]> git.sesse.net Git - ffmpeg/blob - libavcodec/g723_1dec.c
avcodec: Constify AVCodecs
[ffmpeg] / libavcodec / g723_1dec.c
1 /*
2  * G.723.1 compatible decoder
3  * Copyright (c) 2006 Benjamin Larsson
4  * Copyright (c) 2010 Mohamed Naufal Basheer
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 /**
24  * @file
25  * G.723.1 compatible decoder
26  */
27
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/mem.h"
30 #include "libavutil/opt.h"
31
32 #define BITSTREAM_READER_LE
33 #include "acelp_vectors.h"
34 #include "avcodec.h"
35 #include "celp_filters.h"
36 #include "celp_math.h"
37 #include "get_bits.h"
38 #include "internal.h"
39 #include "g723_1.h"
40
41 #define CNG_RANDOM_SEED 12345
42
43 /**
44  * Postfilter gain weighting factors scaled by 2^15
45  */
46 static const int16_t ppf_gain_weight[2] = {0x1800, 0x2000};
47
48 static const int16_t pitch_contrib[340] = {
49     60,     0,  0,  2489, 60,     0,  0,  5217,
50      1,  6171,  0,  3953,  0, 10364,  1,  9357,
51     -1,  8843,  1,  9396,  0,  5794, -1, 10816,
52      2, 11606, -2, 12072,  0,  8616,  1, 12170,
53      0, 14440,  0,  7787, -1, 13721,  0, 18205,
54      0, 14471,  0, 15807,  1, 15275,  0, 13480,
55     -1, 18375, -1,     0,  1, 11194, -1, 13010,
56      1, 18836, -2, 20354,  1, 16233, -1,     0,
57     60,     0,  0, 12130,  0, 13385,  1, 17834,
58      1, 20875,  0, 21996,  1,     0,  1, 18277,
59     -1, 21321,  1, 13738, -1, 19094, -1, 20387,
60     -1,     0,  0, 21008, 60,     0, -2, 22807,
61      0, 15900,  1,     0,  0, 17989, -1, 22259,
62      1, 24395,  1, 23138,  0, 23948,  1, 22997,
63      2, 22604, -1, 25942,  0, 26246,  1, 25321,
64      0, 26423,  0, 24061,  0, 27247, 60,     0,
65     -1, 25572,  1, 23918,  1, 25930,  2, 26408,
66     -1, 19049,  1, 27357, -1, 24538, 60,     0,
67     -1, 25093,  0, 28549,  1,     0,  0, 22793,
68     -1, 25659,  0, 29377,  0, 30276,  0, 26198,
69      1, 22521, -1, 28919,  0, 27384,  1, 30162,
70     -1,     0,  0, 24237, -1, 30062,  0, 21763,
71      1, 30917, 60,     0,  0, 31284,  0, 29433,
72      1, 26821,  1, 28655,  0, 31327,  2, 30799,
73      1, 31389,  0, 32322,  1, 31760, -2, 31830,
74      0, 26936, -1, 31180,  1, 30875,  0, 27873,
75     -1, 30429,  1, 31050,  0,     0,  0, 31912,
76      1, 31611,  0, 31565,  0, 25557,  0, 31357,
77     60,     0,  1, 29536,  1, 28985, -1, 26984,
78     -1, 31587,  2, 30836, -2, 31133,  0, 30243,
79     -1, 30742, -1, 32090, 60,     0,  2, 30902,
80     60,     0,  0, 30027,  0, 29042, 60,     0,
81      0, 31756,  0, 24553,  0, 25636, -2, 30501,
82     60,     0, -1, 29617,  0, 30649, 60,     0,
83      0, 29274,  2, 30415,  0, 27480,  0, 31213,
84     -1, 28147,  0, 30600,  1, 31652,  2, 29068,
85     60,     0,  1, 28571,  1, 28730,  1, 31422,
86      0, 28257,  0, 24797, 60,     0,  0,     0,
87     60,     0,  0, 22105,  0, 27852, 60,     0,
88     60,     0, -1, 24214,  0, 24642,  0, 23305,
89     60,     0, 60,     0,  1, 22883,  0, 21601,
90     60,     0,  2, 25650, 60,     0, -2, 31253,
91     -2, 25144,  0, 17998
92 };
93
94 /**
95  * Size of the MP-MLQ fixed excitation codebooks
96  */
97 static const int32_t max_pos[4] = {593775, 142506, 593775, 142506};
98
99 /**
100  * 0.65^i (Zero part) and 0.75^i (Pole part) scaled by 2^15
101  */
102 static const int16_t postfilter_tbl[2][LPC_ORDER] = {
103     /* Zero */
104     {21299, 13844,  8999,  5849, 3802, 2471, 1606, 1044,  679,  441},
105     /* Pole */
106     {24576, 18432, 13824, 10368, 7776, 5832, 4374, 3281, 2460, 1845}
107 };
108
109 static const int cng_adaptive_cb_lag[4] = { 1, 0, 1, 3 };
110
111 static const int cng_filt[4] = { 273, 998, 499, 333 };
112
113 static const int cng_bseg[3] = { 2048, 18432, 231233 };
114
115 static av_cold int g723_1_decode_init(AVCodecContext *avctx)
116 {
117     G723_1_Context *s = avctx->priv_data;
118
119     avctx->sample_fmt     = AV_SAMPLE_FMT_S16P;
120     if (avctx->channels < 1 || avctx->channels > 2) {
121         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", avctx->channels);
122         return AVERROR(EINVAL);
123     }
124     avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
125     for (int ch = 0; ch < avctx->channels; ch++) {
126         G723_1_ChannelContext *p = &s->ch[ch];
127
128         p->pf_gain = 1 << 12;
129
130         memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
131         memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));
132
133         p->cng_random_seed = CNG_RANDOM_SEED;
134         p->past_frame_type = SID_FRAME;
135     }
136
137     return 0;
138 }
139
140 /**
141  * Unpack the frame into parameters.
142  *
143  * @param p           the context
144  * @param buf         pointer to the input buffer
145  * @param buf_size    size of the input buffer
146  */
147 static int unpack_bitstream(G723_1_ChannelContext *p, const uint8_t *buf,
148                             int buf_size)
149 {
150     GetBitContext gb;
151     int ad_cb_len;
152     int temp, info_bits, i;
153     int ret;
154
155     ret = init_get_bits8(&gb, buf, buf_size);
156     if (ret < 0)
157         return ret;
158
159     /* Extract frame type and rate info */
160     info_bits = get_bits(&gb, 2);
161
162     if (info_bits == 3) {
163         p->cur_frame_type = UNTRANSMITTED_FRAME;
164         return 0;
165     }
166
167     /* Extract 24 bit lsp indices, 8 bit for each band */
168     p->lsp_index[2] = get_bits(&gb, 8);
169     p->lsp_index[1] = get_bits(&gb, 8);
170     p->lsp_index[0] = get_bits(&gb, 8);
171
172     if (info_bits == 2) {
173         p->cur_frame_type = SID_FRAME;
174         p->subframe[0].amp_index = get_bits(&gb, 6);
175         return 0;
176     }
177
178     /* Extract the info common to both rates */
179     p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
180     p->cur_frame_type = ACTIVE_FRAME;
181
182     p->pitch_lag[0] = get_bits(&gb, 7);
183     if (p->pitch_lag[0] > 123)       /* test if forbidden code */
184         return -1;
185     p->pitch_lag[0] += PITCH_MIN;
186     p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
187
188     p->pitch_lag[1] = get_bits(&gb, 7);
189     if (p->pitch_lag[1] > 123)
190         return -1;
191     p->pitch_lag[1] += PITCH_MIN;
192     p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
193     p->subframe[0].ad_cb_lag = 1;
194     p->subframe[2].ad_cb_lag = 1;
195
196     for (i = 0; i < SUBFRAMES; i++) {
197         /* Extract combined gain */
198         temp = get_bits(&gb, 12);
199         ad_cb_len = 170;
200         p->subframe[i].dirac_train = 0;
201         if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
202             p->subframe[i].dirac_train = temp >> 11;
203             temp &= 0x7FF;
204             ad_cb_len = 85;
205         }
206         p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
207         if (p->subframe[i].ad_cb_gain < ad_cb_len) {
208             p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
209                                        GAIN_LEVELS;
210         } else {
211             return -1;
212         }
213     }
214
215     p->subframe[0].grid_index = get_bits1(&gb);
216     p->subframe[1].grid_index = get_bits1(&gb);
217     p->subframe[2].grid_index = get_bits1(&gb);
218     p->subframe[3].grid_index = get_bits1(&gb);
219
220     if (p->cur_rate == RATE_6300) {
221         skip_bits1(&gb);  /* skip reserved bit */
222
223         /* Compute pulse_pos index using the 13-bit combined position index */
224         temp = get_bits(&gb, 13);
225         p->subframe[0].pulse_pos = temp / 810;
226
227         temp -= p->subframe[0].pulse_pos * 810;
228         p->subframe[1].pulse_pos = FASTDIV(temp, 90);
229
230         temp -= p->subframe[1].pulse_pos * 90;
231         p->subframe[2].pulse_pos = FASTDIV(temp, 9);
232         p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
233
234         p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
235                                    get_bits(&gb, 16);
236         p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
237                                    get_bits(&gb, 14);
238         p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
239                                    get_bits(&gb, 16);
240         p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
241                                    get_bits(&gb, 14);
242
243         p->subframe[0].pulse_sign = get_bits(&gb, 6);
244         p->subframe[1].pulse_sign = get_bits(&gb, 5);
245         p->subframe[2].pulse_sign = get_bits(&gb, 6);
246         p->subframe[3].pulse_sign = get_bits(&gb, 5);
247     } else { /* 5300 bps */
248         p->subframe[0].pulse_pos  = get_bits(&gb, 12);
249         p->subframe[1].pulse_pos  = get_bits(&gb, 12);
250         p->subframe[2].pulse_pos  = get_bits(&gb, 12);
251         p->subframe[3].pulse_pos  = get_bits(&gb, 12);
252
253         p->subframe[0].pulse_sign = get_bits(&gb, 4);
254         p->subframe[1].pulse_sign = get_bits(&gb, 4);
255         p->subframe[2].pulse_sign = get_bits(&gb, 4);
256         p->subframe[3].pulse_sign = get_bits(&gb, 4);
257     }
258
259     return 0;
260 }
261
262 /**
263  * Bitexact implementation of sqrt(val/2).
264  */
265 static int16_t square_root(unsigned val)
266 {
267     av_assert2(!(val & 0x80000000));
268
269     return (ff_sqrt(val << 1) >> 1) & (~1);
270 }
271
272 /**
273  * Generate fixed codebook excitation vector.
274  *
275  * @param vector    decoded excitation vector
276  * @param subfrm    current subframe
277  * @param cur_rate  current bitrate
278  * @param pitch_lag closed loop pitch lag
279  * @param index     current subframe index
280  */
281 static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
282                                enum Rate cur_rate, int pitch_lag, int index)
283 {
284     int temp, i, j;
285
286     memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
287
288     if (cur_rate == RATE_6300) {
289         if (subfrm->pulse_pos >= max_pos[index])
290             return;
291
292         /* Decode amplitudes and positions */
293         j = PULSE_MAX - pulses[index];
294         temp = subfrm->pulse_pos;
295         for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
296             temp -= ff_g723_1_combinatorial_table[j][i];
297             if (temp >= 0)
298                 continue;
299             temp += ff_g723_1_combinatorial_table[j++][i];
300             if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
301                 vector[subfrm->grid_index + GRID_SIZE * i] =
302                                         -ff_g723_1_fixed_cb_gain[subfrm->amp_index];
303             } else {
304                 vector[subfrm->grid_index + GRID_SIZE * i] =
305                                          ff_g723_1_fixed_cb_gain[subfrm->amp_index];
306             }
307             if (j == PULSE_MAX)
308                 break;
309         }
310         if (subfrm->dirac_train == 1)
311             ff_g723_1_gen_dirac_train(vector, pitch_lag);
312     } else { /* 5300 bps */
313         int cb_gain  = ff_g723_1_fixed_cb_gain[subfrm->amp_index];
314         int cb_shift = subfrm->grid_index;
315         int cb_sign  = subfrm->pulse_sign;
316         int cb_pos   = subfrm->pulse_pos;
317         int offset, beta, lag;
318
319         for (i = 0; i < 8; i += 2) {
320             offset         = ((cb_pos & 7) << 3) + cb_shift + i;
321             vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
322             cb_pos  >>= 3;
323             cb_sign >>= 1;
324         }
325
326         /* Enhance harmonic components */
327         lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
328                subfrm->ad_cb_lag - 1;
329         beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
330
331         if (lag < SUBFRAME_LEN - 2) {
332             for (i = lag; i < SUBFRAME_LEN; i++)
333                 vector[i] += beta * vector[i - lag] >> 15;
334         }
335     }
336 }
337
338 /**
339  * Estimate maximum auto-correlation around pitch lag.
340  *
341  * @param buf       buffer with offset applied
342  * @param offset    offset of the excitation vector
343  * @param ccr_max   pointer to the maximum auto-correlation
344  * @param pitch_lag decoded pitch lag
345  * @param length    length of autocorrelation
346  * @param dir       forward lag(1) / backward lag(-1)
347  */
348 static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
349                         int pitch_lag, int length, int dir)
350 {
351     int limit, ccr, lag = 0;
352     int i;
353
354     pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
355     if (dir > 0)
356         limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
357     else
358         limit = pitch_lag + 3;
359
360     for (i = pitch_lag - 3; i <= limit; i++) {
361         ccr = ff_g723_1_dot_product(buf, buf + dir * i, length);
362
363         if (ccr > *ccr_max) {
364             *ccr_max = ccr;
365             lag = i;
366         }
367     }
368     return lag;
369 }
370
371 /**
372  * Calculate pitch postfilter optimal and scaling gains.
373  *
374  * @param lag      pitch postfilter forward/backward lag
375  * @param ppf      pitch postfilter parameters
376  * @param cur_rate current bitrate
377  * @param tgt_eng  target energy
378  * @param ccr      cross-correlation
379  * @param res_eng  residual energy
380  */
381 static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
382                            int tgt_eng, int ccr, int res_eng)
383 {
384     int pf_residual;     /* square of postfiltered residual */
385     int temp1, temp2;
386
387     ppf->index = lag;
388
389     temp1 = tgt_eng * res_eng >> 1;
390     temp2 = ccr * ccr << 1;
391
392     if (temp2 > temp1) {
393         if (ccr >= res_eng) {
394             ppf->opt_gain = ppf_gain_weight[cur_rate];
395         } else {
396             ppf->opt_gain = (ccr << 15) / res_eng *
397                             ppf_gain_weight[cur_rate] >> 15;
398         }
399         /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
400         temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
401         temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
402         pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
403
404         if (tgt_eng >= pf_residual << 1) {
405             temp1 = 0x7fff;
406         } else {
407             temp1 = (tgt_eng << 14) / pf_residual;
408         }
409
410         /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
411         ppf->sc_gain = square_root(temp1 << 16);
412     } else {
413         ppf->opt_gain = 0;
414         ppf->sc_gain  = 0x7fff;
415     }
416
417     ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
418 }
419
420 /**
421  * Calculate pitch postfilter parameters.
422  *
423  * @param p         the context
424  * @param offset    offset of the excitation vector
425  * @param pitch_lag decoded pitch lag
426  * @param ppf       pitch postfilter parameters
427  * @param cur_rate  current bitrate
428  */
429 static void comp_ppf_coeff(G723_1_ChannelContext *p, int offset, int pitch_lag,
430                            PPFParam *ppf, enum Rate cur_rate)
431 {
432
433     int16_t scale;
434     int i;
435     int temp1, temp2;
436
437     /*
438      * 0 - target energy
439      * 1 - forward cross-correlation
440      * 2 - forward residual energy
441      * 3 - backward cross-correlation
442      * 4 - backward residual energy
443      */
444     int energy[5] = {0, 0, 0, 0, 0};
445     int16_t *buf  = p->audio + LPC_ORDER + offset;
446     int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
447                                  SUBFRAME_LEN, 1);
448     int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
449                                  SUBFRAME_LEN, -1);
450
451     ppf->index    = 0;
452     ppf->opt_gain = 0;
453     ppf->sc_gain  = 0x7fff;
454
455     /* Case 0, Section 3.6 */
456     if (!back_lag && !fwd_lag)
457         return;
458
459     /* Compute target energy */
460     energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN);
461
462     /* Compute forward residual energy */
463     if (fwd_lag)
464         energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag,
465                                           SUBFRAME_LEN);
466
467     /* Compute backward residual energy */
468     if (back_lag)
469         energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag,
470                                           SUBFRAME_LEN);
471
472     /* Normalize and shorten */
473     temp1 = 0;
474     for (i = 0; i < 5; i++)
475         temp1 = FFMAX(energy[i], temp1);
476
477     scale = ff_g723_1_normalize_bits(temp1, 31);
478     for (i = 0; i < 5; i++)
479         energy[i] = (energy[i] << scale) >> 16;
480
481     if (fwd_lag && !back_lag) {  /* Case 1 */
482         comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
483                        energy[2]);
484     } else if (!fwd_lag) {       /* Case 2 */
485         comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
486                        energy[4]);
487     } else {                     /* Case 3 */
488
489         /*
490          * Select the largest of energy[1]^2/energy[2]
491          * and energy[3]^2/energy[4]
492          */
493         temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
494         temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
495         if (temp1 >= temp2) {
496             comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
497                            energy[2]);
498         } else {
499             comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
500                            energy[4]);
501         }
502     }
503 }
504
505 /**
506  * Classify frames as voiced/unvoiced.
507  *
508  * @param p         the context
509  * @param pitch_lag decoded pitch_lag
510  * @param exc_eng   excitation energy estimation
511  * @param scale     scaling factor of exc_eng
512  *
513  * @return residual interpolation index if voiced, 0 otherwise
514  */
515 static int comp_interp_index(G723_1_ChannelContext *p, int pitch_lag,
516                              int *exc_eng, int *scale)
517 {
518     int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
519     int16_t *buf = p->audio + LPC_ORDER;
520
521     int index, ccr, tgt_eng, best_eng, temp;
522
523     *scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
524     buf   += offset;
525
526     /* Compute maximum backward cross-correlation */
527     ccr   = 0;
528     index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
529     ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
530
531     /* Compute target energy */
532     tgt_eng  = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2);
533     *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
534
535     if (ccr <= 0)
536         return 0;
537
538     /* Compute best energy */
539     best_eng = ff_g723_1_dot_product(buf - index, buf - index,
540                                      SUBFRAME_LEN * 2);
541     best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
542
543     temp = best_eng * *exc_eng >> 3;
544
545     if (temp < ccr * ccr) {
546         return index;
547     } else
548         return 0;
549 }
550
551 /**
552  * Perform residual interpolation based on frame classification.
553  *
554  * @param buf   decoded excitation vector
555  * @param out   output vector
556  * @param lag   decoded pitch lag
557  * @param gain  interpolated gain
558  * @param rseed seed for random number generator
559  */
560 static void residual_interp(int16_t *buf, int16_t *out, int lag,
561                             int gain, int *rseed)
562 {
563     int i;
564     if (lag) { /* Voiced */
565         int16_t *vector_ptr = buf + PITCH_MAX;
566         /* Attenuate */
567         for (i = 0; i < lag; i++)
568             out[i] = vector_ptr[i - lag] * 3 >> 2;
569         av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
570                           (FRAME_LEN - lag) * sizeof(*out));
571     } else {  /* Unvoiced */
572         for (i = 0; i < FRAME_LEN; i++) {
573             *rseed = (int16_t)(*rseed * 521 + 259);
574             out[i] = gain * *rseed >> 15;
575         }
576         memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
577     }
578 }
579
580 /**
581  * Perform IIR filtering.
582  *
583  * @param fir_coef FIR coefficients
584  * @param iir_coef IIR coefficients
585  * @param src      source vector
586  * @param dest     destination vector
587  * @param width    width of the output, 16 bits(0) / 32 bits(1)
588  */
589 #define iir_filter(fir_coef, iir_coef, src, dest, width)\
590 {\
591     int m, n;\
592     int res_shift = 16 & ~-(width);\
593     int in_shift  = 16 - res_shift;\
594 \
595     for (m = 0; m < SUBFRAME_LEN; m++) {\
596         int64_t filter = 0;\
597         for (n = 1; n <= LPC_ORDER; n++) {\
598             filter -= (fir_coef)[n - 1] * (src)[m - n] -\
599                       (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
600         }\
601 \
602         (dest)[m] = av_clipl_int32(((src)[m] * 65536) + (filter * 8) +\
603                                    (1 << 15)) >> res_shift;\
604     }\
605 }
606
607 /**
608  * Adjust gain of postfiltered signal.
609  *
610  * @param p      the context
611  * @param buf    postfiltered output vector
612  * @param energy input energy coefficient
613  */
614 static void gain_scale(G723_1_ChannelContext *p, int16_t * buf, int energy)
615 {
616     int num, denom, gain, bits1, bits2;
617     int i;
618
619     num   = energy;
620     denom = 0;
621     for (i = 0; i < SUBFRAME_LEN; i++) {
622         int temp = buf[i] >> 2;
623         temp *= temp;
624         denom = av_sat_dadd32(denom, temp);
625     }
626
627     if (num && denom) {
628         bits1   = ff_g723_1_normalize_bits(num,   31);
629         bits2   = ff_g723_1_normalize_bits(denom, 31);
630         num     = num << bits1 >> 1;
631         denom <<= bits2;
632
633         bits2 = 5 + bits1 - bits2;
634         bits2 = av_clip_uintp2(bits2, 5);
635
636         gain = (num >> 1) / (denom >> 16);
637         gain = square_root(gain << 16 >> bits2);
638     } else {
639         gain = 1 << 12;
640     }
641
642     for (i = 0; i < SUBFRAME_LEN; i++) {
643         p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
644         buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
645                                    (1 << 10)) >> 11);
646     }
647 }
648
649 /**
650  * Perform formant filtering.
651  *
652  * @param p   the context
653  * @param lpc quantized lpc coefficients
654  * @param buf input buffer
655  * @param dst output buffer
656  */
657 static void formant_postfilter(G723_1_ChannelContext *p, int16_t *lpc,
658                                int16_t *buf, int16_t *dst)
659 {
660     int16_t filter_coef[2][LPC_ORDER];
661     int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
662     int i, j, k;
663
664     memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
665     memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
666
667     for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
668         for (k = 0; k < LPC_ORDER; k++) {
669             filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
670                                  (1 << 14)) >> 15;
671             filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
672                                  (1 << 14)) >> 15;
673         }
674         iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i, 1);
675         lpc += LPC_ORDER;
676     }
677
678     memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
679     memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));
680
681     buf += LPC_ORDER;
682     signal_ptr = filter_signal + LPC_ORDER;
683     for (i = 0; i < SUBFRAMES; i++) {
684         int temp;
685         int auto_corr[2];
686         int scale, energy;
687
688         /* Normalize */
689         scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN);
690
691         /* Compute auto correlation coefficients */
692         auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
693         auto_corr[1] = ff_g723_1_dot_product(dst, dst,     SUBFRAME_LEN);
694
695         /* Compute reflection coefficient */
696         temp = auto_corr[1] >> 16;
697         if (temp) {
698             temp = (auto_corr[0] >> 2) / temp;
699         }
700         p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
701         temp = -p->reflection_coef >> 1 & ~3;
702
703         /* Compensation filter */
704         for (j = 0; j < SUBFRAME_LEN; j++) {
705             dst[j] = av_sat_dadd32(signal_ptr[j],
706                                    (signal_ptr[j - 1] >> 16) * temp) >> 16;
707         }
708
709         /* Compute normalized signal energy */
710         temp = 2 * scale + 4;
711         if (temp < 0) {
712             energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
713         } else
714             energy = auto_corr[1] >> temp;
715
716         gain_scale(p, dst, energy);
717
718         buf        += SUBFRAME_LEN;
719         signal_ptr += SUBFRAME_LEN;
720         dst        += SUBFRAME_LEN;
721     }
722 }
723
724 static int sid_gain_to_lsp_index(int gain)
725 {
726     if (gain < 0x10)
727         return gain << 6;
728     else if (gain < 0x20)
729         return gain - 8 << 7;
730     else
731         return gain - 20 << 8;
732 }
733
734 static inline int cng_rand(int *state, int base)
735 {
736     *state = (*state * 521 + 259) & 0xFFFF;
737     return (*state & 0x7FFF) * base >> 15;
738 }
739
740 static int estimate_sid_gain(G723_1_ChannelContext *p)
741 {
742     int i, shift, seg, seg2, t, val, val_add, x, y;
743
744     shift = 16 - p->cur_gain * 2;
745     if (shift > 0) {
746         if (p->sid_gain == 0) {
747             t = 0;
748         } else if (shift >= 31 || (int32_t)((uint32_t)p->sid_gain << shift) >> shift != p->sid_gain) {
749             if (p->sid_gain < 0) t = INT32_MIN;
750             else                 t = INT32_MAX;
751         } else
752             t = p->sid_gain * (1 << shift);
753     } else if(shift < -31) {
754         t = (p->sid_gain < 0) ? -1 : 0;
755     }else
756         t = p->sid_gain >> -shift;
757     x = av_clipl_int32(t * (int64_t)cng_filt[0] >> 16);
758
759     if (x >= cng_bseg[2])
760         return 0x3F;
761
762     if (x >= cng_bseg[1]) {
763         shift = 4;
764         seg   = 3;
765     } else {
766         shift = 3;
767         seg   = (x >= cng_bseg[0]);
768     }
769     seg2 = FFMIN(seg, 3);
770
771     val     = 1 << shift;
772     val_add = val >> 1;
773     for (i = 0; i < shift; i++) {
774         t = seg * 32 + (val << seg2);
775         t *= t;
776         if (x >= t)
777             val += val_add;
778         else
779             val -= val_add;
780         val_add >>= 1;
781     }
782
783     t = seg * 32 + (val << seg2);
784     y = t * t - x;
785     if (y <= 0) {
786         t = seg * 32 + (val + 1 << seg2);
787         t = t * t - x;
788         val = (seg2 - 1) * 16 + val;
789         if (t >= y)
790             val++;
791     } else {
792         t = seg * 32 + (val - 1 << seg2);
793         t = t * t - x;
794         val = (seg2 - 1) * 16 + val;
795         if (t >= y)
796             val--;
797     }
798
799     return val;
800 }
801
802 static void generate_noise(G723_1_ChannelContext *p)
803 {
804     int i, j, idx, t;
805     int off[SUBFRAMES];
806     int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
807     int tmp[SUBFRAME_LEN * 2];
808     int16_t *vector_ptr;
809     int64_t sum;
810     int b0, c, delta, x, shift;
811
812     p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
813     p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;
814
815     for (i = 0; i < SUBFRAMES; i++) {
816         p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
817         p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
818     }
819
820     for (i = 0; i < SUBFRAMES / 2; i++) {
821         t = cng_rand(&p->cng_random_seed, 1 << 13);
822         off[i * 2]     =   t       & 1;
823         off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
824         t >>= 2;
825         for (j = 0; j < 11; j++) {
826             signs[i * 11 + j] = ((t & 1) * 2 - 1)  * (1 << 14);
827             t >>= 1;
828         }
829     }
830
831     idx = 0;
832     for (i = 0; i < SUBFRAMES; i++) {
833         for (j = 0; j < SUBFRAME_LEN / 2; j++)
834             tmp[j] = j;
835         t = SUBFRAME_LEN / 2;
836         for (j = 0; j < pulses[i]; j++, idx++) {
837             int idx2 = cng_rand(&p->cng_random_seed, t);
838
839             pos[idx]  = tmp[idx2] * 2 + off[i];
840             tmp[idx2] = tmp[--t];
841         }
842     }
843
844     vector_ptr = p->audio + LPC_ORDER;
845     memcpy(vector_ptr, p->prev_excitation,
846            PITCH_MAX * sizeof(*p->excitation));
847     for (i = 0; i < SUBFRAMES; i += 2) {
848         ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr,
849                                      p->pitch_lag[i >> 1], &p->subframe[i],
850                                      p->cur_rate);
851         ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
852                                      vector_ptr + SUBFRAME_LEN,
853                                      p->pitch_lag[i >> 1], &p->subframe[i + 1],
854                                      p->cur_rate);
855
856         t = 0;
857         for (j = 0; j < SUBFRAME_LEN * 2; j++)
858             t |= FFABS(vector_ptr[j]);
859         t = FFMIN(t, 0x7FFF);
860         if (!t) {
861             shift = 0;
862         } else {
863             shift = -10 + av_log2(t);
864             if (shift < -2)
865                 shift = -2;
866         }
867         sum = 0;
868         if (shift < 0) {
869            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
870                t      = vector_ptr[j] * (1 << -shift);
871                sum   += t * t;
872                tmp[j] = t;
873            }
874         } else {
875            for (j = 0; j < SUBFRAME_LEN * 2; j++) {
876                t      = vector_ptr[j] >> shift;
877                sum   += t * t;
878                tmp[j] = t;
879            }
880         }
881
882         b0 = 0;
883         for (j = 0; j < 11; j++)
884             b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
885         b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
886
887         c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
888         if (shift * 2 + 3 >= 0)
889             c >>= shift * 2 + 3;
890         else
891             c <<= -(shift * 2 + 3);
892         c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;
893
894         delta = b0 * b0 * 2 - c;
895         if (delta <= 0) {
896             x = -b0;
897         } else {
898             delta = square_root(delta);
899             x     = delta - b0;
900             t     = delta + b0;
901             if (FFABS(t) < FFABS(x))
902                 x = -t;
903         }
904         shift++;
905         if (shift < 0)
906            x >>= -shift;
907         else
908            x *= 1 << shift;
909         x = av_clip(x, -10000, 10000);
910
911         for (j = 0; j < 11; j++) {
912             idx = (i / 2) * 11 + j;
913             vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
914                                                  (x * signs[idx] >> 15));
915         }
916
917         /* copy decoded data to serve as a history for the next decoded subframes */
918         memcpy(vector_ptr + PITCH_MAX, vector_ptr,
919                sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
920         vector_ptr += SUBFRAME_LEN * 2;
921     }
922     /* Save the excitation for the next frame */
923     memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
924            PITCH_MAX * sizeof(*p->excitation));
925 }
926
927 static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
928                                int *got_frame_ptr, AVPacket *avpkt)
929 {
930     G723_1_Context *s  = avctx->priv_data;
931     AVFrame *frame     = data;
932     const uint8_t *buf = avpkt->data;
933     int buf_size       = avpkt->size;
934     int dec_mode       = buf[0] & 3;
935
936     PPFParam ppf[SUBFRAMES];
937     int16_t cur_lsp[LPC_ORDER];
938     int16_t lpc[SUBFRAMES * LPC_ORDER];
939     int16_t acb_vector[SUBFRAME_LEN];
940     int16_t *out;
941     int bad_frame = 0, i, j, ret;
942
943     if (buf_size < frame_size[dec_mode] * avctx->channels) {
944         if (buf_size)
945             av_log(avctx, AV_LOG_WARNING,
946                    "Expected %d bytes, got %d - skipping packet\n",
947                    frame_size[dec_mode], buf_size);
948         *got_frame_ptr = 0;
949         return buf_size;
950     }
951
952     frame->nb_samples = FRAME_LEN;
953     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
954         return ret;
955
956     for (int ch = 0; ch < avctx->channels; ch++) {
957         G723_1_ChannelContext *p = &s->ch[ch];
958         int16_t *audio = p->audio;
959
960         if (unpack_bitstream(p, buf + ch * (buf_size / avctx->channels),
961                              buf_size / avctx->channels) < 0) {
962             bad_frame = 1;
963             if (p->past_frame_type == ACTIVE_FRAME)
964                 p->cur_frame_type = ACTIVE_FRAME;
965             else
966                 p->cur_frame_type = UNTRANSMITTED_FRAME;
967         }
968
969         out = (int16_t *)frame->extended_data[ch];
970
971         if (p->cur_frame_type == ACTIVE_FRAME) {
972             if (!bad_frame)
973                 p->erased_frames = 0;
974             else if (p->erased_frames != 3)
975                 p->erased_frames++;
976
977             ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
978             ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
979
980             /* Save the lsp_vector for the next frame */
981             memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
982
983             /* Generate the excitation for the frame */
984             memcpy(p->excitation, p->prev_excitation,
985                    PITCH_MAX * sizeof(*p->excitation));
986             if (!p->erased_frames) {
987                 int16_t *vector_ptr = p->excitation + PITCH_MAX;
988
989                 /* Update interpolation gain memory */
990                 p->interp_gain = ff_g723_1_fixed_cb_gain[(p->subframe[2].amp_index +
991                                                 p->subframe[3].amp_index) >> 1];
992                 for (i = 0; i < SUBFRAMES; i++) {
993                     gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
994                                        p->pitch_lag[i >> 1], i);
995                     ff_g723_1_gen_acb_excitation(acb_vector,
996                                                  &p->excitation[SUBFRAME_LEN * i],
997                                                  p->pitch_lag[i >> 1],
998                                                  &p->subframe[i], p->cur_rate);
999                     /* Get the total excitation */
1000                     for (j = 0; j < SUBFRAME_LEN; j++) {
1001                         int v = av_clip_int16(vector_ptr[j] * 2);
1002                         vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
1003                     }
1004                     vector_ptr += SUBFRAME_LEN;
1005                 }
1006
1007                 vector_ptr = p->excitation + PITCH_MAX;
1008
1009                 p->interp_index = comp_interp_index(p, p->pitch_lag[1],
1010                                                     &p->sid_gain, &p->cur_gain);
1011
1012                 /* Perform pitch postfiltering */
1013                 if (s->postfilter) {
1014                     i = PITCH_MAX;
1015                     for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1016                         comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
1017                                        ppf + j, p->cur_rate);
1018
1019                     for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1020                         ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
1021                                                      vector_ptr + i,
1022                                                      vector_ptr + i + ppf[j].index,
1023                                                      ppf[j].sc_gain,
1024                                                      ppf[j].opt_gain,
1025                                                      1 << 14, 15, SUBFRAME_LEN);
1026                 } else {
1027                     audio = vector_ptr - LPC_ORDER;
1028                 }
1029
1030                 /* Save the excitation for the next frame */
1031                 memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
1032                        PITCH_MAX * sizeof(*p->excitation));
1033             } else {
1034                 p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
1035                 if (p->erased_frames == 3) {
1036                     /* Mute output */
1037                     memset(p->excitation, 0,
1038                            (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
1039                     memset(p->prev_excitation, 0,
1040                            PITCH_MAX * sizeof(*p->excitation));
1041                     memset(frame->data[0], 0,
1042                            (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
1043                 } else {
1044                     int16_t *buf = p->audio + LPC_ORDER;
1045
1046                     /* Regenerate frame */
1047                     residual_interp(p->excitation, buf, p->interp_index,
1048                                     p->interp_gain, &p->random_seed);
1049
1050                     /* Save the excitation for the next frame */
1051                     memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
1052                            PITCH_MAX * sizeof(*p->excitation));
1053                 }
1054             }
1055             p->cng_random_seed = CNG_RANDOM_SEED;
1056         } else {
1057             if (p->cur_frame_type == SID_FRAME) {
1058                 p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
1059                 ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
1060             } else if (p->past_frame_type == ACTIVE_FRAME) {
1061                 p->sid_gain = estimate_sid_gain(p);
1062             }
1063
1064             if (p->past_frame_type == ACTIVE_FRAME)
1065                 p->cur_gain = p->sid_gain;
1066             else
1067                 p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
1068             generate_noise(p);
1069             ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
1070             /* Save the lsp_vector for the next frame */
1071             memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
1072         }
1073
1074         p->past_frame_type = p->cur_frame_type;
1075
1076         memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
1077         for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1078             ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
1079                                         audio + i, SUBFRAME_LEN, LPC_ORDER,
1080                                         0, 1, 1 << 12);
1081         memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
1082
1083         if (s->postfilter) {
1084             formant_postfilter(p, lpc, p->audio, out);
1085         } else { // if output is not postfiltered it should be scaled by 2
1086             for (i = 0; i < FRAME_LEN; i++)
1087                 out[i] = av_clip_int16(2 * p->audio[LPC_ORDER + i]);
1088         }
1089     }
1090
1091     *got_frame_ptr = 1;
1092
1093     return frame_size[dec_mode] * avctx->channels;
1094 }
1095
1096 #define OFFSET(x) offsetof(G723_1_Context, x)
1097 #define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1098
1099 static const AVOption options[] = {
1100     { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL,
1101       { .i64 = 1 }, 0, 1, AD },
1102     { NULL }
1103 };
1104
1105
1106 static const AVClass g723_1dec_class = {
1107     .class_name = "G.723.1 decoder",
1108     .item_name  = av_default_item_name,
1109     .option     = options,
1110     .version    = LIBAVUTIL_VERSION_INT,
1111 };
1112
1113 const AVCodec ff_g723_1_decoder = {
1114     .name           = "g723_1",
1115     .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
1116     .type           = AVMEDIA_TYPE_AUDIO,
1117     .id             = AV_CODEC_ID_G723_1,
1118     .priv_data_size = sizeof(G723_1_Context),
1119     .init           = g723_1_decode_init,
1120     .decode         = g723_1_decode_frame,
1121     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1122     .priv_class     = &g723_1dec_class,
1123 };