]> git.sesse.net Git - ffmpeg/blob - libavcodec/fft.c
19da4830a90a7f418f5a6aa61bcfe22d08d749bf
[ffmpeg] / libavcodec / fft.c
1 /*
2  * FFT/IFFT transforms
3  * Copyright (c) 2008 Loren Merritt
4  * Copyright (c) 2002 Fabrice Bellard
5  * Partly based on libdjbfft by D. J. Bernstein
6  *
7  * This file is part of Libav.
8  *
9  * Libav is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * Libav is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with Libav; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 /**
25  * @file
26  * FFT/IFFT transforms.
27  */
28
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "fft.h"
33 #include "fft-internal.h"
34
35 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
36 #if !CONFIG_HARDCODED_TABLES
37 COSTABLE(16);
38 COSTABLE(32);
39 COSTABLE(64);
40 COSTABLE(128);
41 COSTABLE(256);
42 COSTABLE(512);
43 COSTABLE(1024);
44 COSTABLE(2048);
45 COSTABLE(4096);
46 COSTABLE(8192);
47 COSTABLE(16384);
48 COSTABLE(32768);
49 COSTABLE(65536);
50 #endif
51 COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
52     NULL, NULL, NULL, NULL,
53     FFT_NAME(ff_cos_16),
54     FFT_NAME(ff_cos_32),
55     FFT_NAME(ff_cos_64),
56     FFT_NAME(ff_cos_128),
57     FFT_NAME(ff_cos_256),
58     FFT_NAME(ff_cos_512),
59     FFT_NAME(ff_cos_1024),
60     FFT_NAME(ff_cos_2048),
61     FFT_NAME(ff_cos_4096),
62     FFT_NAME(ff_cos_8192),
63     FFT_NAME(ff_cos_16384),
64     FFT_NAME(ff_cos_32768),
65     FFT_NAME(ff_cos_65536),
66 };
67
68 static void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
69 static void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
70
71 static int split_radix_permutation(int i, int n, int inverse)
72 {
73     int m;
74     if(n <= 2) return i&1;
75     m = n >> 1;
76     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
77     m >>= 1;
78     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
79     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
80 }
81
82 av_cold void ff_init_ff_cos_tabs(int index)
83 {
84 #if !CONFIG_HARDCODED_TABLES
85     int i;
86     int m = 1<<index;
87     double freq = 2*M_PI/m;
88     FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
89     for(i=0; i<=m/4; i++)
90         tab[i] = FIX15(cos(i*freq));
91     for(i=1; i<m/4; i++)
92         tab[m/2-i] = tab[i];
93 #endif
94 }
95
96 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
97 {
98     int i, j, n;
99
100     if (nbits < 2 || nbits > 16)
101         goto fail;
102     s->nbits = nbits;
103     n = 1 << nbits;
104
105     s->revtab = av_malloc(n * sizeof(uint16_t));
106     if (!s->revtab)
107         goto fail;
108     s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
109     if (!s->tmp_buf)
110         goto fail;
111     s->inverse = inverse;
112     s->fft_permutation = FF_FFT_PERM_DEFAULT;
113
114     s->fft_permute = ff_fft_permute_c;
115     s->fft_calc    = ff_fft_calc_c;
116 #if CONFIG_MDCT
117     s->imdct_calc  = ff_imdct_calc_c;
118     s->imdct_half  = ff_imdct_half_c;
119     s->mdct_calc   = ff_mdct_calc_c;
120 #endif
121
122 #if CONFIG_FFT_FLOAT
123     if (ARCH_ARM)     ff_fft_init_arm(s);
124     if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
125     if (HAVE_MMX)     ff_fft_init_mmx(s);
126     if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
127 #else
128     if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
129 #endif
130
131     for(j=4; j<=nbits; j++) {
132         ff_init_ff_cos_tabs(j);
133     }
134     for(i=0; i<n; i++) {
135         int j = i;
136         if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
137             j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
138         s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
139     }
140
141     return 0;
142  fail:
143     av_freep(&s->revtab);
144     av_freep(&s->tmp_buf);
145     return -1;
146 }
147
148 static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
149 {
150     int j, np;
151     const uint16_t *revtab = s->revtab;
152     np = 1 << s->nbits;
153     /* TODO: handle split-radix permute in a more optimal way, probably in-place */
154     for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
155     memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
156 }
157
158 av_cold void ff_fft_end(FFTContext *s)
159 {
160     av_freep(&s->revtab);
161     av_freep(&s->tmp_buf);
162 }
163
164 #define BUTTERFLIES(a0,a1,a2,a3) {\
165     BF(t3, t5, t5, t1);\
166     BF(a2.re, a0.re, a0.re, t5);\
167     BF(a3.im, a1.im, a1.im, t3);\
168     BF(t4, t6, t2, t6);\
169     BF(a3.re, a1.re, a1.re, t4);\
170     BF(a2.im, a0.im, a0.im, t6);\
171 }
172
173 // force loading all the inputs before storing any.
174 // this is slightly slower for small data, but avoids store->load aliasing
175 // for addresses separated by large powers of 2.
176 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
177     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
178     BF(t3, t5, t5, t1);\
179     BF(a2.re, a0.re, r0, t5);\
180     BF(a3.im, a1.im, i1, t3);\
181     BF(t4, t6, t2, t6);\
182     BF(a3.re, a1.re, r1, t4);\
183     BF(a2.im, a0.im, i0, t6);\
184 }
185
186 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
187     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
188     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
189     BUTTERFLIES(a0,a1,a2,a3)\
190 }
191
192 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
193     t1 = a2.re;\
194     t2 = a2.im;\
195     t5 = a3.re;\
196     t6 = a3.im;\
197     BUTTERFLIES(a0,a1,a2,a3)\
198 }
199
200 /* z[0...8n-1], w[1...2n-1] */
201 #define PASS(name)\
202 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
203 {\
204     FFTDouble t1, t2, t3, t4, t5, t6;\
205     int o1 = 2*n;\
206     int o2 = 4*n;\
207     int o3 = 6*n;\
208     const FFTSample *wim = wre+o1;\
209     n--;\
210 \
211     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
212     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
213     do {\
214         z += 2;\
215         wre += 2;\
216         wim -= 2;\
217         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
218         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
219     } while(--n);\
220 }
221
222 PASS(pass)
223 #undef BUTTERFLIES
224 #define BUTTERFLIES BUTTERFLIES_BIG
225 PASS(pass_big)
226
227 #define DECL_FFT(n,n2,n4)\
228 static void fft##n(FFTComplex *z)\
229 {\
230     fft##n2(z);\
231     fft##n4(z+n4*2);\
232     fft##n4(z+n4*3);\
233     pass(z,FFT_NAME(ff_cos_##n),n4/2);\
234 }
235
236 static void fft4(FFTComplex *z)
237 {
238     FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
239
240     BF(t3, t1, z[0].re, z[1].re);
241     BF(t8, t6, z[3].re, z[2].re);
242     BF(z[2].re, z[0].re, t1, t6);
243     BF(t4, t2, z[0].im, z[1].im);
244     BF(t7, t5, z[2].im, z[3].im);
245     BF(z[3].im, z[1].im, t4, t8);
246     BF(z[3].re, z[1].re, t3, t7);
247     BF(z[2].im, z[0].im, t2, t5);
248 }
249
250 static void fft8(FFTComplex *z)
251 {
252     FFTDouble t1, t2, t3, t4, t5, t6;
253
254     fft4(z);
255
256     BF(t1, z[5].re, z[4].re, -z[5].re);
257     BF(t2, z[5].im, z[4].im, -z[5].im);
258     BF(t5, z[7].re, z[6].re, -z[7].re);
259     BF(t6, z[7].im, z[6].im, -z[7].im);
260
261     BUTTERFLIES(z[0],z[2],z[4],z[6]);
262     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
263 }
264
265 #if !CONFIG_SMALL
266 static void fft16(FFTComplex *z)
267 {
268     FFTDouble t1, t2, t3, t4, t5, t6;
269     FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
270     FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
271
272     fft8(z);
273     fft4(z+8);
274     fft4(z+12);
275
276     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
277     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
278     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
279     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
280 }
281 #else
282 DECL_FFT(16,8,4)
283 #endif
284 DECL_FFT(32,16,8)
285 DECL_FFT(64,32,16)
286 DECL_FFT(128,64,32)
287 DECL_FFT(256,128,64)
288 DECL_FFT(512,256,128)
289 #if !CONFIG_SMALL
290 #define pass pass_big
291 #endif
292 DECL_FFT(1024,512,256)
293 DECL_FFT(2048,1024,512)
294 DECL_FFT(4096,2048,1024)
295 DECL_FFT(8192,4096,2048)
296 DECL_FFT(16384,8192,4096)
297 DECL_FFT(32768,16384,8192)
298 DECL_FFT(65536,32768,16384)
299
300 static void (* const fft_dispatch[])(FFTComplex*) = {
301     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
302     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
303 };
304
305 static void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
306 {
307     fft_dispatch[s->nbits-2](z);
308 }
309