]> git.sesse.net Git - ffmpeg/blob - libavcodec/fft_template.c
avformat/avio: Add Metacube support
[ffmpeg] / libavcodec / fft_template.c
1 /*
2  * FFT/IFFT transforms
3  * Copyright (c) 2008 Loren Merritt
4  * Copyright (c) 2002 Fabrice Bellard
5  * Partly based on libdjbfft by D. J. Bernstein
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 /**
25  * @file
26  * FFT/IFFT transforms.
27  */
28
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "libavutil/thread.h"
33 #include "fft.h"
34 #include "fft-internal.h"
35
36 #if FFT_FIXED_32
37 #include "fft_table.h"
38 #else /* FFT_FIXED_32 */
39
40 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
41 #if !CONFIG_HARDCODED_TABLES
42 COSTABLE(16);
43 COSTABLE(32);
44 COSTABLE(64);
45 COSTABLE(128);
46 COSTABLE(256);
47 COSTABLE(512);
48 COSTABLE(1024);
49 COSTABLE(2048);
50 COSTABLE(4096);
51 COSTABLE(8192);
52 COSTABLE(16384);
53 COSTABLE(32768);
54 COSTABLE(65536);
55 COSTABLE(131072);
56
57 static av_cold void init_ff_cos_tabs(int index)
58 {
59     int i;
60     int m = 1<<index;
61     double freq = 2*M_PI/m;
62     FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
63     for(i=0; i<=m/4; i++)
64         tab[i] = FIX15(cos(i*freq));
65     for(i=1; i<m/4; i++)
66         tab[m/2-i] = tab[i];
67 }
68
69 typedef struct CosTabsInitOnce {
70     void (*func)(void);
71     AVOnce control;
72 } CosTabsInitOnce;
73
74 #define INIT_FF_COS_TABS_FUNC(index, size)          \
75 static av_cold void init_ff_cos_tabs_ ## size (void)\
76 {                                                   \
77     init_ff_cos_tabs(index);                        \
78 }
79
80 INIT_FF_COS_TABS_FUNC(4, 16)
81 INIT_FF_COS_TABS_FUNC(5, 32)
82 INIT_FF_COS_TABS_FUNC(6, 64)
83 INIT_FF_COS_TABS_FUNC(7, 128)
84 INIT_FF_COS_TABS_FUNC(8, 256)
85 INIT_FF_COS_TABS_FUNC(9, 512)
86 INIT_FF_COS_TABS_FUNC(10, 1024)
87 INIT_FF_COS_TABS_FUNC(11, 2048)
88 INIT_FF_COS_TABS_FUNC(12, 4096)
89 INIT_FF_COS_TABS_FUNC(13, 8192)
90 INIT_FF_COS_TABS_FUNC(14, 16384)
91 INIT_FF_COS_TABS_FUNC(15, 32768)
92 INIT_FF_COS_TABS_FUNC(16, 65536)
93 INIT_FF_COS_TABS_FUNC(17, 131072)
94
95 static CosTabsInitOnce cos_tabs_init_once[] = {
96     { NULL },
97     { NULL },
98     { NULL },
99     { NULL },
100     { init_ff_cos_tabs_16, AV_ONCE_INIT },
101     { init_ff_cos_tabs_32, AV_ONCE_INIT },
102     { init_ff_cos_tabs_64, AV_ONCE_INIT },
103     { init_ff_cos_tabs_128, AV_ONCE_INIT },
104     { init_ff_cos_tabs_256, AV_ONCE_INIT },
105     { init_ff_cos_tabs_512, AV_ONCE_INIT },
106     { init_ff_cos_tabs_1024, AV_ONCE_INIT },
107     { init_ff_cos_tabs_2048, AV_ONCE_INIT },
108     { init_ff_cos_tabs_4096, AV_ONCE_INIT },
109     { init_ff_cos_tabs_8192, AV_ONCE_INIT },
110     { init_ff_cos_tabs_16384, AV_ONCE_INIT },
111     { init_ff_cos_tabs_32768, AV_ONCE_INIT },
112     { init_ff_cos_tabs_65536, AV_ONCE_INIT },
113     { init_ff_cos_tabs_131072, AV_ONCE_INIT },
114 };
115
116 av_cold void ff_init_ff_cos_tabs(int index)
117 {
118     ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func);
119 }
120 #endif
121 COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
122     NULL, NULL, NULL, NULL,
123     FFT_NAME(ff_cos_16),
124     FFT_NAME(ff_cos_32),
125     FFT_NAME(ff_cos_64),
126     FFT_NAME(ff_cos_128),
127     FFT_NAME(ff_cos_256),
128     FFT_NAME(ff_cos_512),
129     FFT_NAME(ff_cos_1024),
130     FFT_NAME(ff_cos_2048),
131     FFT_NAME(ff_cos_4096),
132     FFT_NAME(ff_cos_8192),
133     FFT_NAME(ff_cos_16384),
134     FFT_NAME(ff_cos_32768),
135     FFT_NAME(ff_cos_65536),
136     FFT_NAME(ff_cos_131072),
137 };
138
139 #endif /* FFT_FIXED_32 */
140
141 static void fft_permute_c(FFTContext *s, FFTComplex *z);
142 static void fft_calc_c(FFTContext *s, FFTComplex *z);
143
144 static int split_radix_permutation(int i, int n, int inverse)
145 {
146     int m;
147     if(n <= 2) return i&1;
148     m = n >> 1;
149     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
150     m >>= 1;
151     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
152     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
153 }
154
155
156 static const int avx_tab[] = {
157     0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
158 };
159
160 static int is_second_half_of_fft32(int i, int n)
161 {
162     if (n <= 32)
163         return i >= 16;
164     else if (i < n/2)
165         return is_second_half_of_fft32(i, n/2);
166     else if (i < 3*n/4)
167         return is_second_half_of_fft32(i - n/2, n/4);
168     else
169         return is_second_half_of_fft32(i - 3*n/4, n/4);
170 }
171
172 static av_cold void fft_perm_avx(FFTContext *s)
173 {
174     int i;
175     int n = 1 << s->nbits;
176
177     for (i = 0; i < n; i += 16) {
178         int k;
179         if (is_second_half_of_fft32(i, n)) {
180             for (k = 0; k < 16; k++)
181                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
182                     i + avx_tab[k];
183
184         } else {
185             for (k = 0; k < 16; k++) {
186                 int j = i + k;
187                 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
188                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
189             }
190         }
191     }
192 }
193
194 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
195 {
196     int i, j, n;
197
198     s->revtab = NULL;
199     s->revtab32 = NULL;
200
201     if (nbits < 2 || nbits > 17)
202         goto fail;
203     s->nbits = nbits;
204     n = 1 << nbits;
205
206     if (nbits <= 16) {
207         s->revtab = av_malloc(n * sizeof(uint16_t));
208         if (!s->revtab)
209             goto fail;
210     } else {
211         s->revtab32 = av_malloc(n * sizeof(uint32_t));
212         if (!s->revtab32)
213             goto fail;
214     }
215     s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
216     if (!s->tmp_buf)
217         goto fail;
218     s->inverse = inverse;
219     s->fft_permutation = FF_FFT_PERM_DEFAULT;
220
221     s->fft_permute = fft_permute_c;
222     s->fft_calc    = fft_calc_c;
223 #if CONFIG_MDCT
224     s->imdct_calc  = ff_imdct_calc_c;
225     s->imdct_half  = ff_imdct_half_c;
226     s->mdct_calc   = ff_mdct_calc_c;
227 #endif
228
229 #if FFT_FIXED_32
230     ff_fft_lut_init();
231 #else /* FFT_FIXED_32 */
232 #if FFT_FLOAT
233     if (ARCH_AARCH64) ff_fft_init_aarch64(s);
234     if (ARCH_ARM)     ff_fft_init_arm(s);
235     if (ARCH_PPC)     ff_fft_init_ppc(s);
236     if (ARCH_X86)     ff_fft_init_x86(s);
237     if (HAVE_MIPSFPU) ff_fft_init_mips(s);
238 #endif
239     for(j=4; j<=nbits; j++) {
240         ff_init_ff_cos_tabs(j);
241     }
242 #endif /* FFT_FIXED_32 */
243
244
245     if (ARCH_X86 && FFT_FLOAT && s->fft_permutation == FF_FFT_PERM_AVX) {
246         fft_perm_avx(s);
247     } else {
248 #define PROCESS_FFT_PERM_SWAP_LSBS(num) do {\
249     for(i = 0; i < n; i++) {\
250         int k;\
251         j = i;\
252         j = (j & ~3) | ((j >> 1) & 1) | ((j << 1) & 2);\
253         k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
254         s->revtab##num[k] = j;\
255     } \
256 } while(0);
257
258 #define PROCESS_FFT_PERM_DEFAULT(num) do {\
259     for(i = 0; i < n; i++) {\
260         int k;\
261         j = i;\
262         k = -split_radix_permutation(i, n, s->inverse) & (n - 1);\
263         s->revtab##num[k] = j;\
264     } \
265 } while(0);
266
267 #define SPLIT_RADIX_PERMUTATION(num) do { \
268     if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS) {\
269         PROCESS_FFT_PERM_SWAP_LSBS(num) \
270     } else {\
271         PROCESS_FFT_PERM_DEFAULT(num) \
272     }\
273 } while(0);
274
275     if (s->revtab)
276         SPLIT_RADIX_PERMUTATION()
277     if (s->revtab32)
278         SPLIT_RADIX_PERMUTATION(32)
279
280 #undef PROCESS_FFT_PERM_DEFAULT
281 #undef PROCESS_FFT_PERM_SWAP_LSBS
282 #undef SPLIT_RADIX_PERMUTATION
283     }
284
285     return 0;
286  fail:
287     av_freep(&s->revtab);
288     av_freep(&s->revtab32);
289     av_freep(&s->tmp_buf);
290     return -1;
291 }
292
293 static void fft_permute_c(FFTContext *s, FFTComplex *z)
294 {
295     int j, np;
296     const uint16_t *revtab = s->revtab;
297     const uint32_t *revtab32 = s->revtab32;
298     np = 1 << s->nbits;
299     /* TODO: handle split-radix permute in a more optimal way, probably in-place */
300     if (revtab) {
301         for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
302     } else
303         for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
304
305     memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
306 }
307
308 av_cold void ff_fft_end(FFTContext *s)
309 {
310     av_freep(&s->revtab);
311     av_freep(&s->revtab32);
312     av_freep(&s->tmp_buf);
313 }
314
315 #if FFT_FIXED_32
316
317 static void fft_calc_c(FFTContext *s, FFTComplex *z) {
318
319     int nbits, i, n, num_transforms, offset, step;
320     int n4, n2, n34;
321     unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
322     FFTComplex *tmpz;
323     const int fft_size = (1 << s->nbits);
324     int64_t accu;
325
326     num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
327
328     for (n=0; n<num_transforms; n++){
329         offset = ff_fft_offsets_lut[n] << 2;
330         tmpz = z + offset;
331
332         tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
333         tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
334         tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
335         tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
336         tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
337         tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
338         tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
339         tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
340
341         tmpz[0].re = tmp1 + tmp5;
342         tmpz[2].re = tmp1 - tmp5;
343         tmpz[0].im = tmp2 + tmp6;
344         tmpz[2].im = tmp2 - tmp6;
345         tmpz[1].re = tmp3 + tmp8;
346         tmpz[3].re = tmp3 - tmp8;
347         tmpz[1].im = tmp4 - tmp7;
348         tmpz[3].im = tmp4 + tmp7;
349     }
350
351     if (fft_size < 8)
352         return;
353
354     num_transforms = (num_transforms >> 1) | 1;
355
356     for (n=0; n<num_transforms; n++){
357         offset = ff_fft_offsets_lut[n] << 3;
358         tmpz = z + offset;
359
360         tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
361         tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
362         tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
363         tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
364         tmp5 = tmp1 + tmp3;
365         tmp7 = tmp1 - tmp3;
366         tmp6 = tmp2 + tmp4;
367         tmp8 = tmp2 - tmp4;
368
369         tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
370         tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
371         tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
372         tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
373
374         tmpz[4].re = tmpz[0].re - tmp5;
375         tmpz[0].re = tmpz[0].re + tmp5;
376         tmpz[4].im = tmpz[0].im - tmp6;
377         tmpz[0].im = tmpz[0].im + tmp6;
378         tmpz[6].re = tmpz[2].re - tmp8;
379         tmpz[2].re = tmpz[2].re + tmp8;
380         tmpz[6].im = tmpz[2].im + tmp7;
381         tmpz[2].im = tmpz[2].im - tmp7;
382
383         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
384         tmp5 = (int32_t)((accu + 0x40000000) >> 31);
385         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
386         tmp7 = (int32_t)((accu + 0x40000000) >> 31);
387         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
388         tmp6 = (int32_t)((accu + 0x40000000) >> 31);
389         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
390         tmp8 = (int32_t)((accu + 0x40000000) >> 31);
391         tmp1 = tmp5 + tmp7;
392         tmp3 = tmp5 - tmp7;
393         tmp2 = tmp6 + tmp8;
394         tmp4 = tmp6 - tmp8;
395
396         tmpz[5].re = tmpz[1].re - tmp1;
397         tmpz[1].re = tmpz[1].re + tmp1;
398         tmpz[5].im = tmpz[1].im - tmp2;
399         tmpz[1].im = tmpz[1].im + tmp2;
400         tmpz[7].re = tmpz[3].re - tmp4;
401         tmpz[3].re = tmpz[3].re + tmp4;
402         tmpz[7].im = tmpz[3].im + tmp3;
403         tmpz[3].im = tmpz[3].im - tmp3;
404     }
405
406     step = 1 << ((MAX_LOG2_NFFT-4) - 4);
407     n4 = 4;
408
409     for (nbits=4; nbits<=s->nbits; nbits++){
410         n2  = 2*n4;
411         n34 = 3*n4;
412         num_transforms = (num_transforms >> 1) | 1;
413
414         for (n=0; n<num_transforms; n++){
415             const FFTSample *w_re_ptr = ff_w_tab_sr + step;
416             const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
417             offset = ff_fft_offsets_lut[n] << nbits;
418             tmpz = z + offset;
419
420             tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
421             tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
422             tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
423             tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
424
425             tmpz[ n2].re = tmpz[ 0].re - tmp5;
426             tmpz[  0].re = tmpz[ 0].re + tmp5;
427             tmpz[ n2].im = tmpz[ 0].im - tmp6;
428             tmpz[  0].im = tmpz[ 0].im + tmp6;
429             tmpz[n34].re = tmpz[n4].re - tmp2;
430             tmpz[ n4].re = tmpz[n4].re + tmp2;
431             tmpz[n34].im = tmpz[n4].im + tmp1;
432             tmpz[ n4].im = tmpz[n4].im - tmp1;
433
434             for (i=1; i<n4; i++){
435                 FFTSample w_re = w_re_ptr[0];
436                 FFTSample w_im = w_im_ptr[0];
437                 accu  = (int64_t)w_re*tmpz[ n2+i].re;
438                 accu += (int64_t)w_im*tmpz[ n2+i].im;
439                 tmp1 = (int32_t)((accu + 0x40000000) >> 31);
440                 accu  = (int64_t)w_re*tmpz[ n2+i].im;
441                 accu -= (int64_t)w_im*tmpz[ n2+i].re;
442                 tmp2 = (int32_t)((accu + 0x40000000) >> 31);
443                 accu  = (int64_t)w_re*tmpz[n34+i].re;
444                 accu -= (int64_t)w_im*tmpz[n34+i].im;
445                 tmp3 = (int32_t)((accu + 0x40000000) >> 31);
446                 accu  = (int64_t)w_re*tmpz[n34+i].im;
447                 accu += (int64_t)w_im*tmpz[n34+i].re;
448                 tmp4 = (int32_t)((accu + 0x40000000) >> 31);
449
450                 tmp5 = tmp1 + tmp3;
451                 tmp1 = tmp1 - tmp3;
452                 tmp6 = tmp2 + tmp4;
453                 tmp2 = tmp2 - tmp4;
454
455                 tmpz[ n2+i].re = tmpz[   i].re - tmp5;
456                 tmpz[    i].re = tmpz[   i].re + tmp5;
457                 tmpz[ n2+i].im = tmpz[   i].im - tmp6;
458                 tmpz[    i].im = tmpz[   i].im + tmp6;
459                 tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
460                 tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
461                 tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
462                 tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
463
464                 w_re_ptr += step;
465                 w_im_ptr -= step;
466             }
467         }
468         step >>= 1;
469         n4   <<= 1;
470     }
471 }
472
473 #else /* FFT_FIXED_32 */
474
475 #define BUTTERFLIES(a0,a1,a2,a3) {\
476     BF(t3, t5, t5, t1);\
477     BF(a2.re, a0.re, a0.re, t5);\
478     BF(a3.im, a1.im, a1.im, t3);\
479     BF(t4, t6, t2, t6);\
480     BF(a3.re, a1.re, a1.re, t4);\
481     BF(a2.im, a0.im, a0.im, t6);\
482 }
483
484 // force loading all the inputs before storing any.
485 // this is slightly slower for small data, but avoids store->load aliasing
486 // for addresses separated by large powers of 2.
487 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
488     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
489     BF(t3, t5, t5, t1);\
490     BF(a2.re, a0.re, r0, t5);\
491     BF(a3.im, a1.im, i1, t3);\
492     BF(t4, t6, t2, t6);\
493     BF(a3.re, a1.re, r1, t4);\
494     BF(a2.im, a0.im, i0, t6);\
495 }
496
497 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
498     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
499     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
500     BUTTERFLIES(a0,a1,a2,a3)\
501 }
502
503 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
504     t1 = a2.re;\
505     t2 = a2.im;\
506     t5 = a3.re;\
507     t6 = a3.im;\
508     BUTTERFLIES(a0,a1,a2,a3)\
509 }
510
511 /* z[0...8n-1], w[1...2n-1] */
512 #define PASS(name)\
513 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
514 {\
515     FFTDouble t1, t2, t3, t4, t5, t6;\
516     int o1 = 2*n;\
517     int o2 = 4*n;\
518     int o3 = 6*n;\
519     const FFTSample *wim = wre+o1;\
520     n--;\
521 \
522     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
523     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
524     do {\
525         z += 2;\
526         wre += 2;\
527         wim -= 2;\
528         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
529         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
530     } while(--n);\
531 }
532
533 PASS(pass)
534 #if !CONFIG_SMALL
535 #undef BUTTERFLIES
536 #define BUTTERFLIES BUTTERFLIES_BIG
537 PASS(pass_big)
538 #endif
539
540 #define DECL_FFT(n,n2,n4)\
541 static void fft##n(FFTComplex *z)\
542 {\
543     fft##n2(z);\
544     fft##n4(z+n4*2);\
545     fft##n4(z+n4*3);\
546     pass(z,FFT_NAME(ff_cos_##n),n4/2);\
547 }
548
549 static void fft4(FFTComplex *z)
550 {
551     FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
552
553     BF(t3, t1, z[0].re, z[1].re);
554     BF(t8, t6, z[3].re, z[2].re);
555     BF(z[2].re, z[0].re, t1, t6);
556     BF(t4, t2, z[0].im, z[1].im);
557     BF(t7, t5, z[2].im, z[3].im);
558     BF(z[3].im, z[1].im, t4, t8);
559     BF(z[3].re, z[1].re, t3, t7);
560     BF(z[2].im, z[0].im, t2, t5);
561 }
562
563 static void fft8(FFTComplex *z)
564 {
565     FFTDouble t1, t2, t3, t4, t5, t6;
566
567     fft4(z);
568
569     BF(t1, z[5].re, z[4].re, -z[5].re);
570     BF(t2, z[5].im, z[4].im, -z[5].im);
571     BF(t5, z[7].re, z[6].re, -z[7].re);
572     BF(t6, z[7].im, z[6].im, -z[7].im);
573
574     BUTTERFLIES(z[0],z[2],z[4],z[6]);
575     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
576 }
577
578 #if !CONFIG_SMALL
579 static void fft16(FFTComplex *z)
580 {
581     FFTDouble t1, t2, t3, t4, t5, t6;
582     FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
583     FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
584
585     fft8(z);
586     fft4(z+8);
587     fft4(z+12);
588
589     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
590     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
591     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
592     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
593 }
594 #else
595 DECL_FFT(16,8,4)
596 #endif
597 DECL_FFT(32,16,8)
598 DECL_FFT(64,32,16)
599 DECL_FFT(128,64,32)
600 DECL_FFT(256,128,64)
601 DECL_FFT(512,256,128)
602 #if !CONFIG_SMALL
603 #define pass pass_big
604 #endif
605 DECL_FFT(1024,512,256)
606 DECL_FFT(2048,1024,512)
607 DECL_FFT(4096,2048,1024)
608 DECL_FFT(8192,4096,2048)
609 DECL_FFT(16384,8192,4096)
610 DECL_FFT(32768,16384,8192)
611 DECL_FFT(65536,32768,16384)
612 DECL_FFT(131072,65536,32768)
613
614 static void (* const fft_dispatch[])(FFTComplex*) = {
615     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
616     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
617 };
618
619 static void fft_calc_c(FFTContext *s, FFTComplex *z)
620 {
621     fft_dispatch[s->nbits-2](z);
622 }
623 #endif /* FFT_FIXED_32 */