]> git.sesse.net Git - ffmpeg/blob - libavcodec/g729dec.c
avcodec/g729dec: require buf_size to be non 0
[ffmpeg] / libavcodec / g729dec.c
1 /*
2  * G.729, G729 Annex D decoders
3  * Copyright (c) 2008 Vladimir Voroshilov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include <inttypes.h>
23 #include <string.h>
24
25 #include "avcodec.h"
26 #include "libavutil/avutil.h"
27 #include "get_bits.h"
28 #include "audiodsp.h"
29 #include "internal.h"
30
31
32 #include "g729.h"
33 #include "lsp.h"
34 #include "celp_math.h"
35 #include "celp_filters.h"
36 #include "acelp_filters.h"
37 #include "acelp_pitch_delay.h"
38 #include "acelp_vectors.h"
39 #include "g729data.h"
40 #include "g729postfilter.h"
41
42 /**
43  * minimum quantized LSF value (3.2.4)
44  * 0.005 in Q13
45  */
46 #define LSFQ_MIN                   40
47
48 /**
49  * maximum quantized LSF value (3.2.4)
50  * 3.135 in Q13
51  */
52 #define LSFQ_MAX                   25681
53
54 /**
55  * minimum LSF distance (3.2.4)
56  * 0.0391 in Q13
57  */
58 #define LSFQ_DIFF_MIN              321
59
60 /// interpolation filter length
61 #define INTERPOL_LEN              11
62
63 /**
64  * minimum gain pitch value (3.8, Equation 47)
65  * 0.2 in (1.14)
66  */
67 #define SHARP_MIN                  3277
68
69 /**
70  * maximum gain pitch value (3.8, Equation 47)
71  * (EE) This does not comply with the specification.
72  * Specification says about 0.8, which should be
73  * 13107 in (1.14), but reference C code uses
74  * 13017 (equals to 0.7945) instead of it.
75  */
76 #define SHARP_MAX                  13017
77
78 /**
79  * MR_ENERGY (mean removed energy) = mean_energy + 10 * log10(2^26  * subframe_size) in (7.13)
80  */
81 #define MR_ENERGY 1018156
82
83 #define DECISION_NOISE        0
84 #define DECISION_INTERMEDIATE 1
85 #define DECISION_VOICE        2
86
87 typedef enum {
88     FORMAT_G729_8K = 0,
89     FORMAT_G729D_6K4,
90     FORMAT_COUNT,
91 } G729Formats;
92
93 typedef struct {
94     uint8_t ac_index_bits[2];   ///< adaptive codebook index for second subframe (size in bits)
95     uint8_t parity_bit;         ///< parity bit for pitch delay
96     uint8_t gc_1st_index_bits;  ///< gain codebook (first stage) index (size in bits)
97     uint8_t gc_2nd_index_bits;  ///< gain codebook (second stage) index (size in bits)
98     uint8_t fc_signs_bits;      ///< number of pulses in fixed-codebook vector
99     uint8_t fc_indexes_bits;    ///< size (in bits) of fixed-codebook index entry
100 } G729FormatDescription;
101
102 typedef struct {
103     /// past excitation signal buffer
104     int16_t exc_base[2*SUBFRAME_SIZE+PITCH_DELAY_MAX+INTERPOL_LEN];
105
106     int16_t* exc;               ///< start of past excitation data in buffer
107     int pitch_delay_int_prev;   ///< integer part of previous subframe's pitch delay (4.1.3)
108
109     /// (2.13) LSP quantizer outputs
110     int16_t  past_quantizer_output_buf[MA_NP + 1][10];
111     int16_t* past_quantizer_outputs[MA_NP + 1];
112
113     int16_t lsfq[10];           ///< (2.13) quantized LSF coefficients from previous frame
114     int16_t lsp_buf[2][10];     ///< (0.15) LSP coefficients (previous and current frames) (3.2.5)
115     int16_t *lsp[2];            ///< pointers to lsp_buf
116
117     int16_t quant_energy[4];    ///< (5.10) past quantized energy
118
119     /// previous speech data for LP synthesis filter
120     int16_t syn_filter_data[10];
121
122
123     /// residual signal buffer (used in long-term postfilter)
124     int16_t residual[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
125
126     /// previous speech data for residual calculation filter
127     int16_t res_filter_data[SUBFRAME_SIZE+10];
128
129     /// previous speech data for short-term postfilter
130     int16_t pos_filter_data[SUBFRAME_SIZE+10];
131
132     /// (1.14) pitch gain of current and five previous subframes
133     int16_t past_gain_pitch[6];
134
135     /// (14.1) gain code from current and previous subframe
136     int16_t past_gain_code[2];
137
138     /// voice decision on previous subframe (0-noise, 1-intermediate, 2-voice), G.729D
139     int16_t voice_decision;
140
141     int16_t onset;              ///< detected onset level (0-2)
142     int16_t was_periodic;       ///< whether previous frame was declared as periodic or not (4.4)
143     int16_t ht_prev_data;       ///< previous data for 4.2.3, equation 86
144     int gain_coeff;             ///< (1.14) gain coefficient (4.2.4)
145     uint16_t rand_value;        ///< random number generator value (4.4.4)
146     int ma_predictor_prev;      ///< switched MA predictor of LSP quantizer from last good frame
147
148     /// (14.14) high-pass filter data (past input)
149     int hpf_f[2];
150
151     /// high-pass filter data (past output)
152     int16_t hpf_z[2];
153 }  G729ChannelContext;
154
155 typedef struct {
156     AudioDSPContext adsp;
157
158     G729ChannelContext *channel_context;
159 } G729Context;
160
161 static const G729FormatDescription format_g729_8k = {
162     .ac_index_bits     = {8,5},
163     .parity_bit        = 1,
164     .gc_1st_index_bits = GC_1ST_IDX_BITS_8K,
165     .gc_2nd_index_bits = GC_2ND_IDX_BITS_8K,
166     .fc_signs_bits     = 4,
167     .fc_indexes_bits   = 13,
168 };
169
170 static const G729FormatDescription format_g729d_6k4 = {
171     .ac_index_bits     = {8,4},
172     .parity_bit        = 0,
173     .gc_1st_index_bits = GC_1ST_IDX_BITS_6K4,
174     .gc_2nd_index_bits = GC_2ND_IDX_BITS_6K4,
175     .fc_signs_bits     = 2,
176     .fc_indexes_bits   = 9,
177 };
178
179 /**
180  * @brief pseudo random number generator
181  */
182 static inline uint16_t g729_prng(uint16_t value)
183 {
184     return 31821 * value + 13849;
185 }
186
187 /**
188  * Decodes LSF (Line Spectral Frequencies) from L0-L3 (3.2.4).
189  * @param[out] lsfq (2.13) quantized LSF coefficients
190  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
191  * @param ma_predictor switched MA predictor of LSP quantizer
192  * @param vq_1st first stage vector of quantizer
193  * @param vq_2nd_low second stage lower vector of LSP quantizer
194  * @param vq_2nd_high second stage higher vector of LSP quantizer
195  */
196 static void lsf_decode(int16_t* lsfq, int16_t* past_quantizer_outputs[MA_NP + 1],
197                        int16_t ma_predictor,
198                        int16_t vq_1st, int16_t vq_2nd_low, int16_t vq_2nd_high)
199 {
200     int i,j;
201     static const uint8_t min_distance[2]={10, 5}; //(2.13)
202     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
203
204     for (i = 0; i < 5; i++) {
205         quantizer_output[i]     = cb_lsp_1st[vq_1st][i    ] + cb_lsp_2nd[vq_2nd_low ][i    ];
206         quantizer_output[i + 5] = cb_lsp_1st[vq_1st][i + 5] + cb_lsp_2nd[vq_2nd_high][i + 5];
207     }
208
209     for (j = 0; j < 2; j++) {
210         for (i = 1; i < 10; i++) {
211             int diff = (quantizer_output[i - 1] - quantizer_output[i] + min_distance[j]) >> 1;
212             if (diff > 0) {
213                 quantizer_output[i - 1] -= diff;
214                 quantizer_output[i    ] += diff;
215             }
216         }
217     }
218
219     for (i = 0; i < 10; i++) {
220         int sum = quantizer_output[i] * cb_ma_predictor_sum[ma_predictor][i];
221         for (j = 0; j < MA_NP; j++)
222             sum += past_quantizer_outputs[j][i] * cb_ma_predictor[ma_predictor][j][i];
223
224         lsfq[i] = sum >> 15;
225     }
226
227     ff_acelp_reorder_lsf(lsfq, LSFQ_DIFF_MIN, LSFQ_MIN, LSFQ_MAX, 10);
228 }
229
230 /**
231  * Restores past LSP quantizer output using LSF from previous frame
232  * @param[in,out] lsfq (2.13) quantized LSF coefficients
233  * @param[in,out] past_quantizer_outputs (2.13) quantizer outputs from previous frames
234  * @param ma_predictor_prev MA predictor from previous frame
235  * @param lsfq_prev (2.13) quantized LSF coefficients from previous frame
236  */
237 static void lsf_restore_from_previous(int16_t* lsfq,
238                                       int16_t* past_quantizer_outputs[MA_NP + 1],
239                                       int ma_predictor_prev)
240 {
241     int16_t* quantizer_output = past_quantizer_outputs[MA_NP];
242     int i,k;
243
244     for (i = 0; i < 10; i++) {
245         int tmp = lsfq[i] << 15;
246
247         for (k = 0; k < MA_NP; k++)
248             tmp -= past_quantizer_outputs[k][i] * cb_ma_predictor[ma_predictor_prev][k][i];
249
250         quantizer_output[i] = ((tmp >> 15) * cb_ma_predictor_sum_inv[ma_predictor_prev][i]) >> 12;
251     }
252 }
253
254 /**
255  * Constructs new excitation signal and applies phase filter to it
256  * @param[out] out constructed speech signal
257  * @param in original excitation signal
258  * @param fc_cur (2.13) original fixed-codebook vector
259  * @param gain_code (14.1) gain code
260  * @param subframe_size length of the subframe
261  */
262 static void g729d_get_new_exc(
263         int16_t* out,
264         const int16_t* in,
265         const int16_t* fc_cur,
266         int dstate,
267         int gain_code,
268         int subframe_size)
269 {
270     int i;
271     int16_t fc_new[SUBFRAME_SIZE];
272
273     ff_celp_convolve_circ(fc_new, fc_cur, phase_filter[dstate], subframe_size);
274
275     for (i = 0; i < subframe_size; i++) {
276         out[i]  = in[i];
277         out[i] -= (gain_code * fc_cur[i] + 0x2000) >> 14;
278         out[i] += (gain_code * fc_new[i] + 0x2000) >> 14;
279     }
280 }
281
282 /**
283  * Makes decision about onset in current subframe
284  * @param past_onset decision result of previous subframe
285  * @param past_gain_code gain code of current and previous subframe
286  *
287  * @return onset decision result for current subframe
288  */
289 static int g729d_onset_decision(int past_onset, const int16_t* past_gain_code)
290 {
291     if ((past_gain_code[0] >> 1) > past_gain_code[1])
292         return 2;
293
294     return FFMAX(past_onset-1, 0);
295 }
296
297 /**
298  * Makes decision about voice presence in current subframe
299  * @param onset onset level
300  * @param prev_voice_decision voice decision result from previous subframe
301  * @param past_gain_pitch pitch gain of current and previous subframes
302  *
303  * @return voice decision result for current subframe
304  */
305 static int16_t g729d_voice_decision(int onset, int prev_voice_decision, const int16_t* past_gain_pitch)
306 {
307     int i, low_gain_pitch_cnt, voice_decision;
308
309     if (past_gain_pitch[0] >= 14745) {       // 0.9
310         voice_decision = DECISION_VOICE;
311     } else if (past_gain_pitch[0] <= 9830) { // 0.6
312         voice_decision = DECISION_NOISE;
313     } else {
314         voice_decision = DECISION_INTERMEDIATE;
315     }
316
317     for (i = 0, low_gain_pitch_cnt = 0; i < 6; i++)
318         if (past_gain_pitch[i] < 9830)
319             low_gain_pitch_cnt++;
320
321     if (low_gain_pitch_cnt > 2 && !onset)
322         voice_decision = DECISION_NOISE;
323
324     if (!onset && voice_decision > prev_voice_decision + 1)
325         voice_decision--;
326
327     if (onset && voice_decision < DECISION_VOICE)
328         voice_decision++;
329
330     return voice_decision;
331 }
332
333 static int32_t scalarproduct_int16_c(const int16_t * v1, const int16_t * v2, int order)
334 {
335     int64_t res = 0;
336
337     while (order--)
338         res += *v1++ * *v2++;
339
340     if      (res > INT32_MAX) return INT32_MAX;
341     else if (res < INT32_MIN) return INT32_MIN;
342
343     return res;
344 }
345
346 static av_cold int decoder_init(AVCodecContext * avctx)
347 {
348     G729Context *s = avctx->priv_data;
349     G729ChannelContext *ctx;
350     int c,i,k;
351
352     if (avctx->channels < 1 || avctx->channels > 2) {
353         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", avctx->channels);
354         return AVERROR(EINVAL);
355     }
356     avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
357
358     /* Both 8kbit/s and 6.4kbit/s modes uses two subframes per frame. */
359     avctx->frame_size = SUBFRAME_SIZE << 1;
360
361     ctx =
362     s->channel_context = av_mallocz(sizeof(G729ChannelContext) * avctx->channels);
363     if (!ctx)
364         return AVERROR(ENOMEM);
365
366     for (c = 0; c < avctx->channels; c++) {
367         ctx->gain_coeff = 16384; // 1.0 in (1.14)
368
369         for (k = 0; k < MA_NP + 1; k++) {
370             ctx->past_quantizer_outputs[k] = ctx->past_quantizer_output_buf[k];
371             for (i = 1; i < 11; i++)
372                 ctx->past_quantizer_outputs[k][i - 1] = (18717 * i) >> 3;
373         }
374
375         ctx->lsp[0] = ctx->lsp_buf[0];
376         ctx->lsp[1] = ctx->lsp_buf[1];
377         memcpy(ctx->lsp[0], lsp_init, 10 * sizeof(int16_t));
378
379         ctx->exc = &ctx->exc_base[PITCH_DELAY_MAX+INTERPOL_LEN];
380
381         ctx->pitch_delay_int_prev = PITCH_DELAY_MIN;
382
383         /* random seed initialization */
384         ctx->rand_value = 21845;
385
386         /* quantized prediction error */
387         for (i = 0; i < 4; i++)
388             ctx->quant_energy[i] = -14336; // -14 in (5.10)
389
390         ctx++;
391     }
392
393     ff_audiodsp_init(&s->adsp);
394     s->adsp.scalarproduct_int16 = scalarproduct_int16_c;
395
396     return 0;
397 }
398
399 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
400                         AVPacket *avpkt)
401 {
402     const uint8_t *buf = avpkt->data;
403     int buf_size       = avpkt->size;
404     int16_t *out_frame;
405     GetBitContext gb;
406     const G729FormatDescription *format;
407     int c, i;
408     int16_t *tmp;
409     G729Formats packet_type;
410     G729Context *s = avctx->priv_data;
411     G729ChannelContext *ctx = s->channel_context;
412     int16_t lp[2][11];           // (3.12)
413     uint8_t ma_predictor;     ///< switched MA predictor of LSP quantizer
414     uint8_t quantizer_1st;    ///< first stage vector of quantizer
415     uint8_t quantizer_2nd_lo; ///< second stage lower vector of quantizer (size in bits)
416     uint8_t quantizer_2nd_hi; ///< second stage higher vector of quantizer (size in bits)
417
418     int pitch_delay_int[2];      // pitch delay, integer part
419     int pitch_delay_3x;          // pitch delay, multiplied by 3
420     int16_t fc[SUBFRAME_SIZE];   // fixed-codebook vector
421     int16_t synth[SUBFRAME_SIZE+10]; // fixed-codebook vector
422     int j, ret;
423     int gain_before, gain_after;
424     AVFrame *frame = data;
425
426     frame->nb_samples = SUBFRAME_SIZE<<1;
427     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
428         return ret;
429
430     if (buf_size && buf_size % ((G729_8K_BLOCK_SIZE + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * avctx->channels) == 0) {
431         packet_type = FORMAT_G729_8K;
432         format = &format_g729_8k;
433         //Reset voice decision
434         ctx->onset = 0;
435         ctx->voice_decision = DECISION_VOICE;
436         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729 @ 8kbit/s");
437     } else if (buf_size == G729D_6K4_BLOCK_SIZE * avctx->channels && avctx->codec_id != AV_CODEC_ID_ACELP_KELVIN) {
438         packet_type = FORMAT_G729D_6K4;
439         format = &format_g729d_6k4;
440         av_log(avctx, AV_LOG_DEBUG, "Packet type: %s\n", "G.729D @ 6.4kbit/s");
441     } else {
442         av_log(avctx, AV_LOG_ERROR, "Packet size %d is unknown.\n", buf_size);
443         return AVERROR_INVALIDDATA;
444     }
445
446     for (c = 0; c < avctx->channels; c++) {
447         int frame_erasure = 0; ///< frame erasure detected during decoding
448         int bad_pitch = 0;     ///< parity check failed
449         int is_periodic = 0;   ///< whether one of the subframes is declared as periodic or not
450         out_frame = (int16_t*)frame->data[c];
451         if (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN) {
452             if (*buf != ((avctx->channels - 1 - c) * 0x80 | 2))
453                 avpriv_request_sample(avctx, "First byte value %x for channel %d", *buf, c);
454             buf++;
455         }
456
457         for (i = 0; i < buf_size; i++)
458             frame_erasure |= buf[i];
459         frame_erasure = !frame_erasure;
460
461         init_get_bits(&gb, buf, 8*buf_size);
462
463         ma_predictor     = get_bits(&gb, 1);
464         quantizer_1st    = get_bits(&gb, VQ_1ST_BITS);
465         quantizer_2nd_lo = get_bits(&gb, VQ_2ND_BITS);
466         quantizer_2nd_hi = get_bits(&gb, VQ_2ND_BITS);
467
468         if (frame_erasure) {
469             lsf_restore_from_previous(ctx->lsfq, ctx->past_quantizer_outputs,
470                                       ctx->ma_predictor_prev);
471         } else {
472             lsf_decode(ctx->lsfq, ctx->past_quantizer_outputs,
473                        ma_predictor,
474                        quantizer_1st, quantizer_2nd_lo, quantizer_2nd_hi);
475             ctx->ma_predictor_prev = ma_predictor;
476         }
477
478         tmp = ctx->past_quantizer_outputs[MA_NP];
479         memmove(ctx->past_quantizer_outputs + 1, ctx->past_quantizer_outputs,
480                 MA_NP * sizeof(int16_t*));
481         ctx->past_quantizer_outputs[0] = tmp;
482
483         ff_acelp_lsf2lsp(ctx->lsp[1], ctx->lsfq, 10);
484
485         ff_acelp_lp_decode(&lp[0][0], &lp[1][0], ctx->lsp[1], ctx->lsp[0], 10);
486
487         FFSWAP(int16_t*, ctx->lsp[1], ctx->lsp[0]);
488
489         for (i = 0; i < 2; i++) {
490             int gain_corr_factor;
491
492             uint8_t ac_index;      ///< adaptive codebook index
493             uint8_t pulses_signs;  ///< fixed-codebook vector pulse signs
494             int fc_indexes;        ///< fixed-codebook indexes
495             uint8_t gc_1st_index;  ///< gain codebook (first stage) index
496             uint8_t gc_2nd_index;  ///< gain codebook (second stage) index
497
498             ac_index      = get_bits(&gb, format->ac_index_bits[i]);
499             if (!i && format->parity_bit)
500                 bad_pitch = av_parity(ac_index >> 2) == get_bits1(&gb);
501             fc_indexes    = get_bits(&gb, format->fc_indexes_bits);
502             pulses_signs  = get_bits(&gb, format->fc_signs_bits);
503             gc_1st_index  = get_bits(&gb, format->gc_1st_index_bits);
504             gc_2nd_index  = get_bits(&gb, format->gc_2nd_index_bits);
505
506             if (frame_erasure) {
507                 pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
508             } else if (!i) {
509                 if (bad_pitch) {
510                     pitch_delay_3x = 3 * ctx->pitch_delay_int_prev;
511                 } else {
512                     pitch_delay_3x = ff_acelp_decode_8bit_to_1st_delay3(ac_index);
513                 }
514             } else {
515                 int pitch_delay_min = av_clip(ctx->pitch_delay_int_prev - 5,
516                                               PITCH_DELAY_MIN, PITCH_DELAY_MAX - 9);
517
518                 if (packet_type == FORMAT_G729D_6K4) {
519                     pitch_delay_3x = ff_acelp_decode_4bit_to_2nd_delay3(ac_index, pitch_delay_min);
520                 } else {
521                     pitch_delay_3x = ff_acelp_decode_5_6_bit_to_2nd_delay3(ac_index, pitch_delay_min);
522                 }
523             }
524
525             /* Round pitch delay to nearest (used everywhere except ff_acelp_interpolate). */
526             pitch_delay_int[i]  = (pitch_delay_3x + 1) / 3;
527             if (pitch_delay_int[i] > PITCH_DELAY_MAX) {
528                 av_log(avctx, AV_LOG_WARNING, "pitch_delay_int %d is too large\n", pitch_delay_int[i]);
529                 pitch_delay_int[i] = PITCH_DELAY_MAX;
530             }
531
532             if (frame_erasure) {
533                 ctx->rand_value = g729_prng(ctx->rand_value);
534                 fc_indexes   = av_mod_uintp2(ctx->rand_value, format->fc_indexes_bits);
535
536                 ctx->rand_value = g729_prng(ctx->rand_value);
537                 pulses_signs = ctx->rand_value;
538             }
539
540
541             memset(fc, 0, sizeof(int16_t) * SUBFRAME_SIZE);
542             switch (packet_type) {
543                 case FORMAT_G729_8K:
544                     ff_acelp_fc_pulse_per_track(fc, ff_fc_4pulses_8bits_tracks_13,
545                                                 ff_fc_4pulses_8bits_track_4,
546                                                 fc_indexes, pulses_signs, 3, 3);
547                     break;
548                 case FORMAT_G729D_6K4:
549                     ff_acelp_fc_pulse_per_track(fc, ff_fc_2pulses_9bits_track1_gray,
550                                                 ff_fc_2pulses_9bits_track2_gray,
551                                                 fc_indexes, pulses_signs, 1, 4);
552                     break;
553             }
554
555             /*
556               This filter enhances harmonic components of the fixed-codebook vector to
557               improve the quality of the reconstructed speech.
558
559                          / fc_v[i],                                    i < pitch_delay
560               fc_v[i] = <
561                          \ fc_v[i] + gain_pitch * fc_v[i-pitch_delay], i >= pitch_delay
562             */
563             if (SUBFRAME_SIZE > pitch_delay_int[i])
564                 ff_acelp_weighted_vector_sum(fc + pitch_delay_int[i],
565                                              fc + pitch_delay_int[i],
566                                              fc, 1 << 14,
567                                              av_clip(ctx->past_gain_pitch[0], SHARP_MIN, SHARP_MAX),
568                                              0, 14,
569                                              SUBFRAME_SIZE - pitch_delay_int[i]);
570
571             memmove(ctx->past_gain_pitch+1, ctx->past_gain_pitch, 5 * sizeof(int16_t));
572             ctx->past_gain_code[1] = ctx->past_gain_code[0];
573
574             if (frame_erasure) {
575                 ctx->past_gain_pitch[0] = (29491 * ctx->past_gain_pitch[0]) >> 15; // 0.90 (0.15)
576                 ctx->past_gain_code[0]  = ( 2007 * ctx->past_gain_code[0] ) >> 11; // 0.98 (0.11)
577
578                 gain_corr_factor = 0;
579             } else {
580                 if (packet_type == FORMAT_G729D_6K4) {
581                     ctx->past_gain_pitch[0]  = cb_gain_1st_6k4[gc_1st_index][0] +
582                                                cb_gain_2nd_6k4[gc_2nd_index][0];
583                     gain_corr_factor = cb_gain_1st_6k4[gc_1st_index][1] +
584                                        cb_gain_2nd_6k4[gc_2nd_index][1];
585
586                     /* Without check below overflow can occur in ff_acelp_update_past_gain.
587                        It is not issue for G.729, because gain_corr_factor in it's case is always
588                        greater than 1024, while in G.729D it can be even zero. */
589                     gain_corr_factor = FFMAX(gain_corr_factor, 1024);
590     #ifndef G729_BITEXACT
591                     gain_corr_factor >>= 1;
592     #endif
593                 } else {
594                     ctx->past_gain_pitch[0]  = cb_gain_1st_8k[gc_1st_index][0] +
595                                                cb_gain_2nd_8k[gc_2nd_index][0];
596                     gain_corr_factor = cb_gain_1st_8k[gc_1st_index][1] +
597                                        cb_gain_2nd_8k[gc_2nd_index][1];
598                 }
599
600                 /* Decode the fixed-codebook gain. */
601                 ctx->past_gain_code[0] = ff_acelp_decode_gain_code(&s->adsp, gain_corr_factor,
602                                                                    fc, MR_ENERGY,
603                                                                    ctx->quant_energy,
604                                                                    ma_prediction_coeff,
605                                                                    SUBFRAME_SIZE, 4);
606     #ifdef G729_BITEXACT
607                 /*
608                   This correction required to get bit-exact result with
609                   reference code, because gain_corr_factor in G.729D is
610                   two times larger than in original G.729.
611
612                   If bit-exact result is not issue then gain_corr_factor
613                   can be simpler divided by 2 before call to g729_get_gain_code
614                   instead of using correction below.
615                 */
616                 if (packet_type == FORMAT_G729D_6K4) {
617                     gain_corr_factor >>= 1;
618                     ctx->past_gain_code[0] >>= 1;
619                 }
620     #endif
621             }
622             ff_acelp_update_past_gain(ctx->quant_energy, gain_corr_factor, 2, frame_erasure);
623
624             /* Routine requires rounding to lowest. */
625             ff_acelp_interpolate(ctx->exc + i * SUBFRAME_SIZE,
626                                  ctx->exc + i * SUBFRAME_SIZE - pitch_delay_3x / 3,
627                                  ff_acelp_interp_filter, 6,
628                                  (pitch_delay_3x % 3) << 1,
629                                  10, SUBFRAME_SIZE);
630
631             ff_acelp_weighted_vector_sum(ctx->exc + i * SUBFRAME_SIZE,
632                                          ctx->exc + i * SUBFRAME_SIZE, fc,
633                                          (!ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_pitch[0],
634                                          ( ctx->was_periodic && frame_erasure) ? 0 : ctx->past_gain_code[0],
635                                          1 << 13, 14, SUBFRAME_SIZE);
636
637             memcpy(synth, ctx->syn_filter_data, 10 * sizeof(int16_t));
638
639             if (ff_celp_lp_synthesis_filter(
640                 synth+10,
641                 &lp[i][1],
642                 ctx->exc  + i * SUBFRAME_SIZE,
643                 SUBFRAME_SIZE,
644                 10,
645                 1,
646                 0,
647                 0x800))
648                 /* Overflow occurred, downscale excitation signal... */
649                 for (j = 0; j < 2 * SUBFRAME_SIZE + PITCH_DELAY_MAX + INTERPOL_LEN; j++)
650                     ctx->exc_base[j] >>= 2;
651
652             /* ... and make synthesis again. */
653             if (packet_type == FORMAT_G729D_6K4) {
654                 int16_t exc_new[SUBFRAME_SIZE];
655
656                 ctx->onset = g729d_onset_decision(ctx->onset, ctx->past_gain_code);
657                 ctx->voice_decision = g729d_voice_decision(ctx->onset, ctx->voice_decision, ctx->past_gain_pitch);
658
659                 g729d_get_new_exc(exc_new, ctx->exc  + i * SUBFRAME_SIZE, fc, ctx->voice_decision, ctx->past_gain_code[0], SUBFRAME_SIZE);
660
661                 ff_celp_lp_synthesis_filter(
662                         synth+10,
663                         &lp[i][1],
664                         exc_new,
665                         SUBFRAME_SIZE,
666                         10,
667                         0,
668                         0,
669                         0x800);
670             } else {
671                 ff_celp_lp_synthesis_filter(
672                         synth+10,
673                         &lp[i][1],
674                         ctx->exc  + i * SUBFRAME_SIZE,
675                         SUBFRAME_SIZE,
676                         10,
677                         0,
678                         0,
679                         0x800);
680             }
681             /* Save data (without postfilter) for use in next subframe. */
682             memcpy(ctx->syn_filter_data, synth+SUBFRAME_SIZE, 10 * sizeof(int16_t));
683
684             /* Calculate gain of unfiltered signal for use in AGC. */
685             gain_before = 0;
686             for (j = 0; j < SUBFRAME_SIZE; j++)
687                 gain_before += FFABS(synth[j+10]);
688
689             /* Call postfilter and also update voicing decision for use in next frame. */
690             ff_g729_postfilter(
691                     &s->adsp,
692                     &ctx->ht_prev_data,
693                     &is_periodic,
694                     &lp[i][0],
695                     pitch_delay_int[0],
696                     ctx->residual,
697                     ctx->res_filter_data,
698                     ctx->pos_filter_data,
699                     synth+10,
700                     SUBFRAME_SIZE);
701
702             /* Calculate gain of filtered signal for use in AGC. */
703             gain_after = 0;
704             for (j = 0; j < SUBFRAME_SIZE; j++)
705                 gain_after += FFABS(synth[j+10]);
706
707             ctx->gain_coeff = ff_g729_adaptive_gain_control(
708                     gain_before,
709                     gain_after,
710                     synth+10,
711                     SUBFRAME_SIZE,
712                     ctx->gain_coeff);
713
714             if (frame_erasure) {
715                 ctx->pitch_delay_int_prev = FFMIN(ctx->pitch_delay_int_prev + 1, PITCH_DELAY_MAX);
716             } else {
717                 ctx->pitch_delay_int_prev = pitch_delay_int[i];
718             }
719
720             memcpy(synth+8, ctx->hpf_z, 2*sizeof(int16_t));
721             ff_acelp_high_pass_filter(
722                     out_frame + i*SUBFRAME_SIZE,
723                     ctx->hpf_f,
724                     synth+10,
725                     SUBFRAME_SIZE);
726             memcpy(ctx->hpf_z, synth+8+SUBFRAME_SIZE, 2*sizeof(int16_t));
727         }
728
729         ctx->was_periodic = is_periodic;
730
731         /* Save signal for use in next frame. */
732         memmove(ctx->exc_base, ctx->exc_base + 2 * SUBFRAME_SIZE, (PITCH_DELAY_MAX+INTERPOL_LEN)*sizeof(int16_t));
733
734         buf += packet_type == FORMAT_G729_8K ? G729_8K_BLOCK_SIZE : G729D_6K4_BLOCK_SIZE;
735         ctx++;
736     }
737
738     *got_frame_ptr = 1;
739     return packet_type == FORMAT_G729_8K ? (G729_8K_BLOCK_SIZE + (avctx->codec_id == AV_CODEC_ID_ACELP_KELVIN)) * avctx->channels : G729D_6K4_BLOCK_SIZE * avctx->channels;
740 }
741
742 static av_cold int decode_close(AVCodecContext *avctx)
743 {
744     G729Context *s = avctx->priv_data;
745     av_freep(&s->channel_context);
746
747     return 0;
748 }
749
750 AVCodec ff_g729_decoder = {
751     .name           = "g729",
752     .long_name      = NULL_IF_CONFIG_SMALL("G.729"),
753     .type           = AVMEDIA_TYPE_AUDIO,
754     .id             = AV_CODEC_ID_G729,
755     .priv_data_size = sizeof(G729Context),
756     .init           = decoder_init,
757     .decode         = decode_frame,
758     .close          = decode_close,
759     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
760 };
761
762 AVCodec ff_acelp_kelvin_decoder = {
763     .name           = "acelp.kelvin",
764     .long_name      = NULL_IF_CONFIG_SMALL("Sipro ACELP.KELVIN"),
765     .type           = AVMEDIA_TYPE_AUDIO,
766     .id             = AV_CODEC_ID_ACELP_KELVIN,
767     .priv_data_size = sizeof(G729Context),
768     .init           = decoder_init,
769     .decode         = decode_frame,
770     .close          = decode_close,
771     .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
772 };