]> git.sesse.net Git - ffmpeg/blob - libavcodec/fft_template.c
swscale: add gray14 support
[ffmpeg] / libavcodec / fft_template.c
1 /*
2  * FFT/IFFT transforms
3  * Copyright (c) 2008 Loren Merritt
4  * Copyright (c) 2002 Fabrice Bellard
5  * Partly based on libdjbfft by D. J. Bernstein
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 /**
25  * @file
26  * FFT/IFFT transforms.
27  */
28
29 #include <stdlib.h>
30 #include <string.h>
31 #include "libavutil/mathematics.h"
32 #include "libavutil/thread.h"
33 #include "fft.h"
34 #include "fft-internal.h"
35
36 #if FFT_FIXED_32
37 #include "fft_table.h"
38
39 static void av_cold fft_lut_init(void)
40 {
41     int n = 0;
42     ff_fft_lut_init(ff_fft_offsets_lut, 0, 1 << 17, &n);
43 }
44
45 #else /* FFT_FIXED_32 */
46
47 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
48 #if !CONFIG_HARDCODED_TABLES
49 COSTABLE(16);
50 COSTABLE(32);
51 COSTABLE(64);
52 COSTABLE(128);
53 COSTABLE(256);
54 COSTABLE(512);
55 COSTABLE(1024);
56 COSTABLE(2048);
57 COSTABLE(4096);
58 COSTABLE(8192);
59 COSTABLE(16384);
60 COSTABLE(32768);
61 COSTABLE(65536);
62 COSTABLE(131072);
63
64 static av_cold void init_ff_cos_tabs(int index)
65 {
66     int i;
67     int m = 1<<index;
68     double freq = 2*M_PI/m;
69     FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
70     for(i=0; i<=m/4; i++)
71         tab[i] = FIX15(cos(i*freq));
72     for(i=1; i<m/4; i++)
73         tab[m/2-i] = tab[i];
74 }
75
76 typedef struct CosTabsInitOnce {
77     void (*func)(void);
78     AVOnce control;
79 } CosTabsInitOnce;
80
81 #define INIT_FF_COS_TABS_FUNC(index, size)          \
82 static av_cold void init_ff_cos_tabs_ ## size (void)\
83 {                                                   \
84     init_ff_cos_tabs(index);                        \
85 }
86
87 INIT_FF_COS_TABS_FUNC(4, 16)
88 INIT_FF_COS_TABS_FUNC(5, 32)
89 INIT_FF_COS_TABS_FUNC(6, 64)
90 INIT_FF_COS_TABS_FUNC(7, 128)
91 INIT_FF_COS_TABS_FUNC(8, 256)
92 INIT_FF_COS_TABS_FUNC(9, 512)
93 INIT_FF_COS_TABS_FUNC(10, 1024)
94 INIT_FF_COS_TABS_FUNC(11, 2048)
95 INIT_FF_COS_TABS_FUNC(12, 4096)
96 INIT_FF_COS_TABS_FUNC(13, 8192)
97 INIT_FF_COS_TABS_FUNC(14, 16384)
98 INIT_FF_COS_TABS_FUNC(15, 32768)
99 INIT_FF_COS_TABS_FUNC(16, 65536)
100 INIT_FF_COS_TABS_FUNC(17, 131072)
101
102 static CosTabsInitOnce cos_tabs_init_once[] = {
103     { NULL },
104     { NULL },
105     { NULL },
106     { NULL },
107     { init_ff_cos_tabs_16, AV_ONCE_INIT },
108     { init_ff_cos_tabs_32, AV_ONCE_INIT },
109     { init_ff_cos_tabs_64, AV_ONCE_INIT },
110     { init_ff_cos_tabs_128, AV_ONCE_INIT },
111     { init_ff_cos_tabs_256, AV_ONCE_INIT },
112     { init_ff_cos_tabs_512, AV_ONCE_INIT },
113     { init_ff_cos_tabs_1024, AV_ONCE_INIT },
114     { init_ff_cos_tabs_2048, AV_ONCE_INIT },
115     { init_ff_cos_tabs_4096, AV_ONCE_INIT },
116     { init_ff_cos_tabs_8192, AV_ONCE_INIT },
117     { init_ff_cos_tabs_16384, AV_ONCE_INIT },
118     { init_ff_cos_tabs_32768, AV_ONCE_INIT },
119     { init_ff_cos_tabs_65536, AV_ONCE_INIT },
120     { init_ff_cos_tabs_131072, AV_ONCE_INIT },
121 };
122
123 #endif
124 COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
125     NULL, NULL, NULL, NULL,
126     FFT_NAME(ff_cos_16),
127     FFT_NAME(ff_cos_32),
128     FFT_NAME(ff_cos_64),
129     FFT_NAME(ff_cos_128),
130     FFT_NAME(ff_cos_256),
131     FFT_NAME(ff_cos_512),
132     FFT_NAME(ff_cos_1024),
133     FFT_NAME(ff_cos_2048),
134     FFT_NAME(ff_cos_4096),
135     FFT_NAME(ff_cos_8192),
136     FFT_NAME(ff_cos_16384),
137     FFT_NAME(ff_cos_32768),
138     FFT_NAME(ff_cos_65536),
139     FFT_NAME(ff_cos_131072),
140 };
141
142 #endif /* FFT_FIXED_32 */
143
144 static void fft_permute_c(FFTContext *s, FFTComplex *z);
145 static void fft_calc_c(FFTContext *s, FFTComplex *z);
146
147 static int split_radix_permutation(int i, int n, int inverse)
148 {
149     int m;
150     if(n <= 2) return i&1;
151     m = n >> 1;
152     if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
153     m >>= 1;
154     if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
155     else                  return split_radix_permutation(i, m, inverse)*4 - 1;
156 }
157
158 av_cold void ff_init_ff_cos_tabs(int index)
159 {
160 #if (!CONFIG_HARDCODED_TABLES) && (!FFT_FIXED_32)
161     ff_thread_once(&cos_tabs_init_once[index].control, cos_tabs_init_once[index].func);
162 #endif
163 }
164
165 static const int avx_tab[] = {
166     0, 4, 1, 5, 8, 12, 9, 13, 2, 6, 3, 7, 10, 14, 11, 15
167 };
168
169 static int is_second_half_of_fft32(int i, int n)
170 {
171     if (n <= 32)
172         return i >= 16;
173     else if (i < n/2)
174         return is_second_half_of_fft32(i, n/2);
175     else if (i < 3*n/4)
176         return is_second_half_of_fft32(i - n/2, n/4);
177     else
178         return is_second_half_of_fft32(i - 3*n/4, n/4);
179 }
180
181 static av_cold void fft_perm_avx(FFTContext *s)
182 {
183     int i;
184     int n = 1 << s->nbits;
185
186     for (i = 0; i < n; i += 16) {
187         int k;
188         if (is_second_half_of_fft32(i, n)) {
189             for (k = 0; k < 16; k++)
190                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] =
191                     i + avx_tab[k];
192
193         } else {
194             for (k = 0; k < 16; k++) {
195                 int j = i + k;
196                 j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4);
197                 s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j;
198             }
199         }
200     }
201 }
202
203 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
204 {
205     int i, j, n;
206
207     s->revtab = NULL;
208     s->revtab32 = NULL;
209
210     if (nbits < 2 || nbits > 17)
211         goto fail;
212     s->nbits = nbits;
213     n = 1 << nbits;
214
215     if (nbits <= 16) {
216         s->revtab = av_malloc(n * sizeof(uint16_t));
217         if (!s->revtab)
218             goto fail;
219     } else {
220         s->revtab32 = av_malloc(n * sizeof(uint32_t));
221         if (!s->revtab32)
222             goto fail;
223     }
224     s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
225     if (!s->tmp_buf)
226         goto fail;
227     s->inverse = inverse;
228     s->fft_permutation = FF_FFT_PERM_DEFAULT;
229
230     s->fft_permute = fft_permute_c;
231     s->fft_calc    = fft_calc_c;
232 #if CONFIG_MDCT
233     s->imdct_calc  = ff_imdct_calc_c;
234     s->imdct_half  = ff_imdct_half_c;
235     s->mdct_calc   = ff_mdct_calc_c;
236 #endif
237
238 #if FFT_FIXED_32
239     {
240         static AVOnce control = AV_ONCE_INIT;
241         ff_thread_once(&control, fft_lut_init);
242     }
243 #else /* FFT_FIXED_32 */
244 #if FFT_FLOAT
245     if (ARCH_AARCH64) ff_fft_init_aarch64(s);
246     if (ARCH_ARM)     ff_fft_init_arm(s);
247     if (ARCH_PPC)     ff_fft_init_ppc(s);
248     if (ARCH_X86)     ff_fft_init_x86(s);
249     if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
250     if (HAVE_MIPSFPU) ff_fft_init_mips(s);
251 #else
252     if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
253     if (ARCH_ARM)     ff_fft_fixed_init_arm(s);
254 #endif
255     for(j=4; j<=nbits; j++) {
256         ff_init_ff_cos_tabs(j);
257     }
258 #endif /* FFT_FIXED_32 */
259
260
261     if (s->fft_permutation == FF_FFT_PERM_AVX) {
262         fft_perm_avx(s);
263     } else {
264         for(i=0; i<n; i++) {
265             int k;
266             j = i;
267             if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
268                 j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
269             k = -split_radix_permutation(i, n, s->inverse) & (n-1);
270             if (s->revtab)
271                 s->revtab[k] = j;
272             if (s->revtab32)
273                 s->revtab32[k] = j;
274         }
275     }
276
277     return 0;
278  fail:
279     av_freep(&s->revtab);
280     av_freep(&s->revtab32);
281     av_freep(&s->tmp_buf);
282     return -1;
283 }
284
285 static void fft_permute_c(FFTContext *s, FFTComplex *z)
286 {
287     int j, np;
288     const uint16_t *revtab = s->revtab;
289     const uint32_t *revtab32 = s->revtab32;
290     np = 1 << s->nbits;
291     /* TODO: handle split-radix permute in a more optimal way, probably in-place */
292     if (revtab) {
293         for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
294     } else
295         for(j=0;j<np;j++) s->tmp_buf[revtab32[j]] = z[j];
296
297     memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
298 }
299
300 av_cold void ff_fft_end(FFTContext *s)
301 {
302     av_freep(&s->revtab);
303     av_freep(&s->revtab32);
304     av_freep(&s->tmp_buf);
305 }
306
307 #if FFT_FIXED_32
308
309 static void fft_calc_c(FFTContext *s, FFTComplex *z) {
310
311     int nbits, i, n, num_transforms, offset, step;
312     int n4, n2, n34;
313     unsigned tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8;
314     FFTComplex *tmpz;
315     const int fft_size = (1 << s->nbits);
316     int64_t accu;
317
318     num_transforms = (0x2aab >> (16 - s->nbits)) | 1;
319
320     for (n=0; n<num_transforms; n++){
321         offset = ff_fft_offsets_lut[n] << 2;
322         tmpz = z + offset;
323
324         tmp1 = tmpz[0].re + (unsigned)tmpz[1].re;
325         tmp5 = tmpz[2].re + (unsigned)tmpz[3].re;
326         tmp2 = tmpz[0].im + (unsigned)tmpz[1].im;
327         tmp6 = tmpz[2].im + (unsigned)tmpz[3].im;
328         tmp3 = tmpz[0].re - (unsigned)tmpz[1].re;
329         tmp8 = tmpz[2].im - (unsigned)tmpz[3].im;
330         tmp4 = tmpz[0].im - (unsigned)tmpz[1].im;
331         tmp7 = tmpz[2].re - (unsigned)tmpz[3].re;
332
333         tmpz[0].re = tmp1 + tmp5;
334         tmpz[2].re = tmp1 - tmp5;
335         tmpz[0].im = tmp2 + tmp6;
336         tmpz[2].im = tmp2 - tmp6;
337         tmpz[1].re = tmp3 + tmp8;
338         tmpz[3].re = tmp3 - tmp8;
339         tmpz[1].im = tmp4 - tmp7;
340         tmpz[3].im = tmp4 + tmp7;
341     }
342
343     if (fft_size < 8)
344         return;
345
346     num_transforms = (num_transforms >> 1) | 1;
347
348     for (n=0; n<num_transforms; n++){
349         offset = ff_fft_offsets_lut[n] << 3;
350         tmpz = z + offset;
351
352         tmp1 = tmpz[4].re + (unsigned)tmpz[5].re;
353         tmp3 = tmpz[6].re + (unsigned)tmpz[7].re;
354         tmp2 = tmpz[4].im + (unsigned)tmpz[5].im;
355         tmp4 = tmpz[6].im + (unsigned)tmpz[7].im;
356         tmp5 = tmp1 + tmp3;
357         tmp7 = tmp1 - tmp3;
358         tmp6 = tmp2 + tmp4;
359         tmp8 = tmp2 - tmp4;
360
361         tmp1 = tmpz[4].re - (unsigned)tmpz[5].re;
362         tmp2 = tmpz[4].im - (unsigned)tmpz[5].im;
363         tmp3 = tmpz[6].re - (unsigned)tmpz[7].re;
364         tmp4 = tmpz[6].im - (unsigned)tmpz[7].im;
365
366         tmpz[4].re = tmpz[0].re - tmp5;
367         tmpz[0].re = tmpz[0].re + tmp5;
368         tmpz[4].im = tmpz[0].im - tmp6;
369         tmpz[0].im = tmpz[0].im + tmp6;
370         tmpz[6].re = tmpz[2].re - tmp8;
371         tmpz[2].re = tmpz[2].re + tmp8;
372         tmpz[6].im = tmpz[2].im + tmp7;
373         tmpz[2].im = tmpz[2].im - tmp7;
374
375         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp1 + tmp2);
376         tmp5 = (int32_t)((accu + 0x40000000) >> 31);
377         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 - tmp4);
378         tmp7 = (int32_t)((accu + 0x40000000) >> 31);
379         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp2 - tmp1);
380         tmp6 = (int32_t)((accu + 0x40000000) >> 31);
381         accu = (int64_t)Q31(M_SQRT1_2)*(int)(tmp3 + tmp4);
382         tmp8 = (int32_t)((accu + 0x40000000) >> 31);
383         tmp1 = tmp5 + tmp7;
384         tmp3 = tmp5 - tmp7;
385         tmp2 = tmp6 + tmp8;
386         tmp4 = tmp6 - tmp8;
387
388         tmpz[5].re = tmpz[1].re - tmp1;
389         tmpz[1].re = tmpz[1].re + tmp1;
390         tmpz[5].im = tmpz[1].im - tmp2;
391         tmpz[1].im = tmpz[1].im + tmp2;
392         tmpz[7].re = tmpz[3].re - tmp4;
393         tmpz[3].re = tmpz[3].re + tmp4;
394         tmpz[7].im = tmpz[3].im + tmp3;
395         tmpz[3].im = tmpz[3].im - tmp3;
396     }
397
398     step = 1 << ((MAX_LOG2_NFFT-4) - 4);
399     n4 = 4;
400
401     for (nbits=4; nbits<=s->nbits; nbits++){
402         n2  = 2*n4;
403         n34 = 3*n4;
404         num_transforms = (num_transforms >> 1) | 1;
405
406         for (n=0; n<num_transforms; n++){
407             const FFTSample *w_re_ptr = ff_w_tab_sr + step;
408             const FFTSample *w_im_ptr = ff_w_tab_sr + MAX_FFT_SIZE/(4*16) - step;
409             offset = ff_fft_offsets_lut[n] << nbits;
410             tmpz = z + offset;
411
412             tmp5 = tmpz[ n2].re + (unsigned)tmpz[n34].re;
413             tmp1 = tmpz[ n2].re - (unsigned)tmpz[n34].re;
414             tmp6 = tmpz[ n2].im + (unsigned)tmpz[n34].im;
415             tmp2 = tmpz[ n2].im - (unsigned)tmpz[n34].im;
416
417             tmpz[ n2].re = tmpz[ 0].re - tmp5;
418             tmpz[  0].re = tmpz[ 0].re + tmp5;
419             tmpz[ n2].im = tmpz[ 0].im - tmp6;
420             tmpz[  0].im = tmpz[ 0].im + tmp6;
421             tmpz[n34].re = tmpz[n4].re - tmp2;
422             tmpz[ n4].re = tmpz[n4].re + tmp2;
423             tmpz[n34].im = tmpz[n4].im + tmp1;
424             tmpz[ n4].im = tmpz[n4].im - tmp1;
425
426             for (i=1; i<n4; i++){
427                 FFTSample w_re = w_re_ptr[0];
428                 FFTSample w_im = w_im_ptr[0];
429                 accu  = (int64_t)w_re*tmpz[ n2+i].re;
430                 accu += (int64_t)w_im*tmpz[ n2+i].im;
431                 tmp1 = (int32_t)((accu + 0x40000000) >> 31);
432                 accu  = (int64_t)w_re*tmpz[ n2+i].im;
433                 accu -= (int64_t)w_im*tmpz[ n2+i].re;
434                 tmp2 = (int32_t)((accu + 0x40000000) >> 31);
435                 accu  = (int64_t)w_re*tmpz[n34+i].re;
436                 accu -= (int64_t)w_im*tmpz[n34+i].im;
437                 tmp3 = (int32_t)((accu + 0x40000000) >> 31);
438                 accu  = (int64_t)w_re*tmpz[n34+i].im;
439                 accu += (int64_t)w_im*tmpz[n34+i].re;
440                 tmp4 = (int32_t)((accu + 0x40000000) >> 31);
441
442                 tmp5 = tmp1 + tmp3;
443                 tmp1 = tmp1 - tmp3;
444                 tmp6 = tmp2 + tmp4;
445                 tmp2 = tmp2 - tmp4;
446
447                 tmpz[ n2+i].re = tmpz[   i].re - tmp5;
448                 tmpz[    i].re = tmpz[   i].re + tmp5;
449                 tmpz[ n2+i].im = tmpz[   i].im - tmp6;
450                 tmpz[    i].im = tmpz[   i].im + tmp6;
451                 tmpz[n34+i].re = tmpz[n4+i].re - tmp2;
452                 tmpz[ n4+i].re = tmpz[n4+i].re + tmp2;
453                 tmpz[n34+i].im = tmpz[n4+i].im + tmp1;
454                 tmpz[ n4+i].im = tmpz[n4+i].im - tmp1;
455
456                 w_re_ptr += step;
457                 w_im_ptr -= step;
458             }
459         }
460         step >>= 1;
461         n4   <<= 1;
462     }
463 }
464
465 #else /* FFT_FIXED_32 */
466
467 #define BUTTERFLIES(a0,a1,a2,a3) {\
468     BF(t3, t5, t5, t1);\
469     BF(a2.re, a0.re, a0.re, t5);\
470     BF(a3.im, a1.im, a1.im, t3);\
471     BF(t4, t6, t2, t6);\
472     BF(a3.re, a1.re, a1.re, t4);\
473     BF(a2.im, a0.im, a0.im, t6);\
474 }
475
476 // force loading all the inputs before storing any.
477 // this is slightly slower for small data, but avoids store->load aliasing
478 // for addresses separated by large powers of 2.
479 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
480     FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
481     BF(t3, t5, t5, t1);\
482     BF(a2.re, a0.re, r0, t5);\
483     BF(a3.im, a1.im, i1, t3);\
484     BF(t4, t6, t2, t6);\
485     BF(a3.re, a1.re, r1, t4);\
486     BF(a2.im, a0.im, i0, t6);\
487 }
488
489 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
490     CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
491     CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
492     BUTTERFLIES(a0,a1,a2,a3)\
493 }
494
495 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
496     t1 = a2.re;\
497     t2 = a2.im;\
498     t5 = a3.re;\
499     t6 = a3.im;\
500     BUTTERFLIES(a0,a1,a2,a3)\
501 }
502
503 /* z[0...8n-1], w[1...2n-1] */
504 #define PASS(name)\
505 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
506 {\
507     FFTDouble t1, t2, t3, t4, t5, t6;\
508     int o1 = 2*n;\
509     int o2 = 4*n;\
510     int o3 = 6*n;\
511     const FFTSample *wim = wre+o1;\
512     n--;\
513 \
514     TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
515     TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
516     do {\
517         z += 2;\
518         wre += 2;\
519         wim -= 2;\
520         TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
521         TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
522     } while(--n);\
523 }
524
525 PASS(pass)
526 #undef BUTTERFLIES
527 #define BUTTERFLIES BUTTERFLIES_BIG
528 PASS(pass_big)
529
530 #define DECL_FFT(n,n2,n4)\
531 static void fft##n(FFTComplex *z)\
532 {\
533     fft##n2(z);\
534     fft##n4(z+n4*2);\
535     fft##n4(z+n4*3);\
536     pass(z,FFT_NAME(ff_cos_##n),n4/2);\
537 }
538
539 static void fft4(FFTComplex *z)
540 {
541     FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;
542
543     BF(t3, t1, z[0].re, z[1].re);
544     BF(t8, t6, z[3].re, z[2].re);
545     BF(z[2].re, z[0].re, t1, t6);
546     BF(t4, t2, z[0].im, z[1].im);
547     BF(t7, t5, z[2].im, z[3].im);
548     BF(z[3].im, z[1].im, t4, t8);
549     BF(z[3].re, z[1].re, t3, t7);
550     BF(z[2].im, z[0].im, t2, t5);
551 }
552
553 static void fft8(FFTComplex *z)
554 {
555     FFTDouble t1, t2, t3, t4, t5, t6;
556
557     fft4(z);
558
559     BF(t1, z[5].re, z[4].re, -z[5].re);
560     BF(t2, z[5].im, z[4].im, -z[5].im);
561     BF(t5, z[7].re, z[6].re, -z[7].re);
562     BF(t6, z[7].im, z[6].im, -z[7].im);
563
564     BUTTERFLIES(z[0],z[2],z[4],z[6]);
565     TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
566 }
567
568 #if !CONFIG_SMALL
569 static void fft16(FFTComplex *z)
570 {
571     FFTDouble t1, t2, t3, t4, t5, t6;
572     FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
573     FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];
574
575     fft8(z);
576     fft4(z+8);
577     fft4(z+12);
578
579     TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
580     TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
581     TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
582     TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
583 }
584 #else
585 DECL_FFT(16,8,4)
586 #endif
587 DECL_FFT(32,16,8)
588 DECL_FFT(64,32,16)
589 DECL_FFT(128,64,32)
590 DECL_FFT(256,128,64)
591 DECL_FFT(512,256,128)
592 #if !CONFIG_SMALL
593 #define pass pass_big
594 #endif
595 DECL_FFT(1024,512,256)
596 DECL_FFT(2048,1024,512)
597 DECL_FFT(4096,2048,1024)
598 DECL_FFT(8192,4096,2048)
599 DECL_FFT(16384,8192,4096)
600 DECL_FFT(32768,16384,8192)
601 DECL_FFT(65536,32768,16384)
602 DECL_FFT(131072,65536,32768)
603
604 static void (* const fft_dispatch[])(FFTComplex*) = {
605     fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
606     fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, fft131072
607 };
608
609 static void fft_calc_c(FFTContext *s, FFTComplex *z)
610 {
611     fft_dispatch[s->nbits-2](z);
612 }
613 #endif /* FFT_FIXED_32 */