2 * G.722 ADPCM audio encoder/decoder
4 * Copyright (c) CMU 1993 Computer Science, Speech Group
5 * Chengxiang Lu and Alex Hauptmann
6 * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
7 * Copyright (c) 2009 Kenan Gillet
8 * Copyright (c) 2010 Martin Storsjo
10 * This file is part of Libav.
12 * Libav is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * Libav is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with Libav; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
29 * G.722 ADPCM audio codec
31 * This G.722 decoder is a bit-exact implementation of the ITU G.722
32 * specification for all three specified bitrates - 64000bps, 56000bps
33 * and 48000bps. It passes the ITU tests.
35 * @note For the 56000bps and 48000bps bitrates, the lowest 1 or 2 bits
36 * respectively of each byte are ignored.
42 static const int8_t sign_lookup[2] = { -1, 1 };
44 static const int16_t inv_log2_table[32] = {
45 2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
46 2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
47 2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
48 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008
50 static const int16_t high_log_factor_step[2] = { 798, -214 };
51 const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 };
53 * low_log_factor_step[index] == wl[rl42[index]]
55 static const int16_t low_log_factor_step[16] = {
56 -60, 3042, 1198, 538, 334, 172, 58, -30,
57 3042, 1198, 538, 334, 172, 58, -30, -60
59 const int16_t ff_g722_low_inv_quant4[16] = {
60 0, -2557, -1612, -1121, -786, -530, -323, -150,
61 2557, 1612, 1121, 786, 530, 323, 150, 0
63 const int16_t ff_g722_low_inv_quant6[64] = {
64 -17, -17, -17, -17, -3101, -2738, -2376, -2088,
65 -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982,
66 -899, -822, -750, -682, -618, -558, -501, -447,
67 -396, -347, -300, -254, -211, -170, -130, -91,
68 3101, 2738, 2376, 2088, 1873, 1689, 1535, 1399,
69 1279, 1170, 1072, 982, 899, 822, 750, 682,
70 618, 558, 501, 447, 396, 347, 300, 254,
71 211, 170, 130, 91, 54, 17, -54, -17
75 * quadrature mirror filter (QMF) coefficients
77 * ITU-T G.722 Table 11
79 static const int16_t qmf_coeffs[12] = {
80 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11,
87 * @param cur_diff the dequantized and scaled delta calculated from the
90 static void do_adaptive_prediction(struct G722Band *band, const int cur_diff)
92 int sg[2], limit, i, cur_qtzd_reconst;
94 const int cur_part_reconst = band->s_zero + cur_diff < 0;
96 sg[0] = sign_lookup[cur_part_reconst != band->part_reconst_mem[0]];
97 sg[1] = sign_lookup[cur_part_reconst == band->part_reconst_mem[1]];
98 band->part_reconst_mem[1] = band->part_reconst_mem[0];
99 band->part_reconst_mem[0] = cur_part_reconst;
101 band->pole_mem[1] = av_clip((sg[0] * av_clip(band->pole_mem[0], -8191, 8191) >> 5) +
102 (sg[1] << 7) + (band->pole_mem[1] * 127 >> 7), -12288, 12288);
104 limit = 15360 - band->pole_mem[1];
105 band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit);
109 for (i = 0; i < 6; i++)
110 band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) +
111 ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128);
113 for (i = 0; i < 6; i++)
114 band->zero_mem[i] = (band->zero_mem[i]*255) >> 8;
116 for (i = 5; i > 0; i--)
117 band->diff_mem[i] = band->diff_mem[i-1];
118 band->diff_mem[0] = av_clip_int16(cur_diff << 1);
121 for (i = 5; i >= 0; i--)
122 band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15;
125 cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1);
126 band->s_predictor = av_clip_int16(band->s_zero +
127 (band->pole_mem[0] * cur_qtzd_reconst >> 15) +
128 (band->pole_mem[1] * band->prev_qtzd_reconst >> 15));
129 band->prev_qtzd_reconst = cur_qtzd_reconst;
132 static inline int linear_scale_factor(const int log_factor)
134 const int wd1 = inv_log2_table[(log_factor >> 6) & 31];
135 const int shift = log_factor >> 11;
136 return shift < 0 ? wd1 >> -shift : wd1 << shift;
139 void ff_g722_update_low_predictor(struct G722Band *band, const int ilow)
141 do_adaptive_prediction(band,
142 band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10);
144 // quantizer adaptation
145 band->log_factor = av_clip((band->log_factor * 127 >> 7) +
146 low_log_factor_step[ilow], 0, 18432);
147 band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11));
150 void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh,
153 do_adaptive_prediction(band, dhigh);
155 // quantizer adaptation
156 band->log_factor = av_clip((band->log_factor * 127 >> 7) +
157 high_log_factor_step[ihigh&1], 0, 22528);
158 band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11));
161 void ff_g722_apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2)
167 for (i = 0; i < 12; i++) {
168 MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]);
169 MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]);