MASK ((1 << NBITS) - 1)
642 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
646 int bb = (m - (d >> 1)) & MOD_MASK;
647 int aa = (d + bb - A_OFFSET) & MOD_MASK;
652 static void wav_decode(uint16_t *in, int nx, int ox,
653 int ny, int oy, uint16_t mx)
655 int w14 = (mx < (1 << 14));
656 int n = (nx > ny) ? ny : nx;
669 uint16_t *ey = in + oy * (ny - p2);
670 uint16_t i00, i01, i10, i11;
676 for (; py <= ey; py += oy2) {
678 uint16_t *ex = py + ox * (nx - p2);
680 for (; px <= ex; px += ox2) {
681 uint16_t *p01 = px + ox1;
682 uint16_t *p10 = px + oy1;
683 uint16_t *p11 = p10 + ox1;
686 wdec14(*px, *p10, &i00, &i10);
687 wdec14(*p01, *p11, &i01, &i11);
688 wdec14(i00, i01, px, p01);
689 wdec14(i10, i11, p10, p11);
691 wdec16(*px, *p10, &i00, &i10);
692 wdec16(*p01, *p11, &i01, &i11);
693 wdec16(i00, i01, px, p01);
694 wdec16(i10, i11, p10, p11);
699 uint16_t *p10 = px + oy1;
702 wdec14(*px, *p10, &i00, p10);
704 wdec16(*px, *p10, &i00, p10);
712 uint16_t *ex = py + ox * (nx - p2);
714 for (; px <= ex; px += ox2) {
715 uint16_t *p01 = px + ox1;
718 wdec14(*px, *p01, &i00, p01);
720 wdec16(*px, *p01, &i00, p01);
731 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
732 int dsize, EXRThreadData *td)
735 uint16_t maxval, min_non_zero, max_non_zero;
737 uint16_t *tmp = (uint16_t *)td->tmp;
741 int pixel_half_size;/* 1 for half, 2 for float and uint32 */
746 td->bitmap = av_malloc(BITMAP_SIZE);
748 td->lut = av_malloc(1 << 17);
749 if (!td->bitmap || !td->lut) {
750 av_freep(&td->bitmap);
752 return AVERROR(ENOMEM);
755 bytestream2_init(&gb, src, ssize);
756 min_non_zero = bytestream2_get_le16(&gb);
757 max_non_zero = bytestream2_get_le16(&gb);
759 if (max_non_zero >= BITMAP_SIZE)
760 return AVERROR_INVALIDDATA;
762 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
763 if (min_non_zero <= max_non_zero)
764 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
765 max_non_zero - min_non_zero + 1);
766 memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
768 maxval = reverse_lut(td->bitmap, td->lut);
770 ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
775 for (i = 0; i < s->nb_channels; i++) {
776 channel = &s->channels[i];
778 if (channel->pixel_type == EXR_HALF)
783 for (j = 0; j < pixel_half_size; j++)
784 wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
785 td->xsize * pixel_half_size, maxval);
786 ptr += td->xsize * td->ysize * pixel_half_size;
789 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
791 out = (uint16_t *)td->uncompressed_data;
792 for (i = 0; i < td->ysize; i++) {
794 for (j = 0; j < s->nb_channels; j++) {
795 channel = &s->channels[j];
796 if (channel->pixel_type == EXR_HALF)
801 in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
802 tmp_offset += pixel_half_size;
805 s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
807 memcpy(out, in, td->xsize * 2 * pixel_half_size);
809 out += td->xsize * pixel_half_size;
816 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
817 int compressed_size, int uncompressed_size,
820 unsigned long dest_len, expected_len = 0;
821 const uint8_t *in = td->tmp;
825 for (i = 0; i < s->nb_channels; i++) {
826 if (s->channels[i].pixel_type == EXR_FLOAT) {
827 expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
828 } else if (s->channels[i].pixel_type == EXR_HALF) {
829 expected_len += (td->xsize * td->ysize * 2);
831 expected_len += (td->xsize * td->ysize * 4);
835 dest_len = expected_len;
837 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
838 return AVERROR_INVALIDDATA;
839 } else if (dest_len != expected_len) {
840 return AVERROR_INVALIDDATA;
843 out = td->uncompressed_data;
844 for (i = 0; i < td->ysize; i++)
845 for (c = 0; c < s->nb_channels; c++) {
846 EXRChannel *channel = &s->channels[c];
847 const uint8_t *ptr[4];
850 switch (channel->pixel_type) {
853 ptr[1] = ptr[0] + td->xsize;
854 ptr[2] = ptr[1] + td->xsize;
855 in = ptr[2] + td->xsize;
857 for (j = 0; j < td->xsize; ++j) {
858 uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
859 (*(ptr[1]++) << 16) |
862 bytestream_put_le32(&out, pixel);
867 ptr[1] = ptr[0] + td->xsize;
868 in = ptr[1] + td->xsize;
869 for (j = 0; j < td->xsize; j++) {
870 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
873 bytestream_put_le16(&out, pixel);
878 ptr[1] = ptr[0] + s->xdelta;
879 ptr[2] = ptr[1] + s->xdelta;
880 ptr[3] = ptr[2] + s->xdelta;
881 in = ptr[3] + s->xdelta;
883 for (j = 0; j < s->xdelta; ++j) {
884 uint32_t diff = (*(ptr[0]++) << 24) |
885 (*(ptr[1]++) << 16) |
886 (*(ptr[2]++) << 8 ) |
889 bytestream_put_le32(&out, pixel);
893 return AVERROR_INVALIDDATA;
900 static void unpack_14(const uint8_t b[14], uint16_t s[16])
902 unsigned short shift = (b[ 2] >> 2) & 15;
903 unsigned short bias = (0x20 << shift);
906 s[ 0] = (b[0] << 8) | b[1];
908 s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
909 s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
910 s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
912 s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
913 s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
914 s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
915 s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
917 s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
918 s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
919 s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
920 s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
922 s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
923 s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
924 s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
925 s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
927 for (i = 0; i < 16; ++i) {
935 static void unpack_3(const uint8_t b[3], uint16_t s[16])
939 s[0] = (b[0] << 8) | b[1];
946 for (i = 1; i < 16; i++)
951 static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
952 int uncompressed_size, EXRThreadData *td) {
953 const int8_t *sr = src;
954 int stay_to_uncompress = compressed_size;
955 int nb_b44_block_w, nb_b44_block_h;
956 int index_tl_x, index_tl_y, index_out, index_tmp;
957 uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
959 int target_channel_offset = 0;
961 /* calc B44 block count */
962 nb_b44_block_w = td->xsize / 4;
963 if ((td->xsize % 4) != 0)
966 nb_b44_block_h = td->ysize / 4;
967 if ((td->ysize % 4) != 0)
970 for (c = 0; c < s->nb_channels; c++) {
971 if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
972 for (iY = 0; iY < nb_b44_block_h; iY++) {
973 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
974 if (stay_to_uncompress < 3) {
975 av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
976 return AVERROR_INVALIDDATA;
979 if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
980 unpack_3(sr, tmp_buffer);
982 stay_to_uncompress -= 3;
983 } else {/* B44 Block */
984 if (stay_to_uncompress < 14) {
985 av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
986 return AVERROR_INVALIDDATA;
988 unpack_14(sr, tmp_buffer);
990 stay_to_uncompress -= 14;
993 /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
997 for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
998 for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
999 index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
1000 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
1001 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
1002 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
1007 target_channel_offset += 2;
1008 } else {/* Float or UINT 32 channel */
1009 if (stay_to_uncompress < td->ysize * td->xsize * 4) {
1010 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
1011 return AVERROR_INVALIDDATA;
1014 for (y = 0; y < td->ysize; y++) {
1015 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
1016 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
1017 sr += td->xsize * 4;
1019 target_channel_offset += 4;
1021 stay_to_uncompress -= td->ysize * td->xsize * 4;
1028 static int decode_block(AVCodecContext *avctx, void *tdata,
1029 int jobnr, int threadnr)
1031 EXRContext *s = avctx->priv_data;
1032 AVFrame *const p = s->picture;
1033 EXRThreadData *td = &s->thread_data[threadnr];
1034 const uint8_t *channel_buffer[4] = { 0 };
1035 const uint8_t *buf = s->buf;
1036 uint64_t line_offset, uncompressed_size;
1040 uint64_t line, col = 0;
1041 uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1043 int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
1044 int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
1045 int i, x, buf_size = s->buf_size;
1046 int c, rgb_channel_count;
1047 float one_gamma = 1.0f / s->gamma;
1048 avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1051 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1054 if (buf_size < 20 || line_offset > buf_size - 20)
1055 return AVERROR_INVALIDDATA;
1057 src = buf + line_offset + 20;
1059 tile_x = AV_RL32(src - 20);
1060 tile_y = AV_RL32(src - 16);
1061 tile_level_x = AV_RL32(src - 12);
1062 tile_level_y = AV_RL32(src - 8);
1064 data_size = AV_RL32(src - 4);
1065 if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1066 return AVERROR_INVALIDDATA;
1068 if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1069 avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1070 return AVERROR_PATCHWELCOME;
1073 if (s->xmin || s->ymin) {
1074 avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1075 return AVERROR_PATCHWELCOME;
1078 line = s->tile_attr.ySize * tile_y;
1079 col = s->tile_attr.xSize * tile_x;
1081 if (line < s->ymin || line > s->ymax ||
1082 col < s->xmin || col > s->xmax)
1083 return AVERROR_INVALIDDATA;
1085 td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1086 td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1088 if (col) { /* not the first tile of the line */
1089 bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1092 if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1093 axmax = 0; /* doesn't add pixel at the right of the datawindow */
1095 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1096 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1098 if (buf_size < 8 || line_offset > buf_size - 8)
1099 return AVERROR_INVALIDDATA;
1101 src = buf + line_offset + 8;
1102 line = AV_RL32(src - 8);
1104 if (line < s->ymin || line > s->ymax)
1105 return AVERROR_INVALIDDATA;
1107 data_size = AV_RL32(src - 4);
1108 if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1109 return AVERROR_INVALIDDATA;
1111 td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1112 td->xsize = s->xdelta;
1114 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1115 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1117 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1118 line_offset > buf_size - uncompressed_size)) ||
1119 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1120 line_offset > buf_size - data_size))) {
1121 return AVERROR_INVALIDDATA;
1125 if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1126 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1128 return AVERROR(ENOMEM);
1131 if (data_size < uncompressed_size) {
1132 av_fast_padded_malloc(&td->uncompressed_data,
1133 &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1135 if (!td->uncompressed_data)
1136 return AVERROR(ENOMEM);
1138 ret = AVERROR_INVALIDDATA;
1139 switch (s->compression) {
1142 ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1145 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1148 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1151 ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1155 ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1159 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1162 src = td->uncompressed_data;
1166 channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1167 channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1168 channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1169 rgb_channel_count = 3;
1170 } else { /* put y data in the first channel_buffer */
1171 channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1172 rgb_channel_count = 1;
1174 if (s->channel_offsets[3] >= 0)
1175 channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1177 ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1180 i < td->ysize; i++, ptr += p->linesize[0]) {
1183 const uint8_t *rgb[3];
1185 for (c = 0; c < rgb_channel_count; c++){
1186 rgb[c] = channel_buffer[c];
1189 if (channel_buffer[3])
1190 a = channel_buffer[3];
1192 ptr_x = (uint16_t *) ptr;
1194 // Zero out the start if xmin is not 0
1195 memset(ptr_x, 0, bxmin);
1196 ptr_x += s->xmin * s->desc->nb_components;
1198 if (s->pixel_type == EXR_FLOAT) {
1201 for (x = 0; x < td->xsize; x++) {
1202 union av_intfloat32 t;
1204 for (c = 0; c < rgb_channel_count; c++) {
1205 t.i = bytestream_get_le32(&rgb[c]);
1206 t.f = trc_func(t.f);
1207 *ptr_x++ = exr_flt2uint(t.i);
1209 if (channel_buffer[3])
1210 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1213 for (x = 0; x < td->xsize; x++) {
1214 union av_intfloat32 t;
1217 for (c = 0; c < rgb_channel_count; c++) {
1218 t.i = bytestream_get_le32(&rgb[c]);
1219 if (t.f > 0.0f) /* avoid negative values */
1220 t.f = powf(t.f, one_gamma);
1221 *ptr_x++ = exr_flt2uint(t.i);
1224 if (channel_buffer[3])
1225 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1228 } else if (s->pixel_type == EXR_HALF) {
1230 for (x = 0; x < td->xsize; x++) {
1232 for (c = 0; c < rgb_channel_count; c++) {
1233 *ptr_x++ = s->gamma_table[bytestream_get_le16(&rgb[c])];
1236 if (channel_buffer[3])
1237 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
1239 } else if (s->pixel_type == EXR_UINT) {
1240 for (x = 0; x < td->xsize; x++) {
1241 for (c = 0; c < rgb_channel_count; c++) {
1242 *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1245 if (channel_buffer[3])
1246 *ptr_x++ = bytestream_get_le32(&a) >> 16;
1250 // Zero out the end if xmax+1 is not w
1251 memset(ptr_x, 0, axmax);
1253 channel_buffer[0] += td->channel_line_size;
1254 channel_buffer[1] += td->channel_line_size;
1255 channel_buffer[2] += td->channel_line_size;
1256 if (channel_buffer[3])
1257 channel_buffer[3] += td->channel_line_size;
1264 * Check if the variable name corresponds to its data type.
1266 * @param s the EXRContext
1267 * @param value_name name of the variable to check
1268 * @param value_type type of the variable to check
1269 * @param minimum_length minimum length of the variable data
1271 * @return bytes to read containing variable data
1272 * -1 if variable is not found
1273 * 0 if buffer ended prematurely
1275 static int check_header_variable(EXRContext *s,
1276 const char *value_name,
1277 const char *value_type,
1278 unsigned int minimum_length)
1282 if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1283 !strcmp(s->gb.buffer, value_name)) {
1284 // found value_name, jump to value_type (null terminated strings)
1285 s->gb.buffer += strlen(value_name) + 1;
1286 if (!strcmp(s->gb.buffer, value_type)) {
1287 s->gb.buffer += strlen(value_type) + 1;
1288 var_size = bytestream2_get_le32(&s->gb);
1289 // don't go read past boundaries
1290 if (var_size > bytestream2_get_bytes_left(&s->gb))
1293 // value_type not found, reset the buffer
1294 s->gb.buffer -= strlen(value_name) + 1;
1295 av_log(s->avctx, AV_LOG_WARNING,
1296 "Unknown data type %s for header variable %s.\n",
1297 value_type, value_name);
1304 static int decode_header(EXRContext *s, AVFrame *frame)
1306 AVDictionary *metadata = NULL;
1307 int magic_number, version, i, flags, sar = 0;
1308 int layer_match = 0;
1311 s->current_channel_offset = 0;
1318 s->channel_offsets[0] = -1;
1319 s->channel_offsets[1] = -1;
1320 s->channel_offsets[2] = -1;
1321 s->channel_offsets[3] = -1;
1322 s->pixel_type = EXR_UNKNOWN;
1323 s->compression = EXR_UNKN;
1327 s->tile_attr.xSize = -1;
1328 s->tile_attr.ySize = -1;
1332 if (bytestream2_get_bytes_left(&s->gb) < 10) {
1333 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1334 return AVERROR_INVALIDDATA;
1337 magic_number = bytestream2_get_le32(&s->gb);
1338 if (magic_number != 20000630) {
1339 /* As per documentation of OpenEXR, it is supposed to be
1340 * int 20000630 little-endian */
1341 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1342 return AVERROR_INVALIDDATA;
1345 version = bytestream2_get_byte(&s->gb);
1347 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1348 return AVERROR_PATCHWELCOME;
1351 flags = bytestream2_get_le24(&s->gb);
1356 avpriv_report_missing_feature(s->avctx, "deep data");
1357 return AVERROR_PATCHWELCOME;
1360 avpriv_report_missing_feature(s->avctx, "multipart");
1361 return AVERROR_PATCHWELCOME;
1365 while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1367 if ((var_size = check_header_variable(s, "channels",
1368 "chlist", 38)) >= 0) {
1369 GetByteContext ch_gb;
1371 ret = AVERROR_INVALIDDATA;
1375 bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1377 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1378 EXRChannel *channel;
1379 enum ExrPixelType current_pixel_type;
1380 int channel_index = -1;
1383 if (strcmp(s->layer, "") != 0) {
1384 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1386 av_log(s->avctx, AV_LOG_INFO,
1387 "Channel match layer : %s.\n", ch_gb.buffer);
1388 ch_gb.buffer += strlen(s->layer);
1389 if (*ch_gb.buffer == '.')
1390 ch_gb.buffer++; /* skip dot if not given */
1392 av_log(s->avctx, AV_LOG_INFO,
1393 "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1399 if (layer_match) { /* only search channel if the layer match is valid */
1400 if (!strcmp(ch_gb.buffer, "R") ||
1401 !strcmp(ch_gb.buffer, "X") ||
1402 !strcmp(ch_gb.buffer, "U")) {
1405 } else if (!strcmp(ch_gb.buffer, "G") ||
1406 !strcmp(ch_gb.buffer, "V")) {
1409 } else if (!strcmp(ch_gb.buffer, "Y")) {
1412 } else if (!strcmp(ch_gb.buffer, "B") ||
1413 !strcmp(ch_gb.buffer, "Z") ||
1414 !strcmp(ch_gb.buffer, "W")){
1417 } else if (!strcmp(ch_gb.buffer, "A")) {
1420 av_log(s->avctx, AV_LOG_WARNING,
1421 "Unsupported channel %.256s.\n", ch_gb.buffer);
1425 /* skip until you get a 0 */
1426 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1427 bytestream2_get_byte(&ch_gb))
1430 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1431 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1432 ret = AVERROR_INVALIDDATA;
1436 current_pixel_type = bytestream2_get_le32(&ch_gb);
1437 if (current_pixel_type >= EXR_UNKNOWN) {
1438 avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1439 current_pixel_type);
1440 ret = AVERROR_PATCHWELCOME;
1444 bytestream2_skip(&ch_gb, 4);
1445 xsub = bytestream2_get_le32(&ch_gb);
1446 ysub = bytestream2_get_le32(&ch_gb);
1448 if (xsub != 1 || ysub != 1) {
1449 avpriv_report_missing_feature(s->avctx,
1450 "Subsampling %dx%d",
1452 ret = AVERROR_PATCHWELCOME;
1456 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1457 if (s->pixel_type != EXR_UNKNOWN &&
1458 s->pixel_type != current_pixel_type) {
1459 av_log(s->avctx, AV_LOG_ERROR,
1460 "RGB channels not of the same depth.\n");
1461 ret = AVERROR_INVALIDDATA;
1464 s->pixel_type = current_pixel_type;
1465 s->channel_offsets[channel_index] = s->current_channel_offset;
1468 s->channels = av_realloc(s->channels,
1469 ++s->nb_channels * sizeof(EXRChannel));
1471 ret = AVERROR(ENOMEM);
1474 channel = &s->channels[s->nb_channels - 1];
1475 channel->pixel_type = current_pixel_type;
1476 channel->xsub = xsub;
1477 channel->ysub = ysub;
1479 if (current_pixel_type == EXR_HALF) {
1480 s->current_channel_offset += 2;
1481 } else {/* Float or UINT32 */
1482 s->current_channel_offset += 4;
1486 /* Check if all channels are set with an offset or if the channels
1487 * are causing an overflow */
1488 if (!s->is_luma){/* if we expected to have at least 3 channels */
1489 if (FFMIN3(s->channel_offsets[0],
1490 s->channel_offsets[1],
1491 s->channel_offsets[2]) < 0) {
1492 if (s->channel_offsets[0] < 0)
1493 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1494 if (s->channel_offsets[1] < 0)
1495 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1496 if (s->channel_offsets[2] < 0)
1497 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1498 ret = AVERROR_INVALIDDATA;
1503 // skip one last byte and update main gb
1504 s->gb.buffer = ch_gb.buffer + 1;
1506 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1509 ret = AVERROR_INVALIDDATA;
1513 s->xmin = bytestream2_get_le32(&s->gb);
1514 s->ymin = bytestream2_get_le32(&s->gb);
1515 s->xmax = bytestream2_get_le32(&s->gb);
1516 s->ymax = bytestream2_get_le32(&s->gb);
1517 s->xdelta = (s->xmax - s->xmin) + 1;
1518 s->ydelta = (s->ymax - s->ymin) + 1;
1521 } else if ((var_size = check_header_variable(s, "displayWindow",
1522 "box2i", 34)) >= 0) {
1524 ret = AVERROR_INVALIDDATA;
1528 bytestream2_skip(&s->gb, 8);
1529 s->w = bytestream2_get_le32(&s->gb) + 1;
1530 s->h = bytestream2_get_le32(&s->gb) + 1;
1533 } else if ((var_size = check_header_variable(s, "lineOrder",
1534 "lineOrder", 25)) >= 0) {
1537 ret = AVERROR_INVALIDDATA;
1541 line_order = bytestream2_get_byte(&s->gb);
1542 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1543 if (line_order > 2) {
1544 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1545 ret = AVERROR_INVALIDDATA;
1550 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1551 "float", 31)) >= 0) {
1553 ret = AVERROR_INVALIDDATA;
1557 sar = bytestream2_get_le32(&s->gb);
1560 } else if ((var_size = check_header_variable(s, "compression",
1561 "compression", 29)) >= 0) {
1563 ret = AVERROR_INVALIDDATA;
1567 if (s->compression == EXR_UNKN)
1568 s->compression = bytestream2_get_byte(&s->gb);
1570 av_log(s->avctx, AV_LOG_WARNING,
1571 "Found more than one compression attribute.\n");
1574 } else if ((var_size = check_header_variable(s, "tiles",
1575 "tiledesc", 22)) >= 0) {
1579 av_log(s->avctx, AV_LOG_WARNING,
1580 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1582 s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1583 s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1585 tileLevel = bytestream2_get_byte(&s->gb);
1586 s->tile_attr.level_mode = tileLevel & 0x0f;
1587 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1589 if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN){
1590 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1591 s->tile_attr.level_mode);
1592 ret = AVERROR_PATCHWELCOME;
1596 if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1597 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1598 s->tile_attr.level_round);
1599 ret = AVERROR_PATCHWELCOME;
1604 } else if ((var_size = check_header_variable(s, "writer",
1605 "string", 1)) >= 0) {
1606 uint8_t key[256] = { 0 };
1608 bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1609 av_dict_set(&metadata, "writer", key, 0);
1614 // Check if there are enough bytes for a header
1615 if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1616 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1617 ret = AVERROR_INVALIDDATA;
1621 // Process unknown variables
1622 for (i = 0; i < 2; i++) // value_name and value_type
1623 while (bytestream2_get_byte(&s->gb) != 0);
1625 // Skip variable length
1626 bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1629 ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1631 if (s->compression == EXR_UNKN) {
1632 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1633 ret = AVERROR_INVALIDDATA;
1638 if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1639 av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1640 ret = AVERROR_INVALIDDATA;
1645 if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1646 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1647 ret = AVERROR_INVALIDDATA;
1651 frame->metadata = metadata;
1653 // aaand we are done
1654 bytestream2_skip(&s->gb, 1);
1657 av_dict_free(&metadata);
1661 static int decode_frame(AVCodecContext *avctx, void *data,
1662 int *got_frame, AVPacket *avpkt)
1664 EXRContext *s = avctx->priv_data;
1665 ThreadFrame frame = { .f = data };
1666 AVFrame *picture = data;
1671 int nb_blocks; /* nb scanline or nb tile */
1672 uint64_t start_offset_table;
1673 uint64_t start_next_scanline;
1674 PutByteContext offset_table_writer;
1676 bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1678 if ((ret = decode_header(s, picture)) < 0)
1681 switch (s->pixel_type) {
1685 if (s->channel_offsets[3] >= 0) {
1687 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1689 avctx->pix_fmt = AV_PIX_FMT_YA16;
1693 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1695 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1700 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1701 return AVERROR_INVALIDDATA;
1704 if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
1705 avctx->color_trc = s->apply_trc_type;
1707 switch (s->compression) {
1711 s->scan_lines_per_block = 1;
1715 s->scan_lines_per_block = 16;
1720 s->scan_lines_per_block = 32;
1723 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1724 return AVERROR_PATCHWELCOME;
1727 /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1728 * the actual image size. */
1729 if (s->xmin > s->xmax ||
1730 s->ymin > s->ymax ||
1731 s->xdelta != s->xmax - s->xmin + 1 ||
1734 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1735 return AVERROR_INVALIDDATA;
1738 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1741 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1743 return AVERROR_INVALIDDATA;
1744 out_line_size = avctx->width * 2 * s->desc->nb_components;
1747 nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1748 ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1749 } else { /* scanline */
1750 nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1751 s->scan_lines_per_block;
1754 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1757 if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1758 return AVERROR_INVALIDDATA;
1760 // check offset table and recreate it if need
1761 if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1762 av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1764 start_offset_table = bytestream2_tell(&s->gb);
1765 start_next_scanline = start_offset_table + nb_blocks * 8;
1766 bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1768 for (y = 0; y < nb_blocks; y++) {
1769 /* write offset of prev scanline in offset table */
1770 bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1772 /* get len of next scanline */
1773 bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1774 start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1776 bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1779 // save pointer we are going to use in decode_block
1780 s->buf = avpkt->data;
1781 s->buf_size = avpkt->size;
1782 ptr = picture->data[0];
1784 // Zero out the start if ymin is not 0
1785 for (y = 0; y < s->ymin; y++) {
1786 memset(ptr, 0, out_line_size);
1787 ptr += picture->linesize[0];
1790 s->picture = picture;
1792 avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1794 // Zero out the end if ymax+1 is not h
1795 ptr = picture->data[0] + ((s->ymax+1) * picture->linesize[0]);
1796 for (y = s->ymax + 1; y < avctx->height; y++) {
1797 memset(ptr, 0, out_line_size);
1798 ptr += picture->linesize[0];
1801 picture->pict_type = AV_PICTURE_TYPE_I;
1807 static av_cold int decode_init(AVCodecContext *avctx)
1809 EXRContext *s = avctx->priv_data;
1811 union av_intfloat32 t;
1812 float one_gamma = 1.0f / s->gamma;
1813 avpriv_trc_function trc_func = NULL;
1817 ff_exrdsp_init(&s->dsp);
1820 ff_bswapdsp_init(&s->bbdsp);
1823 trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1825 for (i = 0; i < 65536; ++i) {
1826 t = exr_half2float(i);
1827 t.f = trc_func(t.f);
1828 s->gamma_table[i] = exr_flt2uint(t.i);
1831 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1832 for (i = 0; i < 65536; ++i)
1833 s->gamma_table[i] = exr_halflt2uint(i);
1835 for (i = 0; i < 65536; ++i) {
1836 t = exr_half2float(i);
1837 /* If negative value we reuse half value */
1839 s->gamma_table[i] = exr_halflt2uint(i);
1841 t.f = powf(t.f, one_gamma);
1842 s->gamma_table[i] = exr_flt2uint(t.i);
1848 // allocate thread data, used for non EXR_RAW compression types
1849 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1850 if (!s->thread_data)
1851 return AVERROR_INVALIDDATA;
1857 static int decode_init_thread_copy(AVCodecContext *avctx)
1858 { EXRContext *s = avctx->priv_data;
1860 // allocate thread data, used for non EXR_RAW compression types
1861 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1862 if (!s->thread_data)
1863 return AVERROR_INVALIDDATA;
1869 static av_cold int decode_end(AVCodecContext *avctx)
1871 EXRContext *s = avctx->priv_data;
1873 for (i = 0; i < avctx->thread_count; i++) {
1874 EXRThreadData *td = &s->thread_data[i];
1875 av_freep(&td->uncompressed_data);
1877 av_freep(&td->bitmap);
1881 av_freep(&s->thread_data);
1882 av_freep(&s->channels);
1887 #define OFFSET(x) offsetof(EXRContext, x)
1888 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1889 static const AVOption options[] = {
1890 { "layer", "Set the decoding layer", OFFSET(layer),
1891 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1892 { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1893 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1895 // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1896 { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1897 AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1898 { "bt709", "BT.709", 0,
1899 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1900 { "gamma", "gamma", 0,
1901 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1902 { "gamma22", "BT.470 M", 0,
1903 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1904 { "gamma28", "BT.470 BG", 0,
1905 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1906 { "smpte170m", "SMPTE 170 M", 0,
1907 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1908 { "smpte240m", "SMPTE 240 M", 0,
1909 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1910 { "linear", "Linear", 0,
1911 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1913 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1914 { "log_sqrt", "Log square root", 0,
1915 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1916 { "iec61966_2_4", "IEC 61966-2-4", 0,
1917 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1918 { "bt1361", "BT.1361", 0,
1919 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1920 { "iec61966_2_1", "IEC 61966-2-1", 0,
1921 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1922 { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1923 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1924 { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1925 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1926 { "smpte2084", "SMPTE ST 2084", 0,
1927 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1928 { "smpte428_1", "SMPTE ST 428-1", 0,
1929 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1934 static const AVClass exr_class = {
1935 .class_name = "EXR",
1936 .item_name = av_default_item_name,
1938 .version = LIBAVUTIL_VERSION_INT,
1941 AVCodec ff_exr_decoder = {
1943 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1944 .type = AVMEDIA_TYPE_VIDEO,
1945 .id = AV_CODEC_ID_EXR,
1946 .priv_data_size = sizeof(EXRContext),
1947 .init = decode_init,
1948 .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1949 .close = decode_end,
1950 .decode = decode_frame,
1951 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1952 AV_CODEC_CAP_SLICE_THREADS,
1953 .priv_class = &exr_class,