]> git.sesse.net Git - ffmpeg/blob - libavcodec/g729dec.c
c181f23452760dea0987b970f30cc8838b8d6c95
[ffmpeg] / libavcodec / g729dec.c
1 /*
2  * G.729, G729 Annex D decoders
3  * Copyright (c) 2008 Vladimir Voroshilov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <inttypes.h>
23 #include <string.h>
24
25 #include "avcodec.h"
26 #include "libavutil/avutil.h"
27 #include "get_bits.h"
28 #include "audiodsp.h"
29 #include "internal.h"
30
31
32 #include "g729.h"
33 #include "lsp.h"
34 #include "celp_math.h"
35 #include "celp_filters.h"
36 #include "acelp_filters.h"
37 #include "acelp_pitch_delay.h"
38 #include "acelp_vectors.h"
39 #include "g729data.h"
40 #include "g729postfilter.h"
41
42 /**
43  * minimum quantized LSF value (3.2.4)
44  * 0.005 in Q13
45  */
46 #define LSFQ_MIN                   40
47
48 /**
49  * maximum quantized LSF value (3.2.4)
50  * 3.135 in Q13
51  */
52 #define LSFQ_MAX                   25681
53
54 /**
55  * minimum LSF distance (3.2.4)
56  * 0.0391 in Q13
57  */
58 #define LSFQ_DIFF_MIN              321
59
60 /// interpolation filter length
61 #define INTERPOL_LEN              11
62
63 /**
64  * minimum gain pitch value (3.8, Equation 47)
65  * 0.2 in (1.14)
66  */
67 #define SHARP_MIN                  3277
68
69 /**
70  * maximum gain pitch value (3.8, Equation 47)
71  * (EE) This does not comply with the specification.
72  * Specification says about 0.8, which should be
73  * 13107 in (1.14), but reference C code uses
74  * 13017 (equals to 0.7945) instead of it.
75  */
76 #define SHARP_MAX                  13017
77
78 /**
79  * MR_ENERGY (mean removed energy) = mean_energy + 10 * log10(2^26  * subframe_size) in (7.13)
80  */
81 #define MR_ENERGY 1018156
82
83 #define DECISION_NOISE        0
84 #define DECISION_INTERMEDIATE 1
85 #define DECISION_VOICE        2
86
87 typedef enum {
88     FORMAT_G729_8K = 0,
89     FORMAT_G729D_6K4,
90     FORMAT_COUNT,
91 } G729Formats;
92
93 typedef struct {
94     uint8_t ac_index_bits[2];   ///< adaptive codebook index for second subframe (size in bits)
95     uint8_t parity_bit;         ///< parity bit for pitch delay
96     uint8_t gc_1st_index_bits;  ///< gain codebook (first stage) index (size in bits)
97     uint8_t gc_2nd_index_bits;  ///< gain codebook (second stage) index (size in bits)
98     uint8_t fc_signs_bits;      ///< number of pulses in fixed-codebook vector
99     uint8_t fc_indexes_bits;    ///< size (in bits) of fixed-codebook index entry
100     uint8_t block_size;
101 } G729FormatDescription;
102
103 typedef struct {
104     /// past excitation signal buffer
105     int16_t exc_base[2*SUBFRAME_SIZE+PITCH_DELAY_MAX+INTERPOL_LEN];
106
107     int16_t* exc;               ///< start of past excitation data in buffer
108     int pitch_delay_int_prev;   ///< integer part of previous subframe's pitch delay (4.1.3)
109
110     /// (2.13) LSP quantizer outputs
111     int16_t  past_quantizer_output_buf[MA_NP + 1][10];
112     int16_t* past_quantizer_outputs[MA_NP + 1];
113
114     int16_t lsfq[10];           ///< (2.13) quantized LSF coefficients from previous frame
115     int16_t lsp_buf[2][10];     ///< (0.15) LSP coefficients (previous and current frames) (3.2.5)
116     int16_t *lsp[2];            ///< pointers to lsp_buf
117
118     int16_t quant_energy[4];    ///< (5.10) past quantized energy
119
120     /// previous speech data for LP synthesis filter
121     int16_t syn_filter_data[10];
122
123
124     /// residual signal buffer (used in long-term postfilter)
125     int16_t residual[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
126
127     /// previous speech data for residual calculation filter
128     int16_t res_filter_data[SUBFRAME_SIZE+10];
129
130     /// previous speech data for short-term postfilter
131     int16_t pos_filter_data[SUBFRAME_SIZE+10];
132
133     /// (1.14) pitch gain of current and five previous subframes
134     int16_t past_gain_pitch[6];
135
136     /// (14.1) gain code from current and previous subframe
137     int16_t past_gain_code[2];
138
139     /// voice decision on previous subframe (0-noise, 1-intermediate, 2-voice), G.729D
140     int16_t voice_decision;
141
142     int16_t onset;              ///< detected onset level (0-2)
143     int16_t was_periodic;       ///< whether previous frame was declared as periodic or not (4.4)
144     int16_t ht_prev_data;       ///< previous data for 4.2.3, equation 86
145     int gain_coeff;             ///< (1.14) gain coefficient (4.2.4)
146     uint16_t rand_value;        ///< random number generator value (4.4.4)
147     int ma_predictor_prev;      ///< switched MA predictor of LSP quantizer from last good frame
148
149     /// (14.14) high-pass filter data (past input)
150     int hpf_f[2];
151
152     /// high-pass filter data (past output)
153     int16_t hpf_z[2];
154 }  G729ChannelContext;
155
156 typedef struct {
157     AudioDSPContext adsp;
158
159     G729ChannelContext *channel_context;
160 } G729Context;
161
162 static const G729FormatDescription format_g729_8k = {
163     .ac_index_bits     = {8,5},
164     .parity_bit        = 1,
165     .gc_1st_index_bits = GC_1ST_IDX_BITS_8K,
166     .gc_2nd_index_bits = GC_2ND_IDX_BITS_8K,
167     .fc_signs_bits     = 4,
168     .fc_indexes_bits   = 13,
169     .block_size        = G729_8K_BLOCK_SIZE,
170 };
171
172 static const G729FormatDescription format_g729d_6k4 = {
173     .ac_index_bits     = {8,4},
174     .parity_bit        = 0,
175     .gc_1st_index_bits = GC_1ST_IDX_BITS_6K4,
176     .gc_2nd_index_bits = GC_2ND_IDX_BITS_6K4,
177     .fc_signs_bits     = 2,
178     .fc_indexes_bits   = 9,
179     .block_size        = G729D_6K4_BLOCK_SIZE,
180 };
181
182 /**
183  * @brief pseudo random number generator
184  */
185 static inline uint16_t g729_prng(uint16_t value)
186 {
187     return 31821 * value + 13849;
188 }
189
190 /**
191  * Decodes LSF (Line Spectral Frequencies) from L0-L3 (3.2.4).
192  * @param[out] lsfq (2.13) quantized LSF coefficients
193  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
194  * @param ma_predictor switched MA predictor of LSP quantizer
195  * @param vq_1st first stage vector of quantizer
196  * @param vq_2nd_low second stage lower vector of LSP quantizer
197  * @param vq_2nd_high second stage higher vector of LSP quantizer
198  */
199 static void lsf_decode(int16_t* lsfq, int16_t* past_quantizer_outputs[MA_NP + 1],
200                        int16_t ma_predictor,
201                        int16_t vq_1st, int16_t vq_2nd_low, int16_t vq_2nd_high)
202 {
203     int i,j;
204     static const uint8_t min_distance[2]={10, 5}; //(2.13)
205     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
206
207     for (i = 0; i < 5; i++) {
208         quantizer_output[i]     = cb_lsp_1st[vq_1st][i    ] + cb_lsp_2nd[vq_2nd_low ][i    ];
209         quantizer_output[i + 5] = cb_lsp_1st[vq_1st][i + 5] + cb_lsp_2nd[vq_2nd_high][i + 5];
210     }
211
212     for (j = 0; j < 2; j++) {
213         for (i = 1; i < 10; i++) {
214             int diff = (quantizer_output[i - 1] - quantizer_output[i] + min_distance[j]) >> 1;
215             if (diff > 0) {
216                 quantizer_output[i - 1] -= diff;
217                 quantizer_output[i    ] += diff;
218             }
219         }
220     }
221
222     for (i = 0; i < 10; i++) {
223         int sum = quantizer_output[i] * cb_ma_predictor_sum[ma_predictor][i];
224         for (j = 0; j < MA_NP; j++)
225             sum += past_quantizer_outputs[j][i] * cb_ma_predictor[ma_predictor][j][i];
226
227         lsfq[i] = sum >> 15;
228     }
229
230     ff_acelp_reorder_lsf(lsfq, LSFQ_DIFF_MIN, LSFQ_MIN, LSFQ_MAX, 10);
231 }
232
233 /**
234  * Restores past LSP quantizer output using LSF from previous frame
235  * @param[in,out] lsfq (2.13) quantized LSF coefficients
236  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
237  * @param ma_predictor_prev MA predictor from previous frame
238  * @param lsfq_prev (2.13) quantized LSF coefficients from previous frame
239  */
240 static void lsf_restore_from_previous(int16_t* lsfq,
241                                       int16_t* past_quantizer_outputs[MA_NP + 1],
242                                       int ma_predictor_prev)
243 {
244     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
245     int i,k;
246
247     for (i = 0; i < 10; i++) {
248         int tmp = lsfq[i] << 15;
249
250         for (k = 0; k < MA_NP; k++)
251             tmp -= past_quantizer_outputs[k][i] * cb_ma_predictor[ma_predictor_prev][k][i];
252
253         quantizer_output[i] = ((tmp >> 15) * cb_ma_predictor_sum_inv[ma_predictor_prev][i]) >> 12;
254     }
255 }
256
257 /**
258  * Constructs new excitation signal and applies phase filter to it
259  * @param[out] out constructed speech signal
260  * @param in original excitation signal
261  * @param fc_cur (2.13) original fixed-codebook vector
262  * @param gain_code (14.1) gain code
263  * @param subframe_size length of the subframe
264  */
265 static void g729d_get_new_exc(
266         int16_t* out,
267         const int16_t* in,
268         const int16_t* fc_cur,
269         int dstate,
270         int gain_code,
271         int subframe_size)
272 {
273     int i;
274     int16_t fc_new[SUBFRAME_SIZE];
275
276     ff_celp_convolve_circ(fc_new, fc_cur, phase_filter[dstate], subframe_size);
277
278     for (i = 0; i < subframe_size; i++) {
279         out[i]  = in[i];
280         out[i] -= (gain_code * fc_cur[i] + 0x2000) >> 14;
281         out[i] += (gain_code * fc_new[i] + 0x2000) >> 14;
282     }
283 }
284
285 /**
286  * Makes decision about onset in current subframe
287  * @param past_onset decision result of previous subframe
288  * @param past_gain_code gain code of current and previous subframe
289  *
290  * @return onset decision result for current subframe
291  */
292 static int g729d_onset_decision(int past_onset, const int16_t* past_gain_code)
293 {
294     if ((past_gain_code[0] >> 1) > past_gain_code[1])
295         return 2;
296
297     return FFMAX(past_onset-1, 0);
298 }
299
300 /**
301  * Makes decision about voice presence in current subframe
302  * @param onset onset level
303  * @param prev_voice_decision voice decision result from previous subframe
304  * @param past_gain_pitch pitch gain of current and previous subframes
305  *
306  * @return voice decision result for current subframe
307  */
308 static int16_t g729d_voice_decision(int onset, int prev_voice_decision, const int16_t* past_gain_pitch)
309 {
310     int i, low_gain_pitch_cnt, voice_decision;
311
312     if (past_gain_pitch[0] >= 14745) {       // 0.9
313         voice_decision = DECISION_VOICE;
314     } else if (past_gain_pitch[0] <= 9830) { // 0.6
315         voice_decision = DECISION_NOISE;
316     } else {
317         voice_decision = DECISION_INTERMEDIATE;
318     }
319
320     for (i = 0, low_gain_pitch_cnt = 0; i < 6; i++)
321         if (past_gain_pitch[i] < 9830)
322             low_gain_pitch_cnt++;
323
324     if (low_gain_pitch_cnt > 2 && !onset)
325         voice_decision = DECISION_NOISE;
326
327     if (!onset && voice_decision > prev_voice_decision + 1)
328         voice_decision--;
329
330     if (onset && voice_decision < DECISION_VOICE)
331         voice_decision++;
332
333     return voice_decision;
334 }
335
336 static int32_t scalarproduct_int16_c(const int16_t * v1, const int16_t * v2, int order)
337 {
338     int64_t res = 0;
339
340     while (order--)
341         res += *v1++ * *v2++;
342
343     if      (res > INT32_MAX) return INT32_MAX;
344     else if (res < INT32_MIN) return INT32_MIN;
345
346     return res;
347 }
348
349 static av_cold int decoder_init(AVCodecContext * avctx)
350 {
351     G729Context *s = avctx->priv_data;
352     G729ChannelContext *ctx;
353     int c,i,k;
354
355     if (avctx->channels < 1 || avctx->channels > 2) {
356         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", avctx->channels);
357         return AVERROR(EINVAL);
358     }
359     avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
360
361     /* Both 8kbit/s and 6.4kbit/s modes uses two subframes per frame. */
362     avctx->frame_size = SUBFRAME_SIZE << 1;
363
364     ctx =
365     s->channel_context = av_mallocz(sizeof(G729ChannelContext) * avctx->channels);
366     if (!ctx)
367         return AVERROR(ENOMEM);
368
369     for (c = 0; c < avctx->channels; c++) {
370         ctx->gain_coeff = 16384; // 1.0 in (1.14)
371
372         for (k = 0; k < MA_NP + 1; k++) {
373             ctx->past_quantizer_outputs[k] = ctx->past_quantizer_output_buf[k];
374             for (i = 1; i < 11; i++)
375                 ctx->past_quantizer_outputs[k][i - 1] = (18717 * i) >> 3;
376         }
377
378         ctx->lsp[0] = ctx->lsp_buf[0];
379         ctx->lsp[1] = ctx->lsp_buf[1];
380         memcpy(ctx->lsp[0], lsp_init, 10 * sizeof(int16_t));
381
382         ctx->exc = &ctx->exc_base[PITCH_DELAY_MAX+INTERPOL_LEN];
383
384         ctx->pitch_delay_int_prev = PITCH_DELAY_MIN;
385
386         /* random seed initialization */
387         ctx->rand_value = 21845;
388
389         /* quantized prediction error */
390         for (i = 0; i < 4; i++)
391             ctx->quant_energy[i] = -14336; // -14 in (5.10)
392
393         ctx++;
394     }
395
396     ff_audiodsp_init(&s->adsp);
397     s->adsp.scalarproduct_int16 = scalarproduct_int16_c;
398
399     return 0;
400 }
401
402 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
403                         AVPacket *avpkt)
404 {
405     const uint8_t *buf = avpkt->data;
406     int buf_size       = avpkt->size;
407     int16_t *out_frame;
408     GetBitContext gb;
409     const G729FormatDescription *format;
410     int c, i;
411     int16_t *tmp;
412     G729Formats packet_type;
413     G729Context *s = avctx->priv_data;
414     G729ChannelContext *ctx = s->channel_context;
415     int16_t lp[2][11];           // (3.12)
416     uint8_t ma_predictor;     ///< switched MA predictor of LSP quantizer
417     uint8_t quantizer_1st;    ///< first stage vector of quantizer
418     uint8_t quantizer_2nd_lo; ///< second stage lower vector of quantizer (size in bits)
419     uint8_t quantizer_2nd_hi; ///< second stage higher vector of quantizer (size in bits)
420
421     int pitch_delay_int[2];      // pitch delay, integer part
422     int pitch_delay_3x;          // pitch delay, multiplied by 3
423     int16_t fc[SUBFRAME_SIZE];   // fixed-codebook vector
424     int16_t synth[SUBFRAME_SIZE+10]; // fixed-codebook vector
425     int j, ret;
426     int gain_before, gain_after;
427     AVFrame *frame = data;
428
429     frame->nb_samples = SUBFRAME_SIZE<<1;
430     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
431         return ret;
432
433     if (buf_size && buf_size % ((G729_8K_BLOCK_SIZE + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * avctx->channels) == 0) {
434         packet_type = FORMAT_G729_8K;
435         format = &format_g729_8k;
436         //Reset voice decision
437         ctx->onset = 0;
438         ctx->voice_decision = DECISION_VOICE;
439         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729 @ 8kbit/s");
440     } else if (buf_size == G729D_6K4_BLOCK_SIZE * avctx->channels && avctx->codec_id != AV_CODEC_ID_ACELP_KELVIN) {
441         packet_type = FORMAT_G729D_6K4;
442         format = &format_g729d_6k4;
443         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729D @ 6.4kbit/s");
444     } else {
445         av_log(avctx, AV_LOG_ERROR, "Packet size %d is unknown.\n", buf_size);
446         return AVERROR_INVALIDDATA;
447     }
448
449     for (c = 0; c < avctx->channels; c++) {
450         int frame_erasure = 0; ///< frame erasure detected during decoding
451         int bad_pitch = 0;     ///< parity check failed
452         int is_periodic = 0;   ///< whether one of the subframes is declared as periodic or not
453         out_frame = (int16_t*)frame->data[c];
454         if (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN) {
455             if (*buf != ((avctx->channels - 1 - c) * 0x80 | 2))
456                 avpriv_request_sample(avctx, "First byte value %x for channel %d", *buf, c);
457             buf++;
458         }
459
460         for (i = 0; i < format->block_size; i++)
461             frame_erasure |= buf[i];
462         frame_erasure = !frame_erasure;
463
464         init_get_bits8(&gb, buf, format->block_size);
465
466         ma_predictor     = get_bits(&gb, 1);
467         quantizer_1st    = get_bits(&gb, VQ_1ST_BITS);
468         quantizer_2nd_lo = get_bits(&gb, VQ_2ND_BITS);
469         quantizer_2nd_hi = get_bits(&gb, VQ_2ND_BITS);
470
471         if (frame_erasure) {
472             lsf_restore_from_previous(ctx->lsfq, ctx->past_quantizer_outputs,
473                                       ctx->ma_predictor_prev);
474         } else {
475             lsf_decode(ctx->lsfq, ctx->past_quantizer_outputs,
476                        ma_predictor,
477                        quantizer_1st, quantizer_2nd_lo, quantizer_2nd_hi);
478             ctx->ma_predictor_prev = ma_predictor;
479         }
480
481         tmp = ctx->past_quantizer_outputs[MA_NP];
482         memmove(ctx->past_quantizer_outputs + 1, ctx->past_quantizer_outputs,
483                 MA_NP * sizeof(int16_t*));
484         ctx->past_quantizer_outputs[0] = tmp;
485
486         ff_acelp_lsf2lsp(ctx->lsp[1], ctx->lsfq, 10);
487
488         ff_acelp_lp_decode(&lp[0][0], &lp[1][0], ctx->lsp[1], ctx->lsp[0], 10);
489
490         FFSWAP(int16_t*, ctx->lsp[1], ctx->lsp[0]);
491
492         for (i = 0; i < 2; i++) {
493             int gain_corr_factor;
494
495             uint8_t ac_index;      ///< adaptive codebook index
496             uint8_t pulses_signs;  ///< fixed-codebook vector pulse signs
497             int fc_indexes;        ///< fixed-codebook indexes
498             uint8_t gc_1st_index;  ///< gain codebook (first stage) index
499             uint8_t gc_2nd_index;  ///< gain codebook (second stage) index
500
501             ac_index      = get_bits(&gb, format->ac_index_bits[i]);
502             if (!i && format->parity_bit)
503                 bad_pitch = av_parity(ac_index >> 2) == get_bits1(&gb);
504             fc_indexes    = get_bits(&gb, format->fc_indexes_bits);
505             pulses_signs  = get_bits(&gb, format->fc_signs_bits);
506             gc_1st_index  = get_bits(&gb, format->gc_1st_index_bits);
507             gc_2nd_index  = get_bits(&gb, format->gc_2nd_index_bits);
508
509             if (frame_erasure) {
510                 pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
511             } else if (!i) {
512                 if (bad_pitch) {
513                     pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
514                 } else {
515                     pitch_delay_3x = ff_acelp_decode_8bit_to_1st_delay3(ac_index);
516                 }
517             } else {
518                 int pitch_delay_min = av_clip(ctx->pitch_delay_int_prev - 5,
519                                               PITCH_DELAY_MIN, PITCH_DELAY_MAX - 9);
520
521                 if (packet_type == FORMAT_G729D_6K4) {
522                     pitch_delay_3x = ff_acelp_decode_4bit_to_2nd_delay3(ac_index, pitch_delay_min);
523                 } else {
524                     pitch_delay_3x = ff_acelp_decode_5_6_bit_to_2nd_delay3(ac_index, pitch_delay_min);
525                 }
526             }
527
528             /* Round pitch delay to nearest (used everywhere except ff_acelp_interpolate). */
529             pitch_delay_int[i]  = (pitch_delay_3x + 1) / 3;
530             if (pitch_delay_int[i] > PITCH_DELAY_MAX) {
531                 av_log(avctx, AV_LOG_WARNING, "pitch_delay_int %d is too large\n", pitch_delay_int[i]);
532                 pitch_delay_int[i] = PITCH_DELAY_MAX;
533             }
534
535             if (frame_erasure) {
536                 ctx->rand_value = g729_prng(ctx->rand_value);
537                 fc_indexes   = av_mod_uintp2(ctx->rand_value, format->fc_indexes_bits);
538
539                 ctx->rand_value = g729_prng(ctx->rand_value);
540                 pulses_signs = ctx->rand_value;
541             }
542
543
544             memset(fc, 0, sizeof(int16_t) * SUBFRAME_SIZE);
545             switch (packet_type) {
546                 case FORMAT_G729_8K:
547                     ff_acelp_fc_pulse_per_track(fc, ff_fc_4pulses_8bits_tracks_13,
548                                                 ff_fc_4pulses_8bits_track_4,
549                                                 fc_indexes, pulses_signs, 3, 3);
550                     break;
551                 case FORMAT_G729D_6K4:
552                     ff_acelp_fc_pulse_per_track(fc, ff_fc_2pulses_9bits_track1_gray,
553                                                 ff_fc_2pulses_9bits_track2_gray,
554                                                 fc_indexes, pulses_signs, 1, 4);
555                     break;
556             }
557
558             /*
559               This filter enhances harmonic components of the fixed-codebook vector to
560               improve the quality of the reconstructed speech.
561
562                          / fc_v[i],                                    i < pitch_delay
563               fc_v[i] = <
564                          \ fc_v[i] + gain_pitch * fc_v[i-pitch_delay], i >= pitch_delay
565             */
566             if (SUBFRAME_SIZE > pitch_delay_int[i])
567                 ff_acelp_weighted_vector_sum(fc + pitch_delay_int[i],
568                                              fc + pitch_delay_int[i],
569                                              fc, 1 << 14,
570                                              av_clip(ctx->past_gain_pitch[0], SHARP_MIN, SHARP_MAX),
571                                              0, 14,
572                                              SUBFRAME_SIZE - pitch_delay_int[i]);
573
574             memmove(ctx->past_gain_pitch+1, ctx->past_gain_pitch, 5 * sizeof(int16_t));
575             ctx->past_gain_code[1] = ctx->past_gain_code[0];
576
577             if (frame_erasure) {
578                 ctx->past_gain_pitch[0] = (29491 * ctx->past_gain_pitch[0]) >> 15; // 0.90 (0.15)
579                 ctx->past_gain_code[0]  = ( 2007 * ctx->past_gain_code[0] ) >> 11; // 0.98 (0.11)
580
581                 gain_corr_factor = 0;
582             } else {
583                 if (packet_type == FORMAT_G729D_6K4) {
584                     ctx->past_gain_pitch[0]  = cb_gain_1st_6k4[gc_1st_index][0] +
585                                                cb_gain_2nd_6k4[gc_2nd_index][0];
586                     gain_corr_factor = cb_gain_1st_6k4[gc_1st_index][1] +
587                                        cb_gain_2nd_6k4[gc_2nd_index][1];
588
589                     /* Without check below overflow can occur in ff_acelp_update_past_gain.
590                        It is not issue for G.729, because gain_corr_factor in it's case is always
591                        greater than 1024, while in G.729D it can be even zero. */
592                     gain_corr_factor = FFMAX(gain_corr_factor, 1024);
593     #ifndef G729_BITEXACT
594                     gain_corr_factor >>= 1;
595     #endif
596                 } else {
597                     ctx->past_gain_pitch[0]  = cb_gain_1st_8k[gc_1st_index][0] +
598                                                cb_gain_2nd_8k[gc_2nd_index][0];
599                     gain_corr_factor = cb_gain_1st_8k[gc_1st_index][1] +
600                                        cb_gain_2nd_8k[gc_2nd_index][1];
601                 }
602
603                 /* Decode the fixed-codebook gain. */
604                 ctx->past_gain_code[0] = ff_acelp_decode_gain_code(&s->adsp, gain_corr_factor,
605                                                                    fc, MR_ENERGY,
606                                                                    ctx->quant_energy,
607                                                                    ma_prediction_coeff,
608                                                                    SUBFRAME_SIZE, 4);
609     #ifdef G729_BITEXACT
610                 /*
611                   This correction required to get bit-exact result with
612                   reference code, because gain_corr_factor in G.729D is
613                   two times larger than in original G.729.
614
615                   If bit-exact result is not issue then gain_corr_factor
616                   can be simpler divided by 2 before call to g729_get_gain_code
617                   instead of using correction below.
618                 */
619                 if (packet_type == FORMAT_G729D_6K4) {
620                     gain_corr_factor >>= 1;
621                     ctx->past_gain_code[0] >>= 1;
622                 }
623     #endif
624             }
625             ff_acelp_update_past_gain(ctx->quant_energy, gain_corr_factor, 2, frame_erasure);
626
627             /* Routine requires rounding to lowest. */
628             ff_acelp_interpolate(ctx->exc + i * SUBFRAME_SIZE,
629                                  ctx->exc + i * SUBFRAME_SIZE - pitch_delay_3x / 3,
630                                  ff_acelp_interp_filter, 6,
631                                  (pitch_delay_3x % 3) << 1,
632                                  10, SUBFRAME_SIZE);
633
634             ff_acelp_weighted_vector_sum(ctx->exc + i * SUBFRAME_SIZE,
635                                          ctx->exc + i * SUBFRAME_SIZE, fc,
636                                          (!ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_pitch[0],
637                                          ( ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_code[0],
638                                          1 << 13, 14, SUBFRAME_SIZE);
639
640             memcpy(synth, ctx->syn_filter_data, 10 * sizeof(int16_t));
641
642             if (ff_celp_lp_synthesis_filter(
643                 synth+10,
644                 &lp[i][1],
645                 ctx->exc  + i * SUBFRAME_SIZE,
646                 SUBFRAME_SIZE,
647                 10,
648                 1,
649                 0,
650                 0x800))
651                 /* Overflow occurred, downscale excitation signal... */
652                 for (j = 0; j < 2 * SUBFRAME_SIZE + PITCH_DELAY_MAX + INTERPOL_LEN; j++)
653                     ctx->exc_base[j] >>= 2;
654
655             /* ... and make synthesis again. */
656             if (packet_type == FORMAT_G729D_6K4) {
657                 int16_t exc_new[SUBFRAME_SIZE];
658
659                 ctx->onset = g729d_onset_decision(ctx->onset, ctx->past_gain_code);
660                 ctx->voice_decision = g729d_voice_decision(ctx->onset, ctx->voice_decision, ctx->past_gain_pitch);
661
662                 g729d_get_new_exc(exc_new, ctx->exc  + i * SUBFRAME_SIZE, fc, ctx->voice_decision, ctx->past_gain_code[0], SUBFRAME_SIZE);
663
664                 ff_celp_lp_synthesis_filter(
665                         synth+10,
666                         &lp[i][1],
667                         exc_new,
668                         SUBFRAME_SIZE,
669                         10,
670                         0,
671                         0,
672                         0x800);
673             } else {
674                 ff_celp_lp_synthesis_filter(
675                         synth+10,
676                         &lp[i][1],
677                         ctx->exc  + i * SUBFRAME_SIZE,
678                         SUBFRAME_SIZE,
679                         10,
680                         0,
681                         0,
682                         0x800);
683             }
684             /* Save data (without postfilter) for use in next subframe. */
685             memcpy(ctx->syn_filter_data, synth+SUBFRAME_SIZE, 10 * sizeof(int16_t));
686
687             /* Calculate gain of unfiltered signal for use in AGC. */
688             gain_before = 0;
689             for (j = 0; j < SUBFRAME_SIZE; j++)
690                 gain_before += FFABS(synth[j+10]);
691
692             /* Call postfilter and also update voicing decision for use in next frame. */
693             ff_g729_postfilter(
694                     &s->adsp,
695                     &ctx->ht_prev_data,
696                     &is_periodic,
697                     &lp[i][0],
698                     pitch_delay_int[0],
699                     ctx->residual,
700                     ctx->res_filter_data,
701                     ctx->pos_filter_data,
702                     synth+10,
703                     SUBFRAME_SIZE);
704
705             /* Calculate gain of filtered signal for use in AGC. */
706             gain_after = 0;
707             for (j = 0; j < SUBFRAME_SIZE; j++)
708                 gain_after += FFABS(synth[j+10]);
709
710             ctx->gain_coeff = ff_g729_adaptive_gain_control(
711                     gain_before,
712                     gain_after,
713                     synth+10,
714                     SUBFRAME_SIZE,
715                     ctx->gain_coeff);
716
717             if (frame_erasure) {
718                 ctx->pitch_delay_int_prev = FFMIN(ctx->pitch_delay_int_prev + 1, PITCH_DELAY_MAX);
719             } else {
720                 ctx->pitch_delay_int_prev = pitch_delay_int[i];
721             }
722
723             memcpy(synth+8, ctx->hpf_z, 2*sizeof(int16_t));
724             ff_acelp_high_pass_filter(
725                     out_frame + i*SUBFRAME_SIZE,
726                     ctx->hpf_f,
727                     synth+10,
728                     SUBFRAME_SIZE);
729             memcpy(ctx->hpf_z, synth+8+SUBFRAME_SIZE, 2*sizeof(int16_t));
730         }
731
732         ctx->was_periodic = is_periodic;
733
734         /* Save signal for use in next frame. */
735         memmove(ctx->exc_base, ctx->exc_base + 2 * SUBFRAME_SIZE, (PITCH_DELAY_MAX+INTERPOL_LEN)*sizeof(int16_t));
736
737         buf += format->block_size;
738         ctx++;
739     }
740
741     *got_frame_ptr = 1;
742     return (format->block_size + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * avctx->channels;
743 }
744
745 static av_cold int decode_close(AVCodecContext *avctx)
746 {
747     G729Context *s = avctx->priv_data;
748     av_freep(&s->channel_context);
749
750     return 0;
751 }
752
753 AVCodec ff_g729_decoder = {
754     .name           = "g729",
755     .long_name      = NULL_IF_CONFIG_SMALL("G.729"),
756     .type           = AVMEDIA_TYPE_AUDIO,
757     .id             = AV_CODEC_ID_G729,
758     .priv_data_size = sizeof(G729Context),
759     .init           = decoder_init,
760     .decode         = decode_frame,
761     .close          = decode_close,
762     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
763 };
764
765 AVCodec ff_acelp_kelvin_decoder = {
766     .name           = "acelp.kelvin",
767     .long_name      = NULL_IF_CONFIG_SMALL("Sipro ACELP.KELVIN"),
768     .type           = AVMEDIA_TYPE_AUDIO,
769     .id             = AV_CODEC_ID_ACELP_KELVIN,
770     .priv_data_size = sizeof(G729Context),
771     .init           = decoder_init,
772     .decode         = decode_frame,
773     .close          = decode_close,
774     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
775 };