]> git.sesse.net Git - ffmpeg/blob - libavcodec/h264.c
c52758ed92df9760a2b9520ea62d0d1ced443d1e
[ffmpeg] / libavcodec / h264.c
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  */
20  
21 /**
22  * @file h264.c
23  * H.264 / AVC / MPEG4 part10 codec.
24  * @author Michael Niedermayer <michaelni@gmx.at>
25  */
26
27 #include "common.h"
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264data.h"
32 #include "golomb.h"
33
34 #undef NDEBUG
35 #include <assert.h>
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_isnt_initalized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX   25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS           8
45 #define TOTAL_ZEROS_VLC_BITS           9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS                   3
48 #define RUN7_VLC_BITS                  6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 /**
56  * Sequence parameter set
57  */
58 typedef struct SPS{
59     
60     int profile_idc;
61     int level_idc;
62     int multiple_slice_groups;         ///< more_than_one_slice_group_allowed_flag
63     int arbitrary_slice_order;         ///< arbitrary_slice_order_allowed_flag
64     int redundant_slices;              ///< redundant_slices_allowed_flag
65     int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
66     int poc_type;                      ///< pic_order_cnt_type
67     int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
68     int delta_pic_order_always_zero_flag;
69     int offset_for_non_ref_pic;
70     int offset_for_top_to_bottom_field;
71     int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
72     int ref_frame_count;               ///< num_ref_frames
73     int required_frame_num_update_behaviour_flag;
74     int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
75     int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
76     int frame_mbs_only_flag;
77     int mb_aff;                        ///<mb_adaptive_frame_field_flag
78     int direct_8x8_inference_flag;
79     int vui_parameters_present_flag;
80     int sar_width;
81     int sar_height;
82     short offset_for_ref_frame[256]; //FIXME dyn aloc?
83 }SPS;
84
85 /**
86  * Picture parameter set
87  */
88 typedef struct PPS{
89     int sps_id;
90     int cabac;                  ///< entropy_coding_mode_flag
91     int pic_order_present;      ///< pic_order_present_flag
92     int slice_group_count;      ///< num_slice_groups_minus1 + 1
93     int mb_slice_group_map_type;
94     int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
95     int weighted_pred;          ///< weighted_pred_flag
96     int weighted_bipred_idc;
97     int init_qp;                ///< pic_init_qp_minus26 + 26
98     int init_qs;                ///< pic_init_qs_minus26 + 26
99     int chroma_qp_index_offset;
100     int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
101     int constrained_intra_pred; ///< constrained_intra_pred_flag
102     int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
103     int crop;                   ///< frame_cropping_flag
104     int crop_left;              ///< frame_cropping_rect_left_offset
105     int crop_right;             ///< frame_cropping_rect_right_offset
106     int crop_top;               ///< frame_cropping_rect_top_offset
107     int crop_bottom;            ///< frame_cropping_rect_bottom_offset
108 }PPS;
109
110 /**
111  * Memory management control operation opcode.
112  */
113 typedef enum MMCOOpcode{
114     MMCO_END=0,
115     MMCO_SHORT2UNUSED,
116     MMCO_LONG2UNUSED,
117     MMCO_SHORT2LONG,
118     MMCO_SET_MAX_LONG,
119     MMCO_RESET, 
120     MMCO_LONG,
121 } MMCOOpcode;
122
123 /**
124  * Memory management control operation.
125  */
126 typedef struct MMCO{
127     MMCOOpcode opcode;
128     int short_frame_num;
129     int long_index;
130 } MMCO;
131
132 /**
133  * H264Context
134  */
135 typedef struct H264Context{
136     MpegEncContext s;
137     int nal_ref_idc;    
138     int nal_unit_type;
139 #define NAL_SLICE               1
140 #define NAL_DPA                 2
141 #define NAL_DPB                 3
142 #define NAL_DPC                 4
143 #define NAL_IDR_SLICE           5
144 #define NAL_SEI                 6
145 #define NAL_SPS                 7
146 #define NAL_PPS                 8
147 #define NAL_PICTURE_DELIMITER   9
148 #define NAL_FILTER_DATA         10
149     uint8_t *rbsp_buffer;
150     int rbsp_buffer_size;
151
152     int chroma_qp; //QPc
153
154     int prev_mb_skiped; //FIXME remove (IMHO not used)
155
156     //prediction stuff
157     int chroma_pred_mode;
158     int intra16x16_pred_mode;
159     
160     int8_t intra4x4_pred_mode_cache[5*8];
161     int8_t (*intra4x4_pred_mode)[8];
162     void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
163     void (*pred8x8  [4+3])(uint8_t *src, int stride);
164     void (*pred16x16[4+3])(uint8_t *src, int stride);
165     unsigned int topleft_samples_available;
166     unsigned int top_samples_available;
167     unsigned int topright_samples_available;
168     unsigned int left_samples_available;
169
170     /**
171      * non zero coeff count cache.
172      * is 64 if not available.
173      */
174     uint8_t non_zero_count_cache[6*8];
175     uint8_t (*non_zero_count)[16];
176
177     /**
178      * Motion vector cache.
179      */
180     int16_t mv_cache[2][5*8][2];
181     int8_t ref_cache[2][5*8];
182 #define LIST_NOT_USED -1 //FIXME rename?
183 #define PART_NOT_AVAILABLE -2
184     
185     /**
186      * is 1 if the specific list MV&references are set to 0,0,-2.
187      */
188     int mv_cache_clean[2];
189
190     int block_offset[16+8];
191     int chroma_subblock_offset[16]; //FIXME remove
192     
193     uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
194     uint16_t *mb2b8_xy;
195     int b_stride;
196     int b8_stride;
197
198     int halfpel_flag;
199     int thirdpel_flag;
200
201     SPS sps_buffer[MAX_SPS_COUNT];
202     SPS sps; ///< current sps
203     
204     PPS pps_buffer[MAX_PPS_COUNT];
205     /**
206      * current pps
207      */
208     PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
209
210     int slice_num;
211     uint8_t *slice_table_base;
212     uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
213     int slice_type;
214     int slice_type_fixed;
215     
216     //interlacing specific flags
217     int mb_field_decoding_flag;
218     
219     int sub_mb_type[4];
220     
221     //POC stuff
222     int poc_lsb;
223     int poc_msb;
224     int delta_poc_bottom;
225     int delta_poc[2];
226     int frame_num;
227     int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
228     int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
229     int frame_num_offset;         ///< for POC type 2
230     int prev_frame_num_offset;    ///< for POC type 2
231     int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
232
233     /**
234      * frame_num for frames or 2*frame_num for field pics.
235      */
236     int curr_pic_num;
237     
238     /**
239      * max_frame_num or 2*max_frame_num for field pics.
240      */
241     int max_pic_num;
242
243     //Weighted pred stuff
244     int luma_log2_weight_denom;
245     int chroma_log2_weight_denom;
246     int luma_weight[2][16];
247     int luma_offset[2][16];
248     int chroma_weight[2][16][2];
249     int chroma_offset[2][16][2];
250    
251     //deblock
252     int disable_deblocking_filter_idc;
253     int slice_alpha_c0_offset_div2;
254     int slice_beta_offset_div2;
255      
256     int redundant_pic_count;
257     
258     int direct_spatial_mv_pred;
259
260     /**
261      * num_ref_idx_l0/1_active_minus1 + 1
262      */
263     int ref_count[2];// FIXME split for AFF
264     Picture *short_ref[16];
265     Picture *long_ref[16];
266     Picture default_ref_list[2][32];
267     Picture ref_list[2][32]; //FIXME size?
268     Picture field_ref_list[2][32]; //FIXME size?
269     
270     /**
271      * memory management control operations buffer.
272      */
273     MMCO mmco[MAX_MMCO_COUNT];
274     int mmco_index;
275     
276     int long_ref_count;  ///< number of actual long term references
277     int short_ref_count; ///< number of actual short term references
278     
279     //data partitioning
280     GetBitContext intra_gb;
281     GetBitContext inter_gb;
282     GetBitContext *intra_gb_ptr;
283     GetBitContext *inter_gb_ptr;
284     
285     DCTELEM mb[16*24] __align8;
286 }H264Context;
287
288 static VLC coeff_token_vlc[4];
289 static VLC chroma_dc_coeff_token_vlc;
290
291 static VLC total_zeros_vlc[15];
292 static VLC chroma_dc_total_zeros_vlc[3];
293
294 static VLC run_vlc[6];
295 static VLC run7_vlc;
296
297 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
298 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
299
300 /**
301  * fill a rectangle.
302  * @param h height of the recatangle, should be a constant
303  * @param w width of the recatangle, should be a constant
304  * @param size the size of val (1 or 4), should be a constant
305  */
306 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
307     uint8_t *p= (uint8_t*)vp;
308     assert(size==1 || size==4);
309     
310     w      *= size;
311     stride *= size;
312     
313 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
314     if(w==2 && h==2){
315         *(uint16_t*)(p + 0)=
316         *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
317     }else if(w==2 && h==4){
318         *(uint16_t*)(p + 0*stride)=
319         *(uint16_t*)(p + 1*stride)=
320         *(uint16_t*)(p + 2*stride)=
321         *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
322     }else if(w==4 && h==2){
323         *(uint32_t*)(p + 0*stride)=
324         *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
325     }else if(w==4 && h==4){
326         *(uint32_t*)(p + 0*stride)=
327         *(uint32_t*)(p + 1*stride)=
328         *(uint32_t*)(p + 2*stride)=
329         *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
330     }else if(w==8 && h==1){
331         *(uint32_t*)(p + 0)=
332         *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
333     }else if(w==8 && h==2){
334         *(uint32_t*)(p + 0 + 0*stride)=
335         *(uint32_t*)(p + 4 + 0*stride)=
336         *(uint32_t*)(p + 0 + 1*stride)=
337         *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
338     }else if(w==8 && h==4){
339         *(uint64_t*)(p + 0*stride)=
340         *(uint64_t*)(p + 1*stride)=
341         *(uint64_t*)(p + 2*stride)=
342         *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
343     }else if(w==16 && h==2){
344         *(uint64_t*)(p + 0+0*stride)=
345         *(uint64_t*)(p + 8+0*stride)=
346         *(uint64_t*)(p + 0+1*stride)=
347         *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
348     }else if(w==16 && h==4){
349         *(uint64_t*)(p + 0+0*stride)=
350         *(uint64_t*)(p + 8+0*stride)=
351         *(uint64_t*)(p + 0+1*stride)=
352         *(uint64_t*)(p + 8+1*stride)=
353         *(uint64_t*)(p + 0+2*stride)=
354         *(uint64_t*)(p + 8+2*stride)=
355         *(uint64_t*)(p + 0+3*stride)=
356         *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
357     }else
358         assert(0);
359 }
360
361 static inline void fill_caches(H264Context *h, int mb_type){
362     MpegEncContext * const s = &h->s;
363     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
364     int topleft_xy, top_xy, topright_xy, left_xy[2];
365     int topleft_type, top_type, topright_type, left_type[2];
366     int left_block[4];
367     int i;
368
369     //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
370     
371     if(h->sps.mb_aff){
372     //FIXME
373     }else{
374         topleft_xy = mb_xy-1 - s->mb_stride;
375         top_xy     = mb_xy   - s->mb_stride;
376         topright_xy= mb_xy+1 - s->mb_stride;
377         left_xy[0]   = mb_xy-1;
378         left_xy[1]   = mb_xy-1;
379         left_block[0]= 0;
380         left_block[1]= 1;
381         left_block[2]= 2;
382         left_block[3]= 3;
383     }
384
385     topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
386     top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
387     topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
388     left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
389     left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
390
391     if(IS_INTRA(mb_type)){
392         h->topleft_samples_available= 
393         h->top_samples_available= 
394         h->left_samples_available= 0xFFFF;
395         h->topright_samples_available= 0xEEEA;
396
397         if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
398             h->topleft_samples_available= 0xB3FF;
399             h->top_samples_available= 0x33FF;
400             h->topright_samples_available= 0x26EA;
401         }
402         for(i=0; i<2; i++){
403             if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
404                 h->topleft_samples_available&= 0xDF5F;
405                 h->left_samples_available&= 0x5F5F;
406             }
407         }
408         
409         if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
410             h->topleft_samples_available&= 0x7FFF;
411         
412         if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
413             h->topright_samples_available&= 0xFBFF;
414     
415         if(IS_INTRA4x4(mb_type)){
416             if(IS_INTRA4x4(top_type)){
417                 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
418                 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
419                 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
420                 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
421             }else{
422                 int pred;
423                 if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
424                     pred= 2;
425                 else{
426                     pred= -1;
427                 }
428                 h->intra4x4_pred_mode_cache[4+8*0]=
429                 h->intra4x4_pred_mode_cache[5+8*0]=
430                 h->intra4x4_pred_mode_cache[6+8*0]=
431                 h->intra4x4_pred_mode_cache[7+8*0]= pred;
432             }
433             for(i=0; i<2; i++){
434                 if(IS_INTRA4x4(left_type[i])){
435                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
436                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
437                 }else{
438                     int pred;
439                     if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
440                         pred= 2;
441                     else{
442                         pred= -1;
443                     }
444                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
445                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
446                 }
447             }
448         }
449     }
450     
451     
452 /*
453 0 . T T. T T T T 
454 1 L . .L . . . . 
455 2 L . .L . . . . 
456 3 . T TL . . . . 
457 4 L . .L . . . . 
458 5 L . .. . . . . 
459 */
460 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
461     if(top_type){
462         h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
463         h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
464         h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
465         h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
466     
467         h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
468         h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
469     
470         h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
471         h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
472     }else{
473         h->non_zero_count_cache[4+8*0]=      
474         h->non_zero_count_cache[5+8*0]=
475         h->non_zero_count_cache[6+8*0]=
476         h->non_zero_count_cache[7+8*0]=
477     
478         h->non_zero_count_cache[1+8*0]=
479         h->non_zero_count_cache[2+8*0]=
480     
481         h->non_zero_count_cache[1+8*3]=
482         h->non_zero_count_cache[2+8*3]= 64;
483     }
484     
485     if(left_type[0]){
486         h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
487         h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
488         h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
489         h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
490     }else{
491         h->non_zero_count_cache[3+8*1]= 
492         h->non_zero_count_cache[3+8*2]= 
493         h->non_zero_count_cache[0+8*1]= 
494         h->non_zero_count_cache[0+8*4]= 64;
495     }
496     
497     if(left_type[1]){
498         h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
499         h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
500         h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
501         h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
502     }else{
503         h->non_zero_count_cache[3+8*3]= 
504         h->non_zero_count_cache[3+8*4]= 
505         h->non_zero_count_cache[0+8*2]= 
506         h->non_zero_count_cache[0+8*5]= 64;
507     }
508     
509 #if 1
510     if(IS_INTER(mb_type)){
511         int list;
512         for(list=0; list<2; list++){
513             if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
514                 /*if(!h->mv_cache_clean[list]){
515                     memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
516                     memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
517                     h->mv_cache_clean[list]= 1;
518                 }*/
519                 continue; //FIXME direct mode ...
520             }
521             h->mv_cache_clean[list]= 0;
522             
523             if(IS_INTER(topleft_type)){
524                 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
525                 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
526                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
527                 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
528             }else{
529                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
530                 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
531             }
532             
533             if(IS_INTER(top_type)){
534                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
535                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
536                 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
537                 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
538                 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
539                 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
540                 h->ref_cache[list][scan8[0] + 0 - 1*8]=
541                 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
542                 h->ref_cache[list][scan8[0] + 2 - 1*8]=
543                 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
544             }else{
545                 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
546                 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
547                 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
548                 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
549                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
550             }
551
552             if(IS_INTER(topright_type)){
553                 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
554                 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
555                 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
556                 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
557             }else{
558                 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
559                 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
560             }
561             
562             //FIXME unify cleanup or sth
563             if(IS_INTER(left_type[0])){
564                 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
565                 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
566                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
567                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
568                 h->ref_cache[list][scan8[0] - 1 + 0*8]= 
569                 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
570             }else{
571                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
572                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
573                 h->ref_cache[list][scan8[0] - 1 + 0*8]=
574                 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
575             }
576             
577             if(IS_INTER(left_type[1])){
578                 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
579                 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
580                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
581                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
582                 h->ref_cache[list][scan8[0] - 1 + 2*8]= 
583                 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
584             }else{
585                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
586                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
587                 h->ref_cache[list][scan8[0] - 1 + 2*8]=
588                 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
589             }
590
591             h->ref_cache[list][scan8[5 ]+1] = 
592             h->ref_cache[list][scan8[7 ]+1] = 
593             h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
594             h->ref_cache[list][scan8[4 ]] = 
595             h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
596             *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
597             *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
598             *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
599             *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
600             *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
601         }
602 //FIXME
603
604     }
605 #endif
606 }
607
608 static inline void write_back_intra_pred_mode(H264Context *h){
609     MpegEncContext * const s = &h->s;
610     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
611
612     h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
613     h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
614     h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
615     h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
616     h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
617     h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
618     h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
619 }
620
621 /**
622  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
623  */
624 static inline int check_intra4x4_pred_mode(H264Context *h){
625     MpegEncContext * const s = &h->s;
626     static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
627     static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
628     int i;
629     
630     if(!(h->top_samples_available&0x8000)){
631         for(i=0; i<4; i++){
632             int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
633             if(status<0){
634                 fprintf(stderr, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
635                 return -1;
636             } else if(status){
637                 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
638             }
639         }
640     }
641     
642     if(!(h->left_samples_available&0x8000)){
643         for(i=0; i<4; i++){
644             int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
645             if(status<0){
646                 fprintf(stderr, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
647                 return -1;
648             } else if(status){
649                 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
650             }
651         }
652     }
653
654     return 0;
655 } //FIXME cleanup like next
656
657 /**
658  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
659  */
660 static inline int check_intra_pred_mode(H264Context *h, int mode){
661     MpegEncContext * const s = &h->s;
662     static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
663     static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
664     
665     if(!(h->top_samples_available&0x8000)){
666         mode= top[ mode ];
667         if(mode<0){
668             fprintf(stderr, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
669             return -1;
670         }
671     }
672     
673     if(!(h->left_samples_available&0x8000)){
674         mode= left[ mode ];
675         if(mode<0){
676             fprintf(stderr, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
677             return -1;
678         } 
679     }
680
681     return mode;
682 }
683
684 /**
685  * gets the predicted intra4x4 prediction mode.
686  */
687 static inline int pred_intra_mode(H264Context *h, int n){
688     const int index8= scan8[n];
689     const int left= h->intra4x4_pred_mode_cache[index8 - 1];
690     const int top = h->intra4x4_pred_mode_cache[index8 - 8];
691     const int min= FFMIN(left, top);
692
693     tprintf("mode:%d %d min:%d\n", left ,top, min);
694
695     if(min<0) return DC_PRED;
696     else      return min;
697 }
698
699 static inline void write_back_non_zero_count(H264Context *h){
700     MpegEncContext * const s = &h->s;
701     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
702
703     h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
704     h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
705     h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
706     h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
707     h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
708     h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
709     h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
710     
711     h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
712     h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
713     h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
714
715     h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
716     h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
717     h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
718 }
719
720 /**
721  * gets the predicted number of non zero coefficients.
722  * @param n block index
723  */
724 static inline int pred_non_zero_count(H264Context *h, int n){
725     const int index8= scan8[n];
726     const int left= h->non_zero_count_cache[index8 - 1];
727     const int top = h->non_zero_count_cache[index8 - 8];
728     int i= left + top;
729     
730     if(i<64) i= (i+1)>>1;
731
732     tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
733
734     return i&31;
735 }
736
737 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
738     const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
739
740     if(topright_ref != PART_NOT_AVAILABLE){
741         *C= h->mv_cache[list][ i - 8 + part_width ];
742         return topright_ref;
743     }else{
744         tprintf("topright MV not available\n");
745
746         *C= h->mv_cache[list][ i - 8 - 1 ];
747         return h->ref_cache[list][ i - 8 - 1 ];
748     }
749 }
750
751 /**
752  * gets the predicted MV.
753  * @param n the block index
754  * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
755  * @param mx the x component of the predicted motion vector
756  * @param my the y component of the predicted motion vector
757  */
758 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
759     const int index8= scan8[n];
760     const int top_ref=      h->ref_cache[list][ index8 - 8 ];
761     const int left_ref=     h->ref_cache[list][ index8 - 1 ];
762     const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
763     const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
764     const int16_t * C;
765     int diagonal_ref, match_count;
766
767     assert(part_width==1 || part_width==2 || part_width==4);
768
769 /* mv_cache
770   B . . A T T T T 
771   U . . L . . , .
772   U . . L . . . .
773   U . . L . . , .
774   . . . L . . . .
775 */
776
777     diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
778     match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
779     
780     if(match_count > 1){ //most common
781         *mx= mid_pred(A[0], B[0], C[0]);
782         *my= mid_pred(A[1], B[1], C[1]);
783     }else if(match_count==1){
784         if(left_ref==ref){
785             *mx= A[0];
786             *my= A[1];        
787         }else if(top_ref==ref){
788             *mx= B[0];
789             *my= B[1];        
790         }else{
791             *mx= C[0];
792             *my= C[1];        
793         }
794     }else{
795         if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
796             *mx= A[0];
797             *my= A[1];        
798         }else{
799             *mx= mid_pred(A[0], B[0], C[0]);
800             *my= mid_pred(A[1], B[1], C[1]);
801         }
802     }
803         
804     tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
805 }
806
807 /**
808  * gets the directionally predicted 16x8 MV.
809  * @param n the block index
810  * @param mx the x component of the predicted motion vector
811  * @param my the y component of the predicted motion vector
812  */
813 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
814     if(n==0){
815         const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
816         const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
817
818         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
819         
820         if(top_ref == ref){
821             *mx= B[0];
822             *my= B[1];
823             return;
824         }
825     }else{
826         const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
827         const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
828         
829         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
830
831         if(left_ref == ref){
832             *mx= A[0];
833             *my= A[1];
834             return;
835         }
836     }
837
838     //RARE
839     pred_motion(h, n, 4, list, ref, mx, my);
840 }
841
842 /**
843  * gets the directionally predicted 8x16 MV.
844  * @param n the block index
845  * @param mx the x component of the predicted motion vector
846  * @param my the y component of the predicted motion vector
847  */
848 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
849     if(n==0){
850         const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
851         const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
852         
853         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
854
855         if(left_ref == ref){
856             *mx= A[0];
857             *my= A[1];
858             return;
859         }
860     }else{
861         const int16_t * C;
862         int diagonal_ref;
863
864         diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
865         
866         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
867
868         if(diagonal_ref == ref){ 
869             *mx= C[0];
870             *my= C[1];
871             return;
872         }
873     }
874
875     //RARE
876     pred_motion(h, n, 2, list, ref, mx, my);
877 }
878
879 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
880     const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
881     const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
882
883     tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
884
885     if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
886        || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
887        || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
888        
889         *mx = *my = 0;
890         return;
891     }
892         
893     pred_motion(h, 0, 4, 0, 0, mx, my);
894
895     return;
896 }
897
898 static inline void write_back_motion(H264Context *h, int mb_type){
899     MpegEncContext * const s = &h->s;
900     const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
901     const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
902     int list;
903
904     for(list=0; list<2; list++){
905         int y;
906         if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
907             if(1){ //FIXME skip or never read if mb_type doesnt use it
908                 for(y=0; y<4; y++){
909                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
910                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
911                 }
912                 for(y=0; y<2; y++){
913                     *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
914                 }
915             }
916             continue; //FIXME direct mode ...
917         }
918         
919         for(y=0; y<4; y++){
920             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
921             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
922         }
923         for(y=0; y<2; y++){
924             s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
925             s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
926         }
927     }
928 }
929
930 /**
931  * Decodes a network abstraction layer unit.
932  * @param consumed is the number of bytes used as input
933  * @param length is the length of the array
934  * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
935  * @returns decoded bytes, might be src+1 if no escapes 
936  */
937 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
938     int i, si, di;
939     uint8_t *dst;
940
941 //    src[0]&0x80;              //forbidden bit
942     h->nal_ref_idc= src[0]>>5;
943     h->nal_unit_type= src[0]&0x1F;
944
945     src++; length--;
946 #if 0    
947     for(i=0; i<length; i++)
948         printf("%2X ", src[i]);
949 #endif
950     for(i=0; i+1<length; i+=2){
951         if(src[i]) continue;
952         if(i>0 && src[i-1]==0) i--;
953         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
954             if(src[i+2]!=3){
955                 /* startcode, so we must be past the end */
956                 length=i;
957             }
958             break;
959         }
960     }
961
962     if(i>=length-1){ //no escaped 0
963         *dst_length= length;
964         *consumed= length+1; //+1 for the header
965         return src; 
966     }
967
968     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
969     dst= h->rbsp_buffer;
970
971 //printf("deoding esc\n");
972     si=di=0;
973     while(si<length){ 
974         //remove escapes (very rare 1:2^22)
975         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
976             if(src[si+2]==3){ //escape
977                 dst[di++]= 0;
978                 dst[di++]= 0;
979                 si+=3;
980             }else //next start code
981                 break;
982         }
983
984         dst[di++]= src[si++];
985     }
986
987     *dst_length= di;
988     *consumed= si + 1;//+1 for the header
989 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
990     return dst;
991 }
992
993 /**
994  * @param src the data which should be escaped
995  * @param dst the target buffer, dst+1 == src is allowed as a special case
996  * @param length the length of the src data
997  * @param dst_length the length of the dst array
998  * @returns length of escaped data in bytes or -1 if an error occured
999  */
1000 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1001     int i, escape_count, si, di;
1002     uint8_t *temp;
1003     
1004     assert(length>=0);
1005     assert(dst_length>0);
1006     
1007     dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1008
1009     if(length==0) return 1;
1010
1011     escape_count= 0;
1012     for(i=0; i<length; i+=2){
1013         if(src[i]) continue;
1014         if(i>0 && src[i-1]==0) 
1015             i--;
1016         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1017             escape_count++;
1018             i+=2;
1019         }
1020     }
1021     
1022     if(escape_count==0){ 
1023         if(dst+1 != src)
1024             memcpy(dst+1, src, length);
1025         return length + 1;
1026     }
1027     
1028     if(length + escape_count + 1> dst_length)
1029         return -1;
1030
1031     //this should be damn rare (hopefully)
1032
1033     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1034     temp= h->rbsp_buffer;
1035 //printf("encoding esc\n");
1036     
1037     si= 0;
1038     di= 0;
1039     while(si < length){
1040         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1041             temp[di++]= 0; si++;
1042             temp[di++]= 0; si++;
1043             temp[di++]= 3; 
1044             temp[di++]= src[si++];
1045         }
1046         else
1047             temp[di++]= src[si++];
1048     }
1049     memcpy(dst+1, temp, length+escape_count);
1050     
1051     assert(di == length+escape_count);
1052     
1053     return di + 1;
1054 }
1055
1056 /**
1057  * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1058  */
1059 static void encode_rbsp_trailing(PutBitContext *pb){
1060     int length;
1061     put_bits(pb, 1, 1);
1062     length= (-get_bit_count(pb))&7;
1063     if(length) put_bits(pb, length, 0);
1064 }
1065
1066 /**
1067  * identifies the exact end of the bitstream
1068  * @return the length of the trailing, or 0 if damaged
1069  */
1070 static int decode_rbsp_trailing(uint8_t *src){
1071     int v= *src;
1072     int r;
1073
1074     tprintf("rbsp trailing %X\n", v);
1075
1076     for(r=1; r<9; r++){
1077         if(v&1) return r;
1078         v>>=1;
1079     }
1080     return 0;
1081 }
1082
1083 /**
1084  * idct tranforms the 16 dc values and dequantize them.
1085  * @param qp quantization parameter
1086  */
1087 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1088     const int qmul= dequant_coeff[qp][0];
1089 #define stride 16
1090     int i;
1091     int temp[16]; //FIXME check if this is a good idea
1092     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1093     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1094
1095 //memset(block, 64, 2*256);
1096 //return;
1097     for(i=0; i<4; i++){
1098         const int offset= y_offset[i];
1099         const int z0= block[offset+stride*0] + block[offset+stride*4];
1100         const int z1= block[offset+stride*0] - block[offset+stride*4];
1101         const int z2= block[offset+stride*1] - block[offset+stride*5];
1102         const int z3= block[offset+stride*1] + block[offset+stride*5];
1103
1104         temp[4*i+0]= z0+z3;
1105         temp[4*i+1]= z1+z2;
1106         temp[4*i+2]= z1-z2;
1107         temp[4*i+3]= z0-z3;
1108     }
1109
1110     for(i=0; i<4; i++){
1111         const int offset= x_offset[i];
1112         const int z0= temp[4*0+i] + temp[4*2+i];
1113         const int z1= temp[4*0+i] - temp[4*2+i];
1114         const int z2= temp[4*1+i] - temp[4*3+i];
1115         const int z3= temp[4*1+i] + temp[4*3+i];
1116
1117         block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1118         block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1119         block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1120         block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1121     }
1122 }
1123
1124 /**
1125  * dct tranforms the 16 dc values.
1126  * @param qp quantization parameter ??? FIXME
1127  */
1128 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1129 //    const int qmul= dequant_coeff[qp][0];
1130     int i;
1131     int temp[16]; //FIXME check if this is a good idea
1132     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1133     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1134
1135     for(i=0; i<4; i++){
1136         const int offset= y_offset[i];
1137         const int z0= block[offset+stride*0] + block[offset+stride*4];
1138         const int z1= block[offset+stride*0] - block[offset+stride*4];
1139         const int z2= block[offset+stride*1] - block[offset+stride*5];
1140         const int z3= block[offset+stride*1] + block[offset+stride*5];
1141
1142         temp[4*i+0]= z0+z3;
1143         temp[4*i+1]= z1+z2;
1144         temp[4*i+2]= z1-z2;
1145         temp[4*i+3]= z0-z3;
1146     }
1147
1148     for(i=0; i<4; i++){
1149         const int offset= x_offset[i];
1150         const int z0= temp[4*0+i] + temp[4*2+i];
1151         const int z1= temp[4*0+i] - temp[4*2+i];
1152         const int z2= temp[4*1+i] - temp[4*3+i];
1153         const int z3= temp[4*1+i] + temp[4*3+i];
1154
1155         block[stride*0 +offset]= (z0 + z3)>>1;
1156         block[stride*2 +offset]= (z1 + z2)>>1;
1157         block[stride*8 +offset]= (z1 - z2)>>1;
1158         block[stride*10+offset]= (z0 - z3)>>1;
1159     }
1160 }
1161 #undef xStride
1162 #undef stride
1163
1164 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1165     const int qmul= dequant_coeff[qp][0];
1166     const int stride= 16*2;
1167     const int xStride= 16;
1168     int a,b,c,d,e;
1169
1170     a= block[stride*0 + xStride*0];
1171     b= block[stride*0 + xStride*1];
1172     c= block[stride*1 + xStride*0];
1173     d= block[stride*1 + xStride*1];
1174
1175     e= a-b;
1176     a= a+b;
1177     b= c-d;
1178     c= c+d;
1179
1180     block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1181     block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1182     block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1183     block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1184 }
1185
1186 static void chroma_dc_dct_c(DCTELEM *block){
1187     const int stride= 16*2;
1188     const int xStride= 16;
1189     int a,b,c,d,e;
1190
1191     a= block[stride*0 + xStride*0];
1192     b= block[stride*0 + xStride*1];
1193     c= block[stride*1 + xStride*0];
1194     d= block[stride*1 + xStride*1];
1195
1196     e= a-b;
1197     a= a+b;
1198     b= c-d;
1199     c= c+d;
1200
1201     block[stride*0 + xStride*0]= (a+c);
1202     block[stride*0 + xStride*1]= (e+b);
1203     block[stride*1 + xStride*0]= (a-c);
1204     block[stride*1 + xStride*1]= (e-b);
1205 }
1206
1207 /**
1208  * gets the chroma qp.
1209  */
1210 static inline int get_chroma_qp(H264Context *h, int qscale){
1211     
1212     return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1213 }
1214
1215
1216 /**
1217  *
1218  */
1219 static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
1220     int i;
1221     uint8_t *cm = cropTbl + MAX_NEG_CROP;
1222
1223     block[0] += 32;
1224 #if 1
1225     for(i=0; i<4; i++){
1226         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1227         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1228         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1229         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1230
1231         block[i + 4*0]= z0 + z3;
1232         block[i + 4*1]= z1 + z2;
1233         block[i + 4*2]= z1 - z2;
1234         block[i + 4*3]= z0 - z3;
1235     }
1236
1237     for(i=0; i<4; i++){
1238         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1239         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1240         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1241         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1242
1243         dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ];
1244         dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ];
1245         dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ];
1246         dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ];
1247     }
1248 #else
1249     for(i=0; i<4; i++){
1250         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1251         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1252         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1253         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1254
1255         block[0 + 4*i]= z0 + z3;
1256         block[1 + 4*i]= z1 + z2;
1257         block[2 + 4*i]= z1 - z2;
1258         block[3 + 4*i]= z0 - z3;
1259     }
1260
1261     for(i=0; i<4; i++){
1262         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1263         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1264         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1265         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1266
1267         dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
1268         dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
1269         dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
1270         dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
1271     }
1272 #endif
1273 }
1274
1275 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1276     int i;
1277     //FIXME try int temp instead of block
1278     
1279     for(i=0; i<4; i++){
1280         const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1281         const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1282         const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1283         const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1284         const int z0= d0 + d3;
1285         const int z3= d0 - d3;
1286         const int z1= d1 + d2;
1287         const int z2= d1 - d2;
1288         
1289         block[0 + 4*i]=   z0 +   z1;
1290         block[1 + 4*i]= 2*z3 +   z2;
1291         block[2 + 4*i]=   z0 -   z1;
1292         block[3 + 4*i]=   z3 - 2*z2;
1293     }    
1294
1295     for(i=0; i<4; i++){
1296         const int z0= block[0*4 + i] + block[3*4 + i];
1297         const int z3= block[0*4 + i] - block[3*4 + i];
1298         const int z1= block[1*4 + i] + block[2*4 + i];
1299         const int z2= block[1*4 + i] - block[2*4 + i];
1300         
1301         block[0*4 + i]=   z0 +   z1;
1302         block[1*4 + i]= 2*z3 +   z2;
1303         block[2*4 + i]=   z0 -   z1;
1304         block[3*4 + i]=   z3 - 2*z2;
1305     }
1306 }
1307
1308 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1309 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1310 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1311     int i;
1312     const int * const quant_table= quant_coeff[qscale];
1313     const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1314     const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1315     const unsigned int threshold2= (threshold1<<1);
1316     int last_non_zero;
1317
1318     if(seperate_dc){
1319         if(qscale<=18){
1320             //avoid overflows
1321             const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1322             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1323             const unsigned int dc_threshold2= (dc_threshold1<<1);
1324
1325             int level= block[0]*quant_coeff[qscale+18][0];
1326             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1327                 if(level>0){
1328                     level= (dc_bias + level)>>(QUANT_SHIFT-2);
1329                     block[0]= level;
1330                 }else{
1331                     level= (dc_bias - level)>>(QUANT_SHIFT-2);
1332                     block[0]= -level;
1333                 }
1334 //                last_non_zero = i;
1335             }else{
1336                 block[0]=0;
1337             }
1338         }else{
1339             const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1340             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1341             const unsigned int dc_threshold2= (dc_threshold1<<1);
1342
1343             int level= block[0]*quant_table[0];
1344             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1345                 if(level>0){
1346                     level= (dc_bias + level)>>(QUANT_SHIFT+1);
1347                     block[0]= level;
1348                 }else{
1349                     level= (dc_bias - level)>>(QUANT_SHIFT+1);
1350                     block[0]= -level;
1351                 }
1352 //                last_non_zero = i;
1353             }else{
1354                 block[0]=0;
1355             }
1356         }
1357         last_non_zero= 0;
1358         i=1;
1359     }else{
1360         last_non_zero= -1;
1361         i=0;
1362     }
1363
1364     for(; i<16; i++){
1365         const int j= scantable[i];
1366         int level= block[j]*quant_table[j];
1367
1368 //        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1369 //           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1370         if(((unsigned)(level+threshold1))>threshold2){
1371             if(level>0){
1372                 level= (bias + level)>>QUANT_SHIFT;
1373                 block[j]= level;
1374             }else{
1375                 level= (bias - level)>>QUANT_SHIFT;
1376                 block[j]= -level;
1377             }
1378             last_non_zero = i;
1379         }else{
1380             block[j]=0;
1381         }
1382     }
1383
1384     return last_non_zero;
1385 }
1386
1387 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1388     const uint32_t a= ((uint32_t*)(src-stride))[0];
1389     ((uint32_t*)(src+0*stride))[0]= a;
1390     ((uint32_t*)(src+1*stride))[0]= a;
1391     ((uint32_t*)(src+2*stride))[0]= a;
1392     ((uint32_t*)(src+3*stride))[0]= a;
1393 }
1394
1395 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1396     ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1397     ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1398     ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1399     ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1400 }
1401
1402 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1403     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1404                    + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1405     
1406     ((uint32_t*)(src+0*stride))[0]= 
1407     ((uint32_t*)(src+1*stride))[0]= 
1408     ((uint32_t*)(src+2*stride))[0]= 
1409     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1410 }
1411
1412 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1413     const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1414     
1415     ((uint32_t*)(src+0*stride))[0]= 
1416     ((uint32_t*)(src+1*stride))[0]= 
1417     ((uint32_t*)(src+2*stride))[0]= 
1418     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1419 }
1420
1421 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1422     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1423     
1424     ((uint32_t*)(src+0*stride))[0]= 
1425     ((uint32_t*)(src+1*stride))[0]= 
1426     ((uint32_t*)(src+2*stride))[0]= 
1427     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1428 }
1429
1430 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1431     ((uint32_t*)(src+0*stride))[0]= 
1432     ((uint32_t*)(src+1*stride))[0]= 
1433     ((uint32_t*)(src+2*stride))[0]= 
1434     ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1435 }
1436
1437
1438 #define LOAD_TOP_RIGHT_EDGE\
1439     const int t4= topright[0];\
1440     const int t5= topright[1];\
1441     const int t6= topright[2];\
1442     const int t7= topright[3];\
1443
1444 #define LOAD_LEFT_EDGE\
1445     const int l0= src[-1+0*stride];\
1446     const int l1= src[-1+1*stride];\
1447     const int l2= src[-1+2*stride];\
1448     const int l3= src[-1+3*stride];\
1449
1450 #define LOAD_TOP_EDGE\
1451     const int t0= src[ 0-1*stride];\
1452     const int t1= src[ 1-1*stride];\
1453     const int t2= src[ 2-1*stride];\
1454     const int t3= src[ 3-1*stride];\
1455
1456 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1457     const int lt= src[-1-1*stride];
1458     LOAD_TOP_EDGE
1459     LOAD_LEFT_EDGE
1460
1461     src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1462     src[0+2*stride]=
1463     src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1464     src[0+1*stride]=
1465     src[1+2*stride]=
1466     src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1467     src[0+0*stride]=
1468     src[1+1*stride]=
1469     src[2+2*stride]=
1470     src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1471     src[1+0*stride]=
1472     src[2+1*stride]=
1473     src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1474     src[2+0*stride]=
1475     src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1476     src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1477 };
1478
1479 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1480     LOAD_TOP_EDGE    
1481     LOAD_TOP_RIGHT_EDGE    
1482 //    LOAD_LEFT_EDGE    
1483
1484     src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1485     src[1+0*stride]=
1486     src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1487     src[2+0*stride]=
1488     src[1+1*stride]=
1489     src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1490     src[3+0*stride]=
1491     src[2+1*stride]=
1492     src[1+2*stride]=
1493     src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1494     src[3+1*stride]=
1495     src[2+2*stride]=
1496     src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1497     src[3+2*stride]=
1498     src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1499     src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1500 };
1501
1502 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1503     const int lt= src[-1-1*stride];
1504     LOAD_TOP_EDGE    
1505     LOAD_LEFT_EDGE    
1506     const __attribute__((unused)) int unu= l3;
1507
1508     src[0+0*stride]=
1509     src[1+2*stride]=(lt + t0 + 1)>>1;
1510     src[1+0*stride]=
1511     src[2+2*stride]=(t0 + t1 + 1)>>1;
1512     src[2+0*stride]=
1513     src[3+2*stride]=(t1 + t2 + 1)>>1;
1514     src[3+0*stride]=(t2 + t3 + 1)>>1;
1515     src[0+1*stride]=
1516     src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1517     src[1+1*stride]=
1518     src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1519     src[2+1*stride]=
1520     src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1521     src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1522     src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1523     src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1524 };
1525
1526 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1527     LOAD_TOP_EDGE    
1528     LOAD_TOP_RIGHT_EDGE    
1529     const __attribute__((unused)) int unu= t7;
1530
1531     src[0+0*stride]=(t0 + t1 + 1)>>1;
1532     src[1+0*stride]=
1533     src[0+2*stride]=(t1 + t2 + 1)>>1;
1534     src[2+0*stride]=
1535     src[1+2*stride]=(t2 + t3 + 1)>>1;
1536     src[3+0*stride]=
1537     src[2+2*stride]=(t3 + t4+ 1)>>1;
1538     src[3+2*stride]=(t4 + t5+ 1)>>1;
1539     src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1540     src[1+1*stride]=
1541     src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1542     src[2+1*stride]=
1543     src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1544     src[3+1*stride]=
1545     src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1546     src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1547 };
1548
1549 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1550     LOAD_LEFT_EDGE    
1551
1552     src[0+0*stride]=(l0 + l1 + 1)>>1;
1553     src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1554     src[2+0*stride]=
1555     src[0+1*stride]=(l1 + l2 + 1)>>1;
1556     src[3+0*stride]=
1557     src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1558     src[2+1*stride]=
1559     src[0+2*stride]=(l2 + l3 + 1)>>1;
1560     src[3+1*stride]=
1561     src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1562     src[3+2*stride]=
1563     src[1+3*stride]=
1564     src[0+3*stride]=
1565     src[2+2*stride]=
1566     src[2+3*stride]=
1567     src[3+3*stride]=l3;
1568 };
1569     
1570 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1571     const int lt= src[-1-1*stride];
1572     LOAD_TOP_EDGE    
1573     LOAD_LEFT_EDGE    
1574     const __attribute__((unused)) int unu= t3;
1575
1576     src[0+0*stride]=
1577     src[2+1*stride]=(lt + l0 + 1)>>1;
1578     src[1+0*stride]=
1579     src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1580     src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1581     src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1582     src[0+1*stride]=
1583     src[2+2*stride]=(l0 + l1 + 1)>>1;
1584     src[1+1*stride]=
1585     src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1586     src[0+2*stride]=
1587     src[2+3*stride]=(l1 + l2+ 1)>>1;
1588     src[1+2*stride]=
1589     src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1590     src[0+3*stride]=(l2 + l3 + 1)>>1;
1591     src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1592 };
1593
1594 static void pred16x16_vertical_c(uint8_t *src, int stride){
1595     int i;
1596     const uint32_t a= ((uint32_t*)(src-stride))[0];
1597     const uint32_t b= ((uint32_t*)(src-stride))[1];
1598     const uint32_t c= ((uint32_t*)(src-stride))[2];
1599     const uint32_t d= ((uint32_t*)(src-stride))[3];
1600     
1601     for(i=0; i<16; i++){
1602         ((uint32_t*)(src+i*stride))[0]= a;
1603         ((uint32_t*)(src+i*stride))[1]= b;
1604         ((uint32_t*)(src+i*stride))[2]= c;
1605         ((uint32_t*)(src+i*stride))[3]= d;
1606     }
1607 }
1608
1609 static void pred16x16_horizontal_c(uint8_t *src, int stride){
1610     int i;
1611
1612     for(i=0; i<16; i++){
1613         ((uint32_t*)(src+i*stride))[0]=
1614         ((uint32_t*)(src+i*stride))[1]=
1615         ((uint32_t*)(src+i*stride))[2]=
1616         ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1617     }
1618 }
1619
1620 static void pred16x16_dc_c(uint8_t *src, int stride){
1621     int i, dc=0;
1622
1623     for(i=0;i<16; i++){
1624         dc+= src[-1+i*stride];
1625     }
1626     
1627     for(i=0;i<16; i++){
1628         dc+= src[i-stride];
1629     }
1630
1631     dc= 0x01010101*((dc + 16)>>5);
1632
1633     for(i=0; i<16; i++){
1634         ((uint32_t*)(src+i*stride))[0]=
1635         ((uint32_t*)(src+i*stride))[1]=
1636         ((uint32_t*)(src+i*stride))[2]=
1637         ((uint32_t*)(src+i*stride))[3]= dc;
1638     }
1639 }
1640
1641 static void pred16x16_left_dc_c(uint8_t *src, int stride){
1642     int i, dc=0;
1643
1644     for(i=0;i<16; i++){
1645         dc+= src[-1+i*stride];
1646     }
1647     
1648     dc= 0x01010101*((dc + 8)>>4);
1649
1650     for(i=0; i<16; i++){
1651         ((uint32_t*)(src+i*stride))[0]=
1652         ((uint32_t*)(src+i*stride))[1]=
1653         ((uint32_t*)(src+i*stride))[2]=
1654         ((uint32_t*)(src+i*stride))[3]= dc;
1655     }
1656 }
1657
1658 static void pred16x16_top_dc_c(uint8_t *src, int stride){
1659     int i, dc=0;
1660
1661     for(i=0;i<16; i++){
1662         dc+= src[i-stride];
1663     }
1664     dc= 0x01010101*((dc + 8)>>4);
1665
1666     for(i=0; i<16; i++){
1667         ((uint32_t*)(src+i*stride))[0]=
1668         ((uint32_t*)(src+i*stride))[1]=
1669         ((uint32_t*)(src+i*stride))[2]=
1670         ((uint32_t*)(src+i*stride))[3]= dc;
1671     }
1672 }
1673
1674 static void pred16x16_128_dc_c(uint8_t *src, int stride){
1675     int i;
1676
1677     for(i=0; i<16; i++){
1678         ((uint32_t*)(src+i*stride))[0]=
1679         ((uint32_t*)(src+i*stride))[1]=
1680         ((uint32_t*)(src+i*stride))[2]=
1681         ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1682     }
1683 }
1684
1685 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1686   int i, j, k;
1687   int a;
1688   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1689   const uint8_t * const src0 = src+7-stride;
1690   const uint8_t *src1 = src+8*stride-1;
1691   const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1692   int H = src0[1] - src0[-1];
1693   int V = src1[0] - src2[ 0];
1694   for(k=2; k<=8; ++k) {
1695     src1 += stride; src2 -= stride;
1696     H += k*(src0[k] - src0[-k]);
1697     V += k*(src1[0] - src2[ 0]);
1698   }
1699   if(svq3){
1700     H = ( 5*(H/4) ) / 16;
1701     V = ( 5*(V/4) ) / 16;
1702   }else{
1703     H = ( 5*H+32 ) >> 6;
1704     V = ( 5*V+32 ) >> 6;
1705   }
1706
1707   a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
1708   for(j=16; j>0; --j) {
1709     int b = a;
1710     a += V;
1711     for(i=-16; i<0; i+=4) {
1712       src[16+i] = cm[ (b    ) >> 5 ];
1713       src[17+i] = cm[ (b+  H) >> 5 ];
1714       src[18+i] = cm[ (b+2*H) >> 5 ];
1715       src[19+i] = cm[ (b+3*H) >> 5 ];
1716       b += 4*H;
1717     }
1718     src += stride;
1719   }
1720 }
1721
1722 static void pred16x16_plane_c(uint8_t *src, int stride){
1723     pred16x16_plane_compat_c(src, stride, 0);
1724 }
1725
1726 static void pred8x8_vertical_c(uint8_t *src, int stride){
1727     int i;
1728     const uint32_t a= ((uint32_t*)(src-stride))[0];
1729     const uint32_t b= ((uint32_t*)(src-stride))[1];
1730     
1731     for(i=0; i<8; i++){
1732         ((uint32_t*)(src+i*stride))[0]= a;
1733         ((uint32_t*)(src+i*stride))[1]= b;
1734     }
1735 }
1736
1737 static void pred8x8_horizontal_c(uint8_t *src, int stride){
1738     int i;
1739
1740     for(i=0; i<8; i++){
1741         ((uint32_t*)(src+i*stride))[0]=
1742         ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
1743     }
1744 }
1745
1746 static void pred8x8_128_dc_c(uint8_t *src, int stride){
1747     int i;
1748
1749     for(i=0; i<4; i++){
1750         ((uint32_t*)(src+i*stride))[0]= 
1751         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1752     }
1753     for(i=4; i<8; i++){
1754         ((uint32_t*)(src+i*stride))[0]= 
1755         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1756     }
1757 }
1758
1759 static void pred8x8_left_dc_c(uint8_t *src, int stride){
1760     int i;
1761     int dc0, dc2;
1762
1763     dc0=dc2=0;
1764     for(i=0;i<4; i++){
1765         dc0+= src[-1+i*stride];
1766         dc2+= src[-1+(i+4)*stride];
1767     }
1768     dc0= 0x01010101*((dc0 + 2)>>2);
1769     dc2= 0x01010101*((dc2 + 2)>>2);
1770
1771     for(i=0; i<4; i++){
1772         ((uint32_t*)(src+i*stride))[0]=
1773         ((uint32_t*)(src+i*stride))[1]= dc0;
1774     }
1775     for(i=4; i<8; i++){
1776         ((uint32_t*)(src+i*stride))[0]=
1777         ((uint32_t*)(src+i*stride))[1]= dc2;
1778     }
1779 }
1780
1781 static void pred8x8_top_dc_c(uint8_t *src, int stride){
1782     int i;
1783     int dc0, dc1;
1784
1785     dc0=dc1=0;
1786     for(i=0;i<4; i++){
1787         dc0+= src[i-stride];
1788         dc1+= src[4+i-stride];
1789     }
1790     dc0= 0x01010101*((dc0 + 2)>>2);
1791     dc1= 0x01010101*((dc1 + 2)>>2);
1792
1793     for(i=0; i<4; i++){
1794         ((uint32_t*)(src+i*stride))[0]= dc0;
1795         ((uint32_t*)(src+i*stride))[1]= dc1;
1796     }
1797     for(i=4; i<8; i++){
1798         ((uint32_t*)(src+i*stride))[0]= dc0;
1799         ((uint32_t*)(src+i*stride))[1]= dc1;
1800     }
1801 }
1802
1803
1804 static void pred8x8_dc_c(uint8_t *src, int stride){
1805     int i;
1806     int dc0, dc1, dc2, dc3;
1807
1808     dc0=dc1=dc2=0;
1809     for(i=0;i<4; i++){
1810         dc0+= src[-1+i*stride] + src[i-stride];
1811         dc1+= src[4+i-stride];
1812         dc2+= src[-1+(i+4)*stride];
1813     }
1814     dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
1815     dc0= 0x01010101*((dc0 + 4)>>3);
1816     dc1= 0x01010101*((dc1 + 2)>>2);
1817     dc2= 0x01010101*((dc2 + 2)>>2);
1818
1819     for(i=0; i<4; i++){
1820         ((uint32_t*)(src+i*stride))[0]= dc0;
1821         ((uint32_t*)(src+i*stride))[1]= dc1;
1822     }
1823     for(i=4; i<8; i++){
1824         ((uint32_t*)(src+i*stride))[0]= dc2;
1825         ((uint32_t*)(src+i*stride))[1]= dc3;
1826     }
1827 }
1828
1829 static void pred8x8_plane_c(uint8_t *src, int stride){
1830   int j, k;
1831   int a;
1832   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1833   const uint8_t * const src0 = src+3-stride;
1834   const uint8_t *src1 = src+4*stride-1;
1835   const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
1836   int H = src0[1] - src0[-1];
1837   int V = src1[0] - src2[ 0];
1838   for(k=2; k<=4; ++k) {
1839     src1 += stride; src2 -= stride;
1840     H += k*(src0[k] - src0[-k]);
1841     V += k*(src1[0] - src2[ 0]);
1842   }
1843   H = ( 17*H+16 ) >> 5;
1844   V = ( 17*V+16 ) >> 5;
1845
1846   a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
1847   for(j=8; j>0; --j) {
1848     int b = a;
1849     a += V;
1850     src[0] = cm[ (b    ) >> 5 ];
1851     src[1] = cm[ (b+  H) >> 5 ];
1852     src[2] = cm[ (b+2*H) >> 5 ];
1853     src[3] = cm[ (b+3*H) >> 5 ];
1854     src[4] = cm[ (b+4*H) >> 5 ];
1855     src[5] = cm[ (b+5*H) >> 5 ];
1856     src[6] = cm[ (b+6*H) >> 5 ];
1857     src[7] = cm[ (b+7*H) >> 5 ];
1858     src += stride;
1859   }
1860 }
1861
1862 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1863                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1864                            int src_x_offset, int src_y_offset,
1865                            qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1866     MpegEncContext * const s = &h->s;
1867     const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1868     const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1869     const int luma_xy= (mx&3) + ((my&3)<<2);
1870     uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
1871     uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
1872     uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
1873     int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
1874     int extra_height= extra_width;
1875     int emu=0;
1876     const int full_mx= mx>>2;
1877     const int full_my= my>>2;
1878     
1879     assert(pic->data[0]);
1880     
1881     if(mx&7) extra_width -= 3;
1882     if(my&7) extra_height -= 3;
1883     
1884     if(   full_mx < 0-extra_width 
1885        || full_my < 0-extra_height 
1886        || full_mx + 16/*FIXME*/ > s->width + extra_width 
1887        || full_my + 16/*FIXME*/ > s->height + extra_height){
1888         ff_emulated_edge_mc(s, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
1889             src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
1890         emu=1;
1891     }
1892     
1893     qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
1894     if(!square){
1895         qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
1896     }
1897     
1898     if(s->flags&CODEC_FLAG_GRAY) return;
1899     
1900     if(emu){
1901         ff_emulated_edge_mc(s, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1902             src_cb= s->edge_emu_buffer;
1903     }
1904     chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
1905
1906     if(emu){
1907         ff_emulated_edge_mc(s, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1908             src_cr= s->edge_emu_buffer;
1909     }
1910     chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
1911 }
1912
1913 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1914                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1915                            int x_offset, int y_offset,
1916                            qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1917                            qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1918                            int list0, int list1){
1919     MpegEncContext * const s = &h->s;
1920     qpel_mc_func *qpix_op=  qpix_put;
1921     h264_chroma_mc_func chroma_op= chroma_put;
1922     
1923     dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
1924     dest_cb +=   x_offset +   y_offset*s->uvlinesize;
1925     dest_cr +=   x_offset +   y_offset*s->uvlinesize;
1926     x_offset += 8*s->mb_x;
1927     y_offset += 8*s->mb_y;
1928     
1929     if(list0){
1930         Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1931         mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1932                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1933                            qpix_op, chroma_op);
1934
1935         qpix_op=  qpix_avg;
1936         chroma_op= chroma_avg;
1937     }
1938
1939     if(list1){
1940         Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1941         mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1942                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1943                            qpix_op, chroma_op);
1944     }
1945 }
1946
1947 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1948                       qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1949                       qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
1950     MpegEncContext * const s = &h->s;
1951     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1952     const int mb_type= s->current_picture.mb_type[mb_xy];
1953     
1954     assert(IS_INTER(mb_type));
1955     
1956     if(IS_16X16(mb_type)){
1957         mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1958                 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1959                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1960     }else if(IS_16X8(mb_type)){
1961         mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1962                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1963                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1964         mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1965                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1966                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1967     }else if(IS_8X16(mb_type)){
1968         mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
1969                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1970                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1971         mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
1972                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1973                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1974     }else{
1975         int i;
1976         
1977         assert(IS_8X8(mb_type));
1978
1979         for(i=0; i<4; i++){
1980             const int sub_mb_type= h->sub_mb_type[i];
1981             const int n= 4*i;
1982             int x_offset= (i&1)<<2;
1983             int y_offset= (i&2)<<1;
1984
1985             if(IS_SUB_8X8(sub_mb_type)){
1986                 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1987                     qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1988                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1989             }else if(IS_SUB_8X4(sub_mb_type)){
1990                 mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1991                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1992                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1993                 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1994                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1995                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1996             }else if(IS_SUB_4X8(sub_mb_type)){
1997                 mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1998                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1999                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2000                 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2001                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2002                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2003             }else{
2004                 int j;
2005                 assert(IS_SUB_4X4(sub_mb_type));
2006                 for(j=0; j<4; j++){
2007                     int sub_x_offset= x_offset + 2*(j&1);
2008                     int sub_y_offset= y_offset +   (j&2);
2009                     mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2010                         qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2011                         IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2012                 }
2013             }
2014         }
2015     }
2016 }
2017
2018 static void decode_init_vlc(H264Context *h){
2019     static int done = 0;
2020
2021     if (!done) {
2022         int i;
2023         done = 1;
2024
2025         init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2026                  &chroma_dc_coeff_token_len [0], 1, 1,
2027                  &chroma_dc_coeff_token_bits[0], 1, 1);
2028
2029         for(i=0; i<4; i++){
2030             init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2031                      &coeff_token_len [i][0], 1, 1,
2032                      &coeff_token_bits[i][0], 1, 1);
2033         }
2034
2035         for(i=0; i<3; i++){
2036             init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2037                      &chroma_dc_total_zeros_len [i][0], 1, 1,
2038                      &chroma_dc_total_zeros_bits[i][0], 1, 1);
2039         }
2040         for(i=0; i<15; i++){
2041             init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2042                      &total_zeros_len [i][0], 1, 1,
2043                      &total_zeros_bits[i][0], 1, 1);
2044         }
2045
2046         for(i=0; i<6; i++){
2047             init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2048                      &run_len [i][0], 1, 1,
2049                      &run_bits[i][0], 1, 1);
2050         }
2051         init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2052                  &run_len [6][0], 1, 1,
2053                  &run_bits[6][0], 1, 1);
2054     }
2055 }
2056
2057 /**
2058  * Sets the intra prediction function pointers.
2059  */
2060 static void init_pred_ptrs(H264Context *h){
2061 //    MpegEncContext * const s = &h->s;
2062
2063     h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2064     h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2065     h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2066     h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2067     h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2068     h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2069     h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2070     h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2071     h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2072     h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2073     h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2074     h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2075
2076     h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2077     h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2078     h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2079     h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2080     h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2081     h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2082     h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2083
2084     h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2085     h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2086     h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2087     h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2088     h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2089     h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2090     h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2091 }
2092
2093 //FIXME factorize
2094 #define CHECKED_ALLOCZ(p, size)\
2095 {\
2096     p= av_mallocz(size);\
2097     if(p==NULL){\
2098         perror("malloc");\
2099         goto fail;\
2100     }\
2101 }
2102
2103 static void free_tables(H264Context *h){
2104     av_freep(&h->intra4x4_pred_mode);
2105     av_freep(&h->non_zero_count);
2106     av_freep(&h->slice_table_base);
2107     h->slice_table= NULL;
2108     
2109     av_freep(&h->mb2b_xy);
2110     av_freep(&h->mb2b8_xy);
2111 }
2112
2113 /**
2114  * allocates tables.
2115  * needs widzh/height
2116  */
2117 static int alloc_tables(H264Context *h){
2118     MpegEncContext * const s = &h->s;
2119     const int big_mb_num= s->mb_stride * (s->mb_height+1);
2120     int x,y;
2121
2122     CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2123     CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2124     CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2125
2126     memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2127     h->slice_table= h->slice_table_base + s->mb_stride + 1;
2128
2129     CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2130     CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2131     for(y=0; y<s->mb_height; y++){
2132         for(x=0; x<s->mb_width; x++){
2133             const int mb_xy= x + y*s->mb_stride;
2134             const int b_xy = 4*x + 4*y*h->b_stride;
2135             const int b8_xy= 2*x + 2*y*h->b8_stride;
2136         
2137             h->mb2b_xy [mb_xy]= b_xy;
2138             h->mb2b8_xy[mb_xy]= b8_xy;
2139         }
2140     }
2141     
2142     return 0;
2143 fail:
2144     free_tables(h);
2145     return -1;
2146 }
2147
2148 static void common_init(H264Context *h){
2149     MpegEncContext * const s = &h->s;
2150
2151     s->width = s->avctx->width;
2152     s->height = s->avctx->height;
2153     s->codec_id= s->avctx->codec->id;
2154     
2155     init_pred_ptrs(h);
2156
2157     s->decode=1; //FIXME
2158 }
2159
2160 static int decode_init(AVCodecContext *avctx){
2161     H264Context *h= avctx->priv_data;
2162     MpegEncContext * const s = &h->s;
2163
2164     s->avctx = avctx;
2165     common_init(h);
2166
2167     s->out_format = FMT_H264;
2168     s->workaround_bugs= avctx->workaround_bugs;
2169
2170     // set defaults
2171     s->progressive_sequence=1;
2172 //    s->decode_mb= ff_h263_decode_mb;
2173     s->low_delay= 1;
2174     avctx->pix_fmt= PIX_FMT_YUV420P;
2175
2176     decode_init_vlc(h);
2177     
2178     return 0;
2179 }
2180
2181 static void frame_start(H264Context *h){
2182     MpegEncContext * const s = &h->s;
2183     int i;
2184
2185     MPV_frame_start(s, s->avctx);
2186     ff_er_frame_start(s);
2187     h->mmco_index=0;
2188
2189     assert(s->linesize && s->uvlinesize);
2190
2191     for(i=0; i<16; i++){
2192         h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2193         h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2194     }
2195     for(i=0; i<4; i++){
2196         h->block_offset[16+i]=
2197         h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2198     }
2199
2200 //    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2201 }
2202
2203 static void hl_decode_mb(H264Context *h){
2204     MpegEncContext * const s = &h->s;
2205     const int mb_x= s->mb_x;
2206     const int mb_y= s->mb_y;
2207     const int mb_xy= mb_x + mb_y*s->mb_stride;
2208     const int mb_type= s->current_picture.mb_type[mb_xy];
2209     uint8_t  *dest_y, *dest_cb, *dest_cr;
2210     int linesize, uvlinesize /*dct_offset*/;
2211     int i;
2212
2213     if(!s->decode)
2214         return;
2215
2216     if(s->mb_skiped){
2217     }
2218
2219     dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2220     dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2221     dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2222
2223     if (h->mb_field_decoding_flag) {
2224         linesize = s->linesize * 2;
2225         uvlinesize = s->uvlinesize * 2;
2226         if(mb_y&1){ //FIXME move out of this func?
2227             dest_y -= s->linesize*15;
2228             dest_cb-= s->linesize*7;
2229             dest_cr-= s->linesize*7;
2230         }
2231     } else {
2232         linesize = s->linesize;
2233         uvlinesize = s->uvlinesize;
2234 //        dct_offset = s->linesize * 16;
2235     }
2236
2237     if(IS_INTRA(mb_type)){
2238         if(!(s->flags&CODEC_FLAG_GRAY)){
2239             h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2240             h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2241         }
2242
2243         if(IS_INTRA4x4(mb_type)){
2244             if(!s->encoding){
2245                 for(i=0; i<16; i++){
2246                     uint8_t * const ptr= dest_y + h->block_offset[i];
2247                     uint8_t *topright= ptr + 4 - linesize;
2248                     const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2249                     const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2250                     int tr;
2251
2252                     if(!topright_avail){
2253                         tr= ptr[3 - linesize]*0x01010101;
2254                         topright= (uint8_t*) &tr;
2255                     }
2256
2257                     h->pred4x4[ dir ](ptr, topright, linesize);
2258                     if(h->non_zero_count_cache[ scan8[i] ]){
2259                         if(s->codec_id == CODEC_ID_H264)
2260                             h264_add_idct_c(ptr, h->mb + i*16, linesize);
2261                         else
2262                             svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2263                     }
2264                 }
2265             }
2266         }else{
2267             h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2268             if(s->codec_id == CODEC_ID_H264)
2269                 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2270             else
2271                 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2272         }
2273     }else if(s->codec_id == CODEC_ID_H264){
2274         hl_motion(h, dest_y, dest_cb, dest_cr,
2275                   s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2276                   s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2277     }
2278
2279
2280     if(!IS_INTRA4x4(mb_type)){
2281         for(i=0; i<16; i++){
2282             if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2283                 uint8_t * const ptr= dest_y + h->block_offset[i];
2284                 if(s->codec_id == CODEC_ID_H264)
2285                     h264_add_idct_c(ptr, h->mb + i*16, linesize);
2286                 else
2287                     svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2288             }
2289         }
2290     }
2291
2292     if(!(s->flags&CODEC_FLAG_GRAY)){
2293         chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2294         chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2295         for(i=16; i<16+4; i++){
2296             if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2297                 uint8_t * const ptr= dest_cb + h->block_offset[i];
2298                 if(s->codec_id == CODEC_ID_H264)
2299                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2300                 else
2301                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2302             }
2303         }
2304         for(i=20; i<20+4; i++){
2305             if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2306                 uint8_t * const ptr= dest_cr + h->block_offset[i];
2307                 if(s->codec_id == CODEC_ID_H264)
2308                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2309                 else
2310                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2311             }
2312         }
2313     }
2314 }
2315
2316 static void decode_mb_cabac(H264Context *h){
2317 //    MpegEncContext * const s = &h->s;
2318 }
2319
2320 /**
2321  * fills the default_ref_list.
2322  */
2323 static int fill_default_ref_list(H264Context *h){
2324     MpegEncContext * const s = &h->s;
2325     int i;
2326     Picture sorted_short_ref[16];
2327     
2328     if(h->slice_type==B_TYPE){
2329         int out_i;
2330         int limit= -1;
2331
2332         for(out_i=0; out_i<h->short_ref_count; out_i++){
2333             int best_i=-1;
2334             int best_poc=-1;
2335
2336             for(i=0; i<h->short_ref_count; i++){
2337                 const int poc= h->short_ref[i]->poc;
2338                 if(poc > limit && poc < best_poc){
2339                     best_poc= poc;
2340                     best_i= i;
2341                 }
2342             }
2343             
2344             assert(best_i != -1);
2345             
2346             limit= best_poc;
2347             sorted_short_ref[out_i]= *h->short_ref[best_i];
2348         }
2349     }
2350
2351     if(s->picture_structure == PICT_FRAME){
2352         if(h->slice_type==B_TYPE){
2353             const int current_poc= s->current_picture_ptr->poc;
2354             int list;
2355
2356             for(list=0; list<2; list++){
2357                 int index=0;
2358
2359                 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2360                     const int i2= list ? h->short_ref_count - i - 1 : i;
2361                     const int poc= sorted_short_ref[i2].poc;
2362                     
2363                     if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2364
2365                     if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2366                         h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2367                         h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2368                     }
2369                 }
2370
2371                 for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2372                     if(h->long_ref[i]->reference != 3) continue;
2373
2374                     h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2375                     h->default_ref_list[ list ][index++].pic_id= i;;
2376                 }
2377                 
2378                 if(h->long_ref_count > 1 && h->short_ref_count==0){
2379                     Picture temp= h->default_ref_list[1][0];
2380                     h->default_ref_list[1][0] = h->default_ref_list[1][1];
2381                     h->default_ref_list[1][0] = temp;
2382                 }
2383
2384                 if(index < h->ref_count[ list ])
2385                     memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2386             }
2387         }else{
2388             int index=0;
2389             for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2390                 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2391                 h->default_ref_list[0][index  ]= *h->short_ref[i];
2392                 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2393             }
2394             for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2395                 if(h->long_ref[i]->reference != 3) continue;
2396                 h->default_ref_list[0][index  ]= *h->long_ref[i];
2397                 h->default_ref_list[0][index++].pic_id= i;;
2398             }
2399             if(index < h->ref_count[0])
2400                 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2401         }
2402     }else{ //FIELD
2403         if(h->slice_type==B_TYPE){
2404         }else{
2405             //FIXME second field balh
2406         }
2407     }
2408     return 0;
2409 }
2410
2411 static int decode_ref_pic_list_reordering(H264Context *h){
2412     MpegEncContext * const s = &h->s;
2413     int list;
2414     
2415     if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2416     
2417     for(list=0; list<2; list++){
2418         memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2419
2420         if(get_bits1(&s->gb)){
2421             int pred= h->curr_pic_num;
2422             int index;
2423
2424             for(index=0; ; index++){
2425                 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2426                 int pic_id;
2427                 int i;
2428                 
2429                 
2430                 if(index >= h->ref_count[list]){
2431                     fprintf(stderr, "reference count overflow\n");
2432                     return -1;
2433                 }
2434                 
2435                 if(reordering_of_pic_nums_idc<3){
2436                     if(reordering_of_pic_nums_idc<2){
2437                         const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2438
2439                         if(abs_diff_pic_num >= h->max_pic_num){
2440                             fprintf(stderr, "abs_diff_pic_num overflow\n");
2441                             return -1;
2442                         }
2443
2444                         if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2445                         else                                pred+= abs_diff_pic_num;
2446                         pred &= h->max_pic_num - 1;
2447                     
2448                         for(i= h->ref_count[list]-1; i>=index; i--){
2449                             if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2450                                 break;
2451                         }
2452                     }else{
2453                         pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2454
2455                         for(i= h->ref_count[list]-1; i>=index; i--){
2456                             if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2457                                 break;
2458                         }
2459                     }
2460
2461                     if(i < index){
2462                         fprintf(stderr, "reference picture missing during reorder\n");
2463                         memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2464                     }else if(i > index){
2465                         Picture tmp= h->ref_list[list][i];
2466                         for(; i>index; i--){
2467                             h->ref_list[list][i]= h->ref_list[list][i-1];
2468                         }
2469                         h->ref_list[list][index]= tmp;
2470                     }
2471                 }else if(reordering_of_pic_nums_idc==3) 
2472                     break;
2473                 else{
2474                     fprintf(stderr, "illegal reordering_of_pic_nums_idc\n");
2475                     return -1;
2476                 }
2477             }
2478         }
2479
2480         if(h->slice_type!=B_TYPE) break;
2481     }
2482     return 0;    
2483 }
2484
2485 static int pred_weight_table(H264Context *h){
2486     MpegEncContext * const s = &h->s;
2487     int list, i;
2488     
2489     h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2490     h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2491
2492     for(list=0; list<2; list++){
2493         for(i=0; i<h->ref_count[list]; i++){
2494             int luma_weight_flag, chroma_weight_flag;
2495             
2496             luma_weight_flag= get_bits1(&s->gb);
2497             if(luma_weight_flag){
2498                 h->luma_weight[list][i]= get_se_golomb(&s->gb);
2499                 h->luma_offset[list][i]= get_se_golomb(&s->gb);
2500             }
2501
2502             chroma_weight_flag= get_bits1(&s->gb);
2503             if(chroma_weight_flag){
2504                 int j;
2505                 for(j=0; j<2; j++){
2506                     h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2507                     h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2508                 }
2509             }
2510         }
2511         if(h->slice_type != B_TYPE) break;
2512     }
2513     return 0;
2514 }
2515
2516 /**
2517  * instantaneos decoder refresh.
2518  */
2519 static void idr(H264Context *h){
2520     int i;
2521
2522     for(i=0; i<h->long_ref_count; i++){
2523         h->long_ref[i]->reference=0;
2524         h->long_ref[i]= NULL;
2525     }
2526     h->long_ref_count=0;
2527
2528     for(i=0; i<h->short_ref_count; i++){
2529         h->short_ref[i]->reference=0;
2530         h->short_ref[i]= NULL;
2531     }
2532     h->short_ref_count=0;
2533 }
2534
2535 /**
2536  *
2537  * @return the removed picture or NULL if an error occures
2538  */
2539 static Picture * remove_short(H264Context *h, int frame_num){
2540     MpegEncContext * const s = &h->s;
2541     int i;
2542     
2543     if(s->avctx->debug&FF_DEBUG_MMCO)
2544         printf("remove short %d count %d\n", frame_num, h->short_ref_count);
2545     
2546     for(i=0; i<h->short_ref_count; i++){
2547         Picture *pic= h->short_ref[i];
2548         if(s->avctx->debug&FF_DEBUG_MMCO)
2549             printf("%d %d %X\n", i, pic->frame_num, (int)pic);
2550         if(pic->frame_num == frame_num){
2551             h->short_ref[i]= NULL;
2552             memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2553             h->short_ref_count--;
2554             return pic;
2555         }
2556     }
2557     return NULL;
2558 }
2559
2560 /**
2561  *
2562  * @return the removed picture or NULL if an error occures
2563  */
2564 static Picture * remove_long(H264Context *h, int i){
2565     Picture *pic;
2566
2567     if(i >= h->long_ref_count) return NULL;
2568     pic= h->long_ref[i];
2569     if(pic==NULL) return NULL;
2570     
2571     h->long_ref[i]= NULL;
2572     memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2573     h->long_ref_count--;
2574
2575     return pic;
2576 }
2577
2578 /**
2579  * Executes the reference picture marking (memory management control operations).
2580  */
2581 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
2582     MpegEncContext * const s = &h->s;
2583     int i;
2584     int current_is_long=0;
2585     Picture *pic;
2586     
2587     if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
2588         printf("no mmco here\n");
2589         
2590     for(i=0; i<mmco_count; i++){
2591         if(s->avctx->debug&FF_DEBUG_MMCO)
2592             printf("mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
2593
2594         switch(mmco[i].opcode){
2595         case MMCO_SHORT2UNUSED:
2596             pic= remove_short(h, mmco[i].short_frame_num);
2597             if(pic==NULL) return -1;
2598             pic->reference= 0;
2599             break;
2600         case MMCO_SHORT2LONG:
2601             pic= remove_long(h, mmco[i].long_index);
2602             if(pic) pic->reference=0;
2603             
2604             h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
2605             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2606             break;
2607         case MMCO_LONG2UNUSED:
2608             pic= remove_long(h, mmco[i].long_index);
2609             if(pic==NULL) return -1;
2610             pic->reference= 0;
2611             break;
2612         case MMCO_LONG:
2613             pic= remove_long(h, mmco[i].long_index);
2614             if(pic) pic->reference=0;
2615             
2616             h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
2617             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2618             h->long_ref_count++;
2619             
2620             current_is_long=1;
2621             break;
2622         case MMCO_SET_MAX_LONG:
2623             assert(mmco[i].long_index <= 16);
2624             while(mmco[i].long_index < h->long_ref_count){
2625                 pic= remove_long(h, mmco[i].long_index);
2626                 pic->reference=0;
2627             }
2628             while(mmco[i].long_index > h->long_ref_count){
2629                 h->long_ref[ h->long_ref_count++ ]= NULL;
2630             }
2631             break;
2632         case MMCO_RESET:
2633             while(h->short_ref_count){
2634                 pic= remove_short(h, h->short_ref[0]->frame_num);
2635                 pic->reference=0;
2636             }
2637             while(h->long_ref_count){
2638                 pic= remove_long(h, h->long_ref_count-1);
2639                 pic->reference=0;
2640             }
2641             break;
2642         default: assert(0);
2643         }
2644     }
2645     
2646     if(!current_is_long){
2647         pic= remove_short(h, s->current_picture_ptr->frame_num);
2648         if(pic){
2649             pic->reference=0;
2650             fprintf(stderr, "illegal short term buffer state detected\n");
2651         }
2652         
2653         if(h->short_ref_count)
2654             memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
2655
2656         h->short_ref[0]= s->current_picture_ptr;
2657         h->short_ref[0]->long_ref=0;
2658         h->short_ref_count++;
2659     }
2660     
2661     return 0; 
2662 }
2663
2664 static int decode_ref_pic_marking(H264Context *h){
2665     MpegEncContext * const s = &h->s;
2666     int i;
2667     
2668     if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
2669         s->broken_link= get_bits1(&s->gb) -1;
2670         h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
2671         if(h->mmco[0].long_index == -1)
2672             h->mmco_index= 0;
2673         else{
2674             h->mmco[0].opcode= MMCO_LONG;
2675             h->mmco_index= 1;
2676         } 
2677     }else{
2678         if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
2679             for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) { 
2680                 MMCOOpcode opcode= get_ue_golomb(&s->gb);;
2681
2682                 h->mmco[i].opcode= opcode;
2683                 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
2684                     h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
2685 /*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2686                         fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2687                         return -1;
2688                     }*/
2689                 }
2690                 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
2691                     h->mmco[i].long_index= get_ue_golomb(&s->gb);
2692                     if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
2693                         fprintf(stderr, "illegal long ref in memory management control operation %d\n", opcode);
2694                         return -1;
2695                     }
2696                 }
2697                     
2698                 if(opcode > MMCO_LONG){
2699                     fprintf(stderr, "illegal memory management control operation %d\n", opcode);
2700                     return -1;
2701                 }
2702             }
2703             h->mmco_index= i;
2704         }else{
2705             assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
2706
2707             if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
2708                 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
2709                 h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
2710                 h->mmco_index= 1;
2711             }else
2712                 h->mmco_index= 0;
2713         }
2714     }
2715     
2716     return 0; 
2717 }
2718
2719 static int init_poc(H264Context *h){
2720     MpegEncContext * const s = &h->s;
2721     const int max_frame_num= 1<<h->sps.log2_max_frame_num;
2722     int field_poc[2];
2723
2724     if(h->nal_unit_type == NAL_IDR_SLICE){
2725         h->frame_num_offset= 0;
2726     }else{
2727         if(h->frame_num < h->prev_frame_num)
2728             h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
2729         else
2730             h->frame_num_offset= h->prev_frame_num_offset;
2731     }
2732
2733     if(h->sps.poc_type==0){
2734         const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
2735
2736         if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
2737             h->poc_msb = h->prev_poc_msb + max_poc_lsb;
2738         else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
2739             h->poc_msb = h->prev_poc_msb - max_poc_lsb;
2740         else
2741             h->poc_msb = h->prev_poc_msb;
2742 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
2743         field_poc[0] = 
2744         field_poc[1] = h->poc_msb + h->poc_lsb;
2745         if(s->picture_structure == PICT_FRAME) 
2746             field_poc[1] += h->delta_poc_bottom;
2747     }else if(h->sps.poc_type==1){
2748         int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
2749         int i;
2750
2751         if(h->sps.poc_cycle_length != 0)
2752             abs_frame_num = h->frame_num_offset + h->frame_num;
2753         else
2754             abs_frame_num = 0;
2755
2756         if(h->nal_ref_idc==0 && abs_frame_num > 0)
2757             abs_frame_num--;
2758             
2759         expected_delta_per_poc_cycle = 0;
2760         for(i=0; i < h->sps.poc_cycle_length; i++)
2761             expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
2762
2763         if(abs_frame_num > 0){
2764             int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
2765             int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
2766
2767             expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
2768             for(i = 0; i <= frame_num_in_poc_cycle; i++)
2769                 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
2770         } else
2771             expectedpoc = 0;
2772
2773         if(h->nal_ref_idc == 0) 
2774             expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
2775         
2776         field_poc[0] = expectedpoc + h->delta_poc[0];
2777         field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
2778
2779         if(s->picture_structure == PICT_FRAME)
2780             field_poc[1] += h->delta_poc[1];
2781     }else{
2782         int poc;
2783         if(h->nal_unit_type == NAL_IDR_SLICE){
2784             poc= 0;
2785         }else{
2786             if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
2787             else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
2788         }
2789         field_poc[0]= poc;
2790         field_poc[1]= poc;
2791     }
2792     
2793     if(s->picture_structure != PICT_BOTTOM_FIELD)
2794         s->current_picture_ptr->field_poc[0]= field_poc[0];
2795     if(s->picture_structure != PICT_TOP_FIELD)
2796         s->current_picture_ptr->field_poc[1]= field_poc[1];
2797     if(s->picture_structure == PICT_FRAME) // FIXME field pix?
2798         s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
2799
2800     return 0;
2801 }
2802
2803 /**
2804  * decodes a slice header.
2805  * this will allso call MPV_common_init() and frame_start() as needed
2806  */
2807 static int decode_slice_header(H264Context *h){
2808     MpegEncContext * const s = &h->s;
2809     int first_mb_in_slice, pps_id;
2810     int num_ref_idx_active_override_flag;
2811     static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
2812     float new_aspect;
2813
2814     s->current_picture.reference= h->nal_ref_idc != 0;
2815
2816     first_mb_in_slice= get_ue_golomb(&s->gb);
2817
2818     h->slice_type= get_ue_golomb(&s->gb);
2819     if(h->slice_type > 9){
2820         fprintf(stderr, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
2821     }
2822     if(h->slice_type > 4){
2823         h->slice_type -= 5;
2824         h->slice_type_fixed=1;
2825     }else
2826         h->slice_type_fixed=0;
2827     
2828     h->slice_type= slice_type_map[ h->slice_type ];
2829     
2830     s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
2831         
2832     pps_id= get_ue_golomb(&s->gb);
2833     if(pps_id>255){
2834         fprintf(stderr, "pps_id out of range\n");
2835         return -1;
2836     }
2837     h->pps= h->pps_buffer[pps_id];
2838     if(h->pps.slice_group_count == 0){
2839         fprintf(stderr, "non existing PPS referenced\n");
2840         return -1;
2841     }
2842
2843     h->sps= h->sps_buffer[ h->pps.sps_id ];
2844     if(h->sps.log2_max_frame_num == 0){
2845         fprintf(stderr, "non existing SPS referenced\n");
2846         return -1;
2847     }
2848     
2849     s->mb_width= h->sps.mb_width;
2850     s->mb_height= h->sps.mb_height;
2851     
2852     h->b_stride=  s->mb_width*4;
2853     h->b8_stride= s->mb_width*2;
2854
2855     s->mb_x = first_mb_in_slice % s->mb_width;
2856     s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
2857     
2858     s->width = 16*s->mb_width - 2*(h->pps.crop_left + h->pps.crop_right );
2859     if(h->sps.frame_mbs_only_flag)
2860         s->height= 16*s->mb_height - 2*(h->pps.crop_top  + h->pps.crop_bottom);
2861     else
2862         s->height= 16*s->mb_height - 4*(h->pps.crop_top  + h->pps.crop_bottom); //FIXME recheck
2863     
2864     if(h->pps.crop_left || h->pps.crop_top){
2865         fprintf(stderr, "insane croping not completly supported, this could look slightly wrong ...\n");
2866     }
2867
2868     if(s->aspected_height) //FIXME emms at end of slice ?
2869         new_aspect= h->sps.sar_width*s->width / (float)(s->height*h->sps.sar_height);
2870     else
2871         new_aspect=0;
2872
2873     if (s->context_initialized 
2874         && (   s->width != s->avctx->width || s->height != s->avctx->height 
2875             || ABS(new_aspect - s->avctx->aspect_ratio) > 0.001)) {
2876         free_tables(h);
2877         MPV_common_end(s);
2878     }
2879     if (!s->context_initialized) {
2880         if (MPV_common_init(s) < 0)
2881             return -1;
2882
2883         alloc_tables(h);
2884
2885         s->avctx->width = s->width;
2886         s->avctx->height = s->height;
2887         s->avctx->aspect_ratio= new_aspect;
2888     }
2889
2890     if(first_mb_in_slice == 0){
2891         frame_start(h);
2892     }
2893
2894     s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
2895     h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
2896
2897     if(h->sps.frame_mbs_only_flag){
2898         s->picture_structure= PICT_FRAME;
2899     }else{
2900         if(get_bits1(&s->gb)) //field_pic_flag
2901             s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
2902         else
2903             s->picture_structure= PICT_FRAME;
2904     }
2905
2906     if(s->picture_structure==PICT_FRAME){
2907         h->curr_pic_num=   h->frame_num;
2908         h->max_pic_num= 1<< h->sps.log2_max_frame_num;
2909     }else{
2910         h->curr_pic_num= 2*h->frame_num;
2911         h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
2912     }
2913         
2914     if(h->nal_unit_type == NAL_IDR_SLICE){
2915         int idr_pic_id= get_ue_golomb(&s->gb);
2916     }
2917    
2918     if(h->sps.poc_type==0){
2919         h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
2920         
2921         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
2922             h->delta_poc_bottom= get_se_golomb(&s->gb);
2923         }
2924     }
2925     
2926     if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
2927         h->delta_poc[0]= get_se_golomb(&s->gb);
2928         
2929         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
2930             h->delta_poc[1]= get_se_golomb(&s->gb);
2931     }
2932     
2933     init_poc(h);
2934     
2935     if(h->pps.redundant_pic_cnt_present){
2936         h->redundant_pic_count= get_ue_golomb(&s->gb);
2937     }
2938
2939     //set defaults, might be overriden a few line later
2940     h->ref_count[0]= h->pps.ref_count[0];
2941     h->ref_count[1]= h->pps.ref_count[1];
2942
2943     if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
2944         if(h->slice_type == B_TYPE){
2945             h->direct_spatial_mv_pred= get_bits1(&s->gb);
2946         }
2947         num_ref_idx_active_override_flag= get_bits1(&s->gb);
2948     
2949         if(num_ref_idx_active_override_flag){
2950             h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
2951             if(h->slice_type==B_TYPE)
2952                 h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
2953
2954             if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
2955                 fprintf(stderr, "reference overflow\n");
2956                 return -1;
2957             }
2958         }
2959     }
2960
2961     if(first_mb_in_slice == 0){
2962         fill_default_ref_list(h);
2963     }
2964
2965     decode_ref_pic_list_reordering(h);
2966
2967     if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
2968        || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
2969         pred_weight_table(h);
2970     
2971     if(s->current_picture.reference)
2972         decode_ref_pic_marking(h);
2973     //FIXME CABAC stuff
2974
2975     s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta
2976     //FIXME qscale / qp ... stuff
2977     if(h->slice_type == SP_TYPE){
2978         int sp_for_switch_flag= get_bits1(&s->gb);
2979     }
2980     if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
2981         int slice_qs_delta= get_se_golomb(&s->gb);
2982     }
2983
2984     if( h->pps.deblocking_filter_parameters_present ) {
2985         h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb);
2986         if( h->disable_deblocking_filter_idc  !=  1 ) {
2987             h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb);
2988             h->slice_beta_offset_div2= get_se_golomb(&s->gb);
2989         }
2990     }else
2991         h->disable_deblocking_filter_idc= 0;
2992
2993 #if 0 //FMO
2994     if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
2995         slice_group_change_cycle= get_bits(&s->gb, ?);
2996 #endif
2997
2998     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
2999         printf("mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", 
3000                first_mb_in_slice, 
3001                ff_get_pict_type_char(h->slice_type),
3002                pps_id, h->frame_num,
3003                s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3004                h->ref_count[0], h->ref_count[1],
3005                s->qscale,
3006                h->disable_deblocking_filter_idc
3007                );
3008     }
3009
3010     return 0;
3011 }
3012
3013 /**
3014  *
3015  */
3016 static inline int get_level_prefix(GetBitContext *gb){
3017     unsigned int buf;
3018     int log;
3019     
3020     OPEN_READER(re, gb);
3021     UPDATE_CACHE(re, gb);
3022     buf=GET_CACHE(re, gb);
3023     
3024     log= 32 - av_log2(buf);
3025 #ifdef TRACE
3026     print_bin(buf>>(32-log), log);
3027     printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3028 #endif
3029
3030     LAST_SKIP_BITS(re, gb, log);
3031     CLOSE_READER(re, gb);
3032
3033     return log-1;
3034 }
3035
3036 /**
3037  * decodes a residual block.
3038  * @param n block index
3039  * @param scantable scantable
3040  * @param max_coeff number of coefficients in the block
3041  * @return <0 if an error occured
3042  */
3043 static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3044     MpegEncContext * const s = &h->s;
3045     const uint16_t *qmul= dequant_coeff[qp];
3046     static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3047     int level[16], run[16];
3048     int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3049
3050     //FIXME put trailing_onex into the context
3051
3052     if(n == CHROMA_DC_BLOCK_INDEX){
3053         coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3054         total_coeff= coeff_token>>2;
3055     }else{    
3056         if(n == LUMA_DC_BLOCK_INDEX){
3057             total_coeff= pred_non_zero_count(h, 0);
3058             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3059             total_coeff= coeff_token>>2;
3060         }else{
3061             total_coeff= pred_non_zero_count(h, n);
3062             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3063             total_coeff= coeff_token>>2;
3064             h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3065         }
3066     }
3067
3068     //FIXME set last_non_zero?
3069
3070     if(total_coeff==0)
3071         return 0;
3072         
3073     trailing_ones= coeff_token&3;
3074     tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3075     assert(total_coeff<=16);
3076     
3077     for(i=0; i<trailing_ones; i++){
3078         level[i]= 1 - 2*get_bits1(gb);
3079     }
3080
3081     suffix_length= total_coeff > 10 && trailing_ones < 3;
3082
3083     for(; i<total_coeff; i++){
3084         const int prefix= get_level_prefix(gb);
3085         int level_code, mask;
3086
3087         if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3088             if(suffix_length)
3089                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3090             else
3091                 level_code= (prefix<<suffix_length); //part
3092         }else if(prefix==14){
3093             if(suffix_length)
3094                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3095             else
3096                 level_code= prefix + get_bits(gb, 4); //part
3097         }else if(prefix==15){
3098             level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3099             if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3100         }else{
3101             fprintf(stderr, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3102             return -1;
3103         }
3104
3105         if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3106
3107         mask= -(level_code&1);
3108         level[i]= (((2+level_code)>>1) ^ mask) - mask;
3109
3110         if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3111
3112 #if 1
3113         if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3114 #else        
3115         if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3116         ? == prefix > 2 or sth
3117 #endif
3118         tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3119     }
3120
3121     if(total_coeff == max_coeff)
3122         zeros_left=0;
3123     else{
3124         if(n == CHROMA_DC_BLOCK_INDEX)
3125             zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3126         else
3127             zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3128     }
3129     
3130     for(i=0; i<total_coeff-1; i++){
3131         if(zeros_left <=0)
3132             break;
3133         else if(zeros_left < 7){
3134             run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3135         }else{
3136             run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3137         }
3138         zeros_left -= run[i];
3139     }
3140
3141     if(zeros_left<0){
3142         fprintf(stderr, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3143         return -1;
3144     }
3145     
3146     for(; i<total_coeff-1; i++){
3147         run[i]= 0;
3148     }
3149
3150     run[i]= zeros_left;
3151
3152     coeff_num=-1;
3153     if(n > 24){
3154         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3155             int j;
3156
3157             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3158             j= scantable[ coeff_num ];
3159
3160             block[j]= level[i];
3161         }
3162     }else{
3163         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3164             int j;
3165
3166             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3167             j= scantable[ coeff_num ];
3168
3169             block[j]= level[i] * qmul[j];
3170 //            printf("%d %d  ", block[j], qmul[j]);
3171         }
3172     }
3173     return 0;
3174 }
3175
3176 /**
3177  * decodes a macroblock
3178  * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3179  */
3180 static int decode_mb(H264Context *h){
3181     MpegEncContext * const s = &h->s;
3182     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3183     int mb_type, partition_count, cbp;
3184
3185     memset(h->mb, 0, sizeof(int16_t)*24*16); //FIXME avoid if allready clear (move after skip handlong?
3186
3187     tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3188
3189     if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3190         if(s->mb_skip_run==-1)
3191             s->mb_skip_run= get_ue_golomb(&s->gb);
3192         
3193         if (s->mb_skip_run--) {
3194             int mx, my;
3195             /* skip mb */
3196 //FIXME b frame
3197             mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0;
3198
3199             memset(h->non_zero_count[mb_xy], 0, 16);
3200             memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3201
3202             if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3203                 h->mb_field_decoding_flag= get_bits1(&s->gb);
3204             }
3205
3206             if(h->mb_field_decoding_flag)
3207                 mb_type|= MB_TYPE_INTERLACED;
3208             
3209             fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3210             pred_pskip_motion(h, &mx, &my);
3211             fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3212             fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, (mx&0xFFFF)+(my<<16), 4);
3213             write_back_motion(h, mb_type);
3214
3215             s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type
3216             h->slice_table[ mb_xy ]= h->slice_num;
3217
3218             h->prev_mb_skiped= 1;
3219             return 0;
3220         }
3221     }
3222     if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3223         if((s->mb_y&1)==0)
3224             h->mb_field_decoding_flag = get_bits1(&s->gb);
3225     }else
3226         h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3227     
3228     h->prev_mb_skiped= 0;
3229     
3230     mb_type= get_ue_golomb(&s->gb);
3231     if(h->slice_type == B_TYPE){
3232         if(mb_type < 23){
3233             partition_count= b_mb_type_info[mb_type].partition_count;
3234             mb_type=         b_mb_type_info[mb_type].type;
3235         }else{
3236             mb_type -= 23;
3237             goto decode_intra_mb;
3238         }
3239     }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3240         if(mb_type < 5){
3241             partition_count= p_mb_type_info[mb_type].partition_count;
3242             mb_type=         p_mb_type_info[mb_type].type;
3243         }else{
3244             mb_type -= 5;
3245             goto decode_intra_mb;
3246         }
3247     }else{
3248        assert(h->slice_type == I_TYPE);
3249 decode_intra_mb:
3250         if(mb_type > 25){
3251             fprintf(stderr, "mb_type %d in %c slice to large at %d %d\n", mb_type, ff_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3252             return -1;
3253         }
3254         partition_count=0;
3255         cbp= i_mb_type_info[mb_type].cbp;
3256         h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3257         mb_type= i_mb_type_info[mb_type].type;
3258     }
3259
3260     if(h->mb_field_decoding_flag)
3261         mb_type |= MB_TYPE_INTERLACED;
3262
3263     s->current_picture.mb_type[mb_xy]= mb_type;
3264     h->slice_table[ mb_xy ]= h->slice_num;
3265     
3266     if(IS_INTRA_PCM(mb_type)){
3267         const uint8_t *ptr;
3268         int x, y;
3269         
3270         // we assume these blocks are very rare so we dont optimize it
3271         align_get_bits(&s->gb);
3272         
3273         ptr= s->gb.buffer + get_bits_count(&s->gb);
3274     
3275         for(y=0; y<16; y++){
3276             const int index= 4*(y&3) + 64*(y>>2);
3277             for(x=0; x<16; x++){
3278                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3279             }
3280         }
3281         for(y=0; y<8; y++){
3282             const int index= 256 + 4*(y&3) + 32*(y>>2);
3283             for(x=0; x<8; x++){
3284                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3285             }
3286         }
3287         for(y=0; y<8; y++){
3288             const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3289             for(x=0; x<8; x++){
3290                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3291             }
3292         }
3293     
3294         skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3295         
3296         memset(h->non_zero_count[mb_xy], 16, 16);
3297         
3298         return 0;
3299     }
3300         
3301     fill_caches(h, mb_type);
3302
3303     //mb_pred
3304     if(IS_INTRA(mb_type)){
3305 //            init_top_left_availability(h);
3306             if(IS_INTRA4x4(mb_type)){
3307                 int i;
3308
3309 //                fill_intra4x4_pred_table(h);
3310                 for(i=0; i<16; i++){
3311                     const int mode_coded= !get_bits1(&s->gb);
3312                     const int predicted_mode=  pred_intra_mode(h, i);
3313                     int mode;
3314
3315                     if(mode_coded){
3316                         const int rem_mode= get_bits(&s->gb, 3);
3317                         if(rem_mode<predicted_mode)
3318                             mode= rem_mode;
3319                         else
3320                             mode= rem_mode + 1;
3321                     }else{
3322                         mode= predicted_mode;
3323                     }
3324                     
3325                     h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3326                 }
3327                 write_back_intra_pred_mode(h);
3328                 if( check_intra4x4_pred_mode(h) < 0)
3329                     return -1;
3330             }else{
3331                 h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3332                 if(h->intra16x16_pred_mode < 0)
3333                     return -1;
3334             }
3335             h->chroma_pred_mode= get_ue_golomb(&s->gb);
3336
3337             h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3338             if(h->chroma_pred_mode < 0)
3339                 return -1;
3340     }else if(partition_count==4){
3341         int i, j, sub_partition_count[4], list, ref[2][4];
3342         
3343         if(h->slice_type == B_TYPE){
3344             for(i=0; i<4; i++){
3345                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3346                 if(h->sub_mb_type[i] >=13){
3347                     fprintf(stderr, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3348                     return -1;
3349                 }
3350                 sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3351                 h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3352             }
3353         }else{
3354             assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3355             for(i=0; i<4; i++){
3356                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3357                 if(h->sub_mb_type[i] >=4){
3358                     fprintf(stderr, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3359                     return -1;
3360                 }
3361                 sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3362                 h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3363             }
3364         }
3365         
3366         for(list=0; list<2; list++){
3367             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3368             if(ref_count == 0) continue;
3369             for(i=0; i<4; i++){
3370                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3371                     ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
3372                 }else{
3373                  //FIXME
3374                     ref[list][i] = -1;
3375                 }
3376             }
3377         }
3378         
3379         for(list=0; list<2; list++){
3380             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3381             if(ref_count == 0) continue;
3382
3383             for(i=0; i<4; i++){
3384                 h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
3385                 h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
3386
3387                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3388                     const int sub_mb_type= h->sub_mb_type[i];
3389                     const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
3390                     for(j=0; j<sub_partition_count[i]; j++){
3391                         int mx, my;
3392                         const int index= 4*i + block_width*j;
3393                         int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
3394                         pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
3395                         mx += get_se_golomb(&s->gb);
3396                         my += get_se_golomb(&s->gb);
3397                         tprintf("final mv:%d %d\n", mx, my);
3398
3399                         if(IS_SUB_8X8(sub_mb_type)){
3400                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
3401                             mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
3402                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
3403                             mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
3404                         }else if(IS_SUB_8X4(sub_mb_type)){
3405                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
3406                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
3407                         }else if(IS_SUB_4X8(sub_mb_type)){
3408                             mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
3409                             mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
3410                         }else{
3411                             assert(IS_SUB_4X4(sub_mb_type));
3412                             mv_cache[ 0 ][0]= mx;
3413                             mv_cache[ 0 ][1]= my;
3414                         }
3415                     }
3416                 }else{
3417                     uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
3418                     p[0] = p[1]=
3419                     p[8] = p[9]= 0;
3420                 }
3421             }
3422         }
3423     }else if(!IS_DIRECT(mb_type)){
3424         int list, mx, my, i;
3425          //FIXME we should set ref_idx_l? to 0 if we use that later ...
3426         if(IS_16X16(mb_type)){
3427             for(list=0; list<2; list++){
3428                 if(h->ref_count[0]>0){
3429                     if(IS_DIR(mb_type, 0, list)){
3430                         const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3431                         fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
3432                     }
3433                 }
3434             }
3435             for(list=0; list<2; list++){
3436                 if(IS_DIR(mb_type, 0, list)){
3437                     pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
3438                     mx += get_se_golomb(&s->gb);
3439                     my += get_se_golomb(&s->gb);
3440                     tprintf("final mv:%d %d\n", mx, my);
3441
3442                     fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, (mx&0xFFFF) + (my<<16), 4);
3443                 }
3444             }
3445         }
3446         else if(IS_16X8(mb_type)){
3447             for(list=0; list<2; list++){
3448                 if(h->ref_count[list]>0){
3449                     for(i=0; i<2; i++){
3450                         if(IS_DIR(mb_type, i, list)){
3451                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3452                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
3453                         }
3454                     }
3455                 }
3456             }
3457             for(list=0; list<2; list++){
3458                 for(i=0; i<2; i++){
3459                     if(IS_DIR(mb_type, i, list)){
3460                         pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
3461                         mx += get_se_golomb(&s->gb);
3462                         my += get_se_golomb(&s->gb);
3463                         tprintf("final mv:%d %d\n", mx, my);
3464
3465                         fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (mx&0xFFFF) + (my<<16), 4);
3466                     }
3467                 }
3468             }
3469         }else{
3470             assert(IS_8X16(mb_type));
3471             for(list=0; list<2; list++){
3472                 if(h->ref_count[list]>0){
3473                     for(i=0; i<2; i++){
3474                         if(IS_DIR(mb_type, i, list)){ //FIXME optimize
3475                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3476                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
3477                         }
3478                     }
3479                 }
3480             }
3481             for(list=0; list<2; list++){
3482                 for(i=0; i<2; i++){
3483                     if(IS_DIR(mb_type, i, list)){
3484                         pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
3485                         mx += get_se_golomb(&s->gb);
3486                         my += get_se_golomb(&s->gb);
3487                         tprintf("final mv:%d %d\n", mx, my);
3488
3489                         fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (mx&0xFFFF) + (my<<16), 4);
3490                     }
3491                 }
3492             }
3493         }
3494     }
3495     
3496     if(IS_INTER(mb_type))
3497         write_back_motion(h, mb_type);
3498     
3499     if(!IS_INTRA16x16(mb_type)){
3500         cbp= get_ue_golomb(&s->gb);
3501         if(cbp > 47){
3502             fprintf(stderr, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
3503             return -1;
3504         }
3505         
3506         if(IS_INTRA4x4(mb_type))
3507             cbp= golomb_to_intra4x4_cbp[cbp];
3508         else
3509             cbp= golomb_to_inter_cbp[cbp];
3510     }
3511
3512     if(cbp || IS_INTRA16x16(mb_type)){
3513         int i8x8, i4x4, chroma_idx;
3514         int chroma_qp, dquant;
3515         GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
3516         const uint8_t *scan, *dc_scan;
3517         
3518 //        fill_non_zero_count_cache(h);
3519
3520         if(IS_INTERLACED(mb_type)){
3521             scan= field_scan;
3522             dc_scan= luma_dc_field_scan;
3523         }else{
3524             scan= zigzag_scan;
3525             dc_scan= luma_dc_zigzag_scan;
3526         }
3527
3528         dquant= get_se_golomb(&s->gb);
3529
3530         if( dquant > 25 || dquant < -26 ){
3531             fprintf(stderr, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
3532             return -1;
3533         }
3534         
3535         s->qscale += dquant;
3536         if(((unsigned)s->qscale) > 51){
3537             if(s->qscale<0) s->qscale+= 52;
3538             else            s->qscale-= 52;
3539         }
3540         
3541         h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
3542         if(IS_INTRA16x16(mb_type)){
3543             if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
3544                 return -1; //FIXME continue if partotioned and other retirn -1 too
3545             }
3546
3547             assert((cbp&15) == 0 || (cbp&15) == 15);
3548
3549             if(cbp&15){
3550                 for(i8x8=0; i8x8<4; i8x8++){
3551                     for(i4x4=0; i4x4<4; i4x4++){
3552                         const int index= i4x4 + 4*i8x8;
3553                         if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
3554                             return -1;
3555                         }
3556                     }
3557                 }
3558             }else{
3559                 memset(&h->non_zero_count_cache[8], 0, 8*4); //FIXME stupid & slow
3560             }
3561         }else{
3562             for(i8x8=0; i8x8<4; i8x8++){
3563                 if(cbp & (1<<i8x8)){
3564                     for(i4x4=0; i4x4<4; i4x4++){
3565                         const int index= i4x4 + 4*i8x8;
3566                         
3567                         if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
3568                             return -1;
3569                         }
3570                     }
3571                 }else{
3572                     uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
3573                     nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
3574                 }
3575             }
3576         }
3577         
3578         if(cbp&0x30){
3579             for(chroma_idx=0; chroma_idx<2; chroma_idx++)
3580                 if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
3581                     return -1;
3582                 }
3583         }
3584
3585         if(cbp&0x20){
3586             for(chroma_idx=0; chroma_idx<2; chroma_idx++){
3587                 for(i4x4=0; i4x4<4; i4x4++){
3588                     const int index= 16 + 4*chroma_idx + i4x4;
3589                     if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
3590                         return -1;
3591                     }
3592                 }
3593             }
3594         }else{
3595             uint8_t * const nnz= &h->non_zero_count_cache[0];
3596             nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
3597             nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
3598         }
3599     }else{
3600         memset(&h->non_zero_count_cache[8], 0, 8*5);
3601     }
3602     write_back_non_zero_count(h);
3603
3604     return 0;
3605 }
3606
3607 static int decode_slice(H264Context *h){
3608     MpegEncContext * const s = &h->s;
3609     const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
3610
3611     s->mb_skip_run= -1;
3612     
3613 #if 1
3614     for(;;){
3615         int ret= decode_mb(h);
3616             
3617         hl_decode_mb(h);
3618         
3619         if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ?
3620             s->mb_y++;
3621             ret= decode_mb(h);
3622             
3623             hl_decode_mb(h);
3624             s->mb_y--;
3625         }
3626
3627         if(ret<0){
3628             fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3629             ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3630
3631             return -1;
3632         }
3633         
3634         if(++s->mb_x >= s->mb_width){
3635             s->mb_x=0;
3636             ff_draw_horiz_band(s, 16*s->mb_y, 16);
3637             if(++s->mb_y >= s->mb_height){
3638                 tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
3639
3640                 if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3641                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3642
3643                     return 0;
3644                 }else{
3645                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3646
3647                     return -1;
3648                 }
3649             }
3650         }
3651         
3652         if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
3653             if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3654                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3655
3656                 return 0;
3657             }else{
3658                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3659
3660                 return -1;
3661             }
3662         }
3663     }
3664 #endif
3665 #if 0
3666     for(;s->mb_y < s->mb_height; s->mb_y++){
3667         for(;s->mb_x < s->mb_width; s->mb_x++){
3668             int ret= decode_mb(h);
3669             
3670             hl_decode_mb(h);
3671
3672             if(ret<0){
3673                 fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3674                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3675
3676                 return -1;
3677             }
3678         
3679             if(++s->mb_x >= s->mb_width){
3680                 s->mb_x=0;
3681                 if(++s->mb_y >= s->mb_height){
3682                     if(get_bits_count(s->gb) == s->gb.size_in_bits){
3683                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3684
3685                         return 0;
3686                     }else{
3687                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3688
3689                         return -1;
3690                     }
3691                 }
3692             }
3693         
3694             if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
3695                 if(get_bits_count(s->gb) == s->gb.size_in_bits){
3696                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3697
3698                     return 0;
3699                 }else{
3700                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3701
3702                     return -1;
3703                 }
3704             }
3705         }
3706         s->mb_x=0;
3707         ff_draw_horiz_band(s, 16*s->mb_y, 16);
3708     }
3709 #endif
3710     return -1; //not reached
3711 }
3712
3713 static inline int decode_vui_parameters(H264Context *h, SPS *sps){
3714     MpegEncContext * const s = &h->s;
3715     int aspect_ratio_info_present_flag, aspect_ratio_idc;
3716
3717     aspect_ratio_info_present_flag= get_bits1(&s->gb);
3718     
3719     if( aspect_ratio_info_present_flag ) {
3720         aspect_ratio_idc= get_bits(&s->gb, 8);
3721         if( aspect_ratio_idc == EXTENDED_SAR ) {
3722             sps->sar_width= get_bits(&s->gb, 16);
3723             sps->sar_height= get_bits(&s->gb, 16);
3724         }else if(aspect_ratio_idc < 16){
3725             sps->sar_width=  pixel_aspect[aspect_ratio_idc][0];
3726             sps->sar_height= pixel_aspect[aspect_ratio_idc][1];
3727         }else{
3728             fprintf(stderr, "illegal aspect ratio\n");
3729             return -1;
3730         }
3731     }else{
3732         sps->sar_width= 
3733         sps->sar_height= 0;
3734     }
3735 //            s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
3736 #if 0
3737 | overscan_info_present_flag                        |0  |u(1)    |
3738 | if( overscan_info_present_flag )                  |   |        |
3739 |  overscan_appropriate_flag                        |0  |u(1)    |
3740 | video_signal_type_present_flag                    |0  |u(1)    |
3741 | if( video_signal_type_present_flag ) {            |   |        |
3742 |  video_format                                     |0  |u(3)    |
3743 |  video_full_range_flag                            |0  |u(1)    |
3744 |  colour_description_present_flag                  |0  |u(1)    |
3745 |  if( colour_description_present_flag ) {          |   |        |
3746 |   colour_primaries                                |0  |u(8)    |
3747 |   transfer_characteristics                        |0  |u(8)    |
3748 |   matrix_coefficients                             |0  |u(8)    |
3749 |  }                                                |   |        |
3750 | }                                                 |   |        |
3751 | chroma_location_info_present_flag                 |0  |u(1)    |
3752 | if ( chroma_location_info_present_flag ) {        |   |        |
3753 |  chroma_sample_location_type_top_field            |0  |ue(v)   |
3754 |  chroma_sample_location_type_bottom_field         |0  |ue(v)   |
3755 | }                                                 |   |        |
3756 | timing_info_present_flag                          |0  |u(1)    |
3757 | if( timing_info_present_flag ) {                  |   |        |
3758 |  num_units_in_tick                                |0  |u(32)   |
3759 |  time_scale                                       |0  |u(32)   |
3760 |  fixed_frame_rate_flag                            |0  |u(1)    |
3761 | }                                                 |   |        |
3762 | nal_hrd_parameters_present_flag                   |0  |u(1)    |
3763 | if( nal_hrd_parameters_present_flag  = =  1)      |   |        |
3764 |  hrd_parameters( )                                |   |        |
3765 | vcl_hrd_parameters_present_flag                   |0  |u(1)    |
3766 | if( vcl_hrd_parameters_present_flag  = =  1)      |   |        |
3767 |  hrd_parameters( )                                |   |        |
3768 | if( ( nal_hrd_parameters_present_flag  = =  1  | ||   |        |
3769 |                                                   |   |        |
3770 |( vcl_hrd_parameters_present_flag  = =  1 ) )      |   |        |
3771 |  low_delay_hrd_flag                               |0  |u(1)    |
3772 | bitstream_restriction_flag                        |0  |u(1)    |
3773 | if( bitstream_restriction_flag ) {                |0  |u(1)    |
3774 |  motion_vectors_over_pic_boundaries_flag          |0  |u(1)    |
3775 |  max_bytes_per_pic_denom                          |0  |ue(v)   |
3776 |  max_bits_per_mb_denom                            |0  |ue(v)   |
3777 |  log2_max_mv_length_horizontal                    |0  |ue(v)   |
3778 |  log2_max_mv_length_vertical                      |0  |ue(v)   |
3779 |  num_reorder_frames                               |0  |ue(v)   |
3780 |  max_dec_frame_buffering                          |0  |ue(v)   |
3781 | }                                                 |   |        |
3782 |}                                                  |   |        |
3783 #endif
3784     return 0;
3785 }
3786
3787 static inline int decode_seq_parameter_set(H264Context *h){
3788     MpegEncContext * const s = &h->s;
3789     int profile_idc, level_idc, multiple_slice_groups, arbitrary_slice_order, redundant_slices;
3790     int sps_id, i;
3791     SPS *sps;
3792     
3793     profile_idc= get_bits(&s->gb, 8);
3794     level_idc= get_bits(&s->gb, 8);
3795     multiple_slice_groups= get_bits1(&s->gb);
3796     arbitrary_slice_order= get_bits1(&s->gb);
3797     redundant_slices= get_bits1(&s->gb);
3798     
3799     sps_id= get_ue_golomb(&s->gb);
3800     
3801     sps= &h->sps_buffer[ sps_id ];
3802     
3803     sps->profile_idc= profile_idc;
3804     sps->level_idc= level_idc;
3805     sps->multiple_slice_groups= multiple_slice_groups;
3806     sps->arbitrary_slice_order= arbitrary_slice_order;
3807     sps->redundant_slices= redundant_slices;
3808     
3809     sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
3810
3811     sps->poc_type= get_ue_golomb(&s->gb);
3812     
3813     if(sps->poc_type == 0){ //FIXME #define
3814         sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
3815     } else if(sps->poc_type == 1){//FIXME #define
3816         sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
3817         sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
3818         sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
3819         sps->poc_cycle_length= get_ue_golomb(&s->gb);
3820         
3821         for(i=0; i<sps->poc_cycle_length; i++)
3822             sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
3823     }
3824     if(sps->poc_type > 2){
3825         fprintf(stderr, "illegal POC type %d\n", sps->poc_type);
3826         return -1;
3827     }
3828
3829     sps->ref_frame_count= get_ue_golomb(&s->gb);
3830     sps->required_frame_num_update_behaviour_flag= get_bits1(&s->gb);
3831     sps->mb_width= get_ue_golomb(&s->gb) + 1;
3832     sps->mb_height= get_ue_golomb(&s->gb) + 1;
3833     sps->frame_mbs_only_flag= get_bits1(&s->gb);
3834     if(!sps->frame_mbs_only_flag)
3835         sps->mb_aff= get_bits1(&s->gb);
3836     else
3837         sps->mb_aff= 0;
3838
3839     sps->direct_8x8_inference_flag= get_bits1(&s->gb);
3840
3841     sps->vui_parameters_present_flag= get_bits1(&s->gb);
3842     if( sps->vui_parameters_present_flag )
3843         decode_vui_parameters(h, sps);
3844     
3845     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3846         printf("sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s %s\n", 
3847                sps_id, sps->profile_idc, sps->level_idc,
3848                sps->poc_type,
3849                sps->ref_frame_count,
3850                sps->mb_width, sps->mb_height,
3851                sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
3852                sps->direct_8x8_inference_flag ? "8B8" : "",
3853                sps->vui_parameters_present_flag ? "VUI" : ""
3854                );
3855     }
3856     return 0;
3857 }
3858
3859 static inline int decode_picture_parameter_set(H264Context *h){
3860     MpegEncContext * const s = &h->s;
3861     int pps_id= get_ue_golomb(&s->gb);
3862     PPS *pps= &h->pps_buffer[pps_id];
3863     
3864     pps->sps_id= get_ue_golomb(&s->gb);
3865     pps->cabac= get_bits1(&s->gb);
3866     pps->pic_order_present= get_bits1(&s->gb);
3867     pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
3868     if(pps->slice_group_count > 1 ){
3869         pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
3870 fprintf(stderr, "FMO not supported\n");
3871         switch(pps->mb_slice_group_map_type){
3872         case 0:
3873 #if 0
3874 |   for( i = 0; i <= num_slice_groups_minus1; i++ ) |   |        |
3875 |    run_length[ i ]                                |1  |ue(v)   |
3876 #endif
3877             break;
3878         case 2:
3879 #if 0
3880 |   for( i = 0; i < num_slice_groups_minus1; i++ )  |   |        |
3881 |{                                                  |   |        |
3882 |    top_left_mb[ i ]                               |1  |ue(v)   |
3883 |    bottom_right_mb[ i ]                           |1  |ue(v)   |
3884 |   }                                               |   |        |
3885 #endif
3886             break;
3887         case 3:
3888         case 4:
3889         case 5:
3890 #if 0
3891 |   slice_group_change_direction_flag               |1  |u(1)    |
3892 |   slice_group_change_rate_minus1                  |1  |ue(v)   |
3893 #endif
3894             break;
3895         case 6:
3896 #if 0
3897 |   slice_group_id_cnt_minus1                       |1  |ue(v)   |
3898 |   for( i = 0; i <= slice_group_id_cnt_minus1; i++ |   |        |
3899 |)                                                  |   |        |
3900 |    slice_group_id[ i ]                            |1  |u(v)    |
3901 #endif
3902             break;
3903         }
3904     }
3905     pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3906     pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3907     if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
3908         fprintf(stderr, "reference overflow (pps)\n");
3909         return -1;
3910     }
3911     
3912     pps->weighted_pred= get_bits1(&s->gb);
3913     pps->weighted_bipred_idc= get_bits(&s->gb, 2);
3914     pps->init_qp= get_se_golomb(&s->gb) + 26;
3915     pps->init_qs= get_se_golomb(&s->gb) + 26;
3916     pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
3917     pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
3918     pps->constrained_intra_pred= get_bits1(&s->gb);
3919     pps->redundant_pic_cnt_present = get_bits1(&s->gb);
3920     pps->crop= get_bits1(&s->gb);
3921     if(pps->crop){
3922         pps->crop_left  = get_ue_golomb(&s->gb);
3923         pps->crop_right = get_ue_golomb(&s->gb);
3924         pps->crop_top   = get_ue_golomb(&s->gb);
3925         pps->crop_bottom= get_ue_golomb(&s->gb);
3926     }else{
3927         pps->crop_left  = 
3928         pps->crop_right = 
3929         pps->crop_top   = 
3930         pps->crop_bottom= 0;
3931     }
3932     
3933     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3934         printf("pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s crop:%d/%d/%d/%d\n", 
3935                pps_id, pps->sps_id,
3936                pps->cabac ? "CABAC" : "CAVLC",
3937                pps->slice_group_count,
3938                pps->ref_count[0], pps->ref_count[1],
3939                pps->weighted_pred ? "weighted" : "",
3940                pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
3941                pps->deblocking_filter_parameters_present ? "LPAR" : "",
3942                pps->constrained_intra_pred ? "CONSTR" : "",
3943                pps->redundant_pic_cnt_present ? "REDU" : "",
3944                pps->crop_left, pps->crop_right, 
3945                pps->crop_top, pps->crop_bottom
3946                );
3947     }
3948     
3949     return 0;
3950 }
3951
3952 /**
3953  * finds the end of the current frame in the bitstream.
3954  * @return the position of the first byte of the next frame, or -1
3955  */
3956 static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){
3957     ParseContext *pc= &s->parse_context;
3958     int i;
3959     uint32_t state;
3960 //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
3961 //    mb_addr= pc->mb_addr - 1;
3962     state= pc->state;
3963     //FIXME this will fail with slices
3964     for(i=0; i<buf_size; i++){
3965         state= (state<<8) | buf[i];
3966         if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
3967             if(pc->frame_start_found){
3968                 pc->state=-1; 
3969                 pc->frame_start_found= 0;
3970                 return i-3;
3971             }
3972             pc->frame_start_found= 1;
3973         }
3974     }
3975     
3976     pc->state= state;
3977     return END_NOT_FOUND;
3978 }
3979
3980 static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
3981     MpegEncContext * const s = &h->s;
3982     AVCodecContext * const avctx= s->avctx;
3983     int buf_index=0;
3984     int i;
3985 #if 0    
3986     for(i=0; i<32; i++){
3987         printf("%X ", buf[i]);
3988     }
3989 #endif
3990     for(;;){
3991         int consumed;
3992         int dst_length;
3993         int bit_length;
3994         uint8_t *ptr;
3995         
3996         // start code prefix search
3997         for(; buf_index + 3 < buf_size; buf_index++){
3998             // this should allways succeed in the first iteration
3999             if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
4000                 break;
4001         }
4002         
4003         if(buf_index+3 >= buf_size) break;
4004         
4005         buf_index+=3;
4006         
4007         ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index);
4008         if(ptr[dst_length - 1] == 0) dst_length--;
4009         bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
4010
4011         if(s->avctx->debug&FF_DEBUG_STARTCODE){
4012             printf("NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length);
4013         }
4014         
4015         buf_index += consumed;
4016
4017         if(h->nal_ref_idc < s->hurry_up)
4018             continue;
4019         
4020         switch(h->nal_unit_type){
4021         case NAL_IDR_SLICE:
4022             idr(h); //FIXME ensure we dont loose some frames if there is reordering
4023         case NAL_SLICE:
4024             init_get_bits(&s->gb, ptr, bit_length);
4025             h->intra_gb_ptr=
4026             h->inter_gb_ptr= &s->gb;
4027             s->data_partitioning = 0;
4028             
4029             if(decode_slice_header(h) < 0) return -1;
4030             if(h->redundant_pic_count==0)
4031                 decode_slice(h);
4032             break;
4033         case NAL_DPA:
4034             init_get_bits(&s->gb, ptr, bit_length);
4035             h->intra_gb_ptr=
4036             h->inter_gb_ptr= NULL;
4037             s->data_partitioning = 1;
4038             
4039             if(decode_slice_header(h) < 0) return -1;
4040             break;
4041         case NAL_DPB:
4042             init_get_bits(&h->intra_gb, ptr, bit_length);
4043             h->intra_gb_ptr= &h->intra_gb;
4044             break;
4045         case NAL_DPC:
4046             init_get_bits(&h->inter_gb, ptr, bit_length);
4047             h->inter_gb_ptr= &h->inter_gb;
4048
4049             if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning)
4050                 decode_slice(h);
4051             break;
4052         case NAL_SEI:
4053             break;
4054         case NAL_SPS:
4055             init_get_bits(&s->gb, ptr, bit_length);
4056             decode_seq_parameter_set(h);
4057             
4058             if(s->flags& CODEC_FLAG_LOW_DELAY)
4059                 s->low_delay=1;
4060       
4061             avctx->has_b_frames= !s->low_delay;
4062             break;
4063         case NAL_PPS:
4064             init_get_bits(&s->gb, ptr, bit_length);
4065             
4066             decode_picture_parameter_set(h);
4067
4068             break;
4069         case NAL_PICTURE_DELIMITER:
4070             break;
4071         case NAL_FILTER_DATA:
4072             break;
4073         }        
4074
4075         //FIXME move after where irt is set
4076         s->current_picture.pict_type= s->pict_type;
4077         s->current_picture.key_frame= s->pict_type == I_TYPE;
4078     }
4079     
4080     if(!s->current_picture_ptr) return buf_index; //no frame
4081     
4082     h->prev_frame_num_offset= h->frame_num_offset;
4083     h->prev_frame_num= h->frame_num;
4084     if(s->current_picture_ptr->reference){
4085         h->prev_poc_msb= h->poc_msb;
4086         h->prev_poc_lsb= h->poc_lsb;
4087     }
4088     if(s->current_picture_ptr->reference)
4089         execute_ref_pic_marking(h, h->mmco, h->mmco_index);
4090     else
4091         assert(h->mmco_index==0);
4092
4093     ff_er_frame_end(s);
4094     MPV_frame_end(s);
4095
4096     return buf_index;
4097 }
4098
4099 /**
4100  * retunrs the number of bytes consumed for building the current frame
4101  */
4102 static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
4103     if(s->flags&CODEC_FLAG_TRUNCATED){
4104         pos -= s->parse_context.last_index;
4105         if(pos<0) pos=0; // FIXME remove (uneeded?)
4106         
4107         return pos;
4108     }else{
4109         if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
4110         if(pos+10>buf_size) pos=buf_size; // oops ;)
4111
4112         return pos;
4113     }
4114 }
4115
4116 static int decode_frame(AVCodecContext *avctx, 
4117                              void *data, int *data_size,
4118                              uint8_t *buf, int buf_size)
4119 {
4120     H264Context *h = avctx->priv_data;
4121     MpegEncContext *s = &h->s;
4122     AVFrame *pict = data; 
4123     int buf_index;
4124     
4125     s->flags= avctx->flags;
4126
4127     *data_size = 0;
4128    
4129    /* no supplementary picture */
4130     if (buf_size == 0) {
4131         return 0;
4132     }
4133     
4134     if(s->flags&CODEC_FLAG_TRUNCATED){
4135         int next= find_frame_end(s, buf, buf_size);
4136         
4137         if( ff_combine_frame(s, next, &buf, &buf_size) < 0 )
4138             return buf_size;
4139 //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
4140     }
4141
4142     if(s->avctx->extradata_size && s->picture_number==0){
4143         if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) ) 
4144             return -1;
4145     }
4146
4147     buf_index=decode_nal_units(h, buf, buf_size);
4148     if(buf_index < 0) 
4149         return -1;
4150
4151     //FIXME do something with unavailable reference frames    
4152  
4153 //    if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size);
4154 #if 0
4155     if(s->pict_type==B_TYPE || s->low_delay){
4156         *pict= *(AVFrame*)&s->current_picture;
4157     } else {
4158         *pict= *(AVFrame*)&s->last_picture;
4159     }
4160 #endif
4161     if(!s->current_picture_ptr){
4162         fprintf(stderr, "error, NO frame\n");
4163         return -1;
4164     }
4165
4166     *pict= *(AVFrame*)&s->current_picture; //FIXME 
4167     ff_print_debug_info(s, s->current_picture_ptr);
4168     assert(pict->data[0]);
4169 //printf("out %d\n", (int)pict->data[0]);
4170 #if 0 //?
4171
4172     /* Return the Picture timestamp as the frame number */
4173     /* we substract 1 because it is added on utils.c    */
4174     avctx->frame_number = s->picture_number - 1;
4175 #endif
4176 #if 0
4177     /* dont output the last pic after seeking */
4178     if(s->last_picture_ptr || s->low_delay)
4179     //Note this isnt a issue as a IDR pic should flush teh buffers
4180 #endif
4181         *data_size = sizeof(AVFrame);
4182     return get_consumed_bytes(s, buf_index, buf_size);
4183 }
4184 #if 0
4185 static inline void fill_mb_avail(H264Context *h){
4186     MpegEncContext * const s = &h->s;
4187     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4188
4189     if(s->mb_y){
4190         h->mb_avail[0]= s->mb_x                 && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
4191         h->mb_avail[1]=                            h->slice_table[mb_xy - s->mb_stride    ] == h->slice_num;
4192         h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
4193     }else{
4194         h->mb_avail[0]=
4195         h->mb_avail[1]=
4196         h->mb_avail[2]= 0;
4197     }
4198     h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
4199     h->mb_avail[4]= 1; //FIXME move out
4200     h->mb_avail[5]= 0; //FIXME move out
4201 }
4202 #endif
4203
4204 #if 0 //selftest
4205 #define COUNT 8000
4206 #define SIZE (COUNT*40)
4207 int main(){
4208     int i;
4209     uint8_t temp[SIZE];
4210     PutBitContext pb;
4211     GetBitContext gb;
4212 //    int int_temp[10000];
4213     DSPContext dsp;
4214     AVCodecContext avctx;
4215     
4216     dsputil_init(&dsp, &avctx);
4217
4218     init_put_bits(&pb, temp, SIZE, NULL, NULL);
4219     printf("testing unsigned exp golomb\n");
4220     for(i=0; i<COUNT; i++){
4221         START_TIMER
4222         set_ue_golomb(&pb, i);
4223         STOP_TIMER("set_ue_golomb");
4224     }
4225     flush_put_bits(&pb);
4226     
4227     init_get_bits(&gb, temp, 8*SIZE);
4228     for(i=0; i<COUNT; i++){
4229         int j, s;
4230         
4231         s= show_bits(&gb, 24);
4232         
4233         START_TIMER
4234         j= get_ue_golomb(&gb);
4235         if(j != i){
4236             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4237 //            return -1;
4238         }
4239         STOP_TIMER("get_ue_golomb");
4240     }
4241     
4242     
4243     init_put_bits(&pb, temp, SIZE, NULL, NULL);
4244     printf("testing signed exp golomb\n");
4245     for(i=0; i<COUNT; i++){
4246         START_TIMER
4247         set_se_golomb(&pb, i - COUNT/2);
4248         STOP_TIMER("set_se_golomb");
4249     }
4250     flush_put_bits(&pb);
4251     
4252     init_get_bits(&gb, temp, 8*SIZE);
4253     for(i=0; i<COUNT; i++){
4254         int j, s;
4255         
4256         s= show_bits(&gb, 24);
4257         
4258         START_TIMER
4259         j= get_se_golomb(&gb);
4260         if(j != i - COUNT/2){
4261             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4262 //            return -1;
4263         }
4264         STOP_TIMER("get_se_golomb");
4265     }
4266
4267     printf("testing 4x4 (I)DCT\n");
4268     
4269     DCTELEM block[16];
4270     uint8_t src[16], ref[16];
4271     uint64_t error= 0, max_error=0;
4272
4273     for(i=0; i<COUNT; i++){
4274         int j;
4275 //        printf("%d %d %d\n", r1, r2, (r2-r1)*16);
4276         for(j=0; j<16; j++){
4277             ref[j]= random()%255;
4278             src[j]= random()%255;
4279         }
4280
4281         h264_diff_dct_c(block, src, ref, 4);
4282         
4283         //normalize
4284         for(j=0; j<16; j++){
4285 //            printf("%d ", block[j]);
4286             block[j]= block[j]*4;
4287             if(j&1) block[j]= (block[j]*4 + 2)/5;
4288             if(j&4) block[j]= (block[j]*4 + 2)/5;
4289         }
4290 //        printf("\n");
4291         
4292         h264_add_idct_c(ref, block, 4);
4293 /*        for(j=0; j<16; j++){
4294             printf("%d ", ref[j]);
4295         }
4296         printf("\n");*/
4297             
4298         for(j=0; j<16; j++){
4299             int diff= ABS(src[j] - ref[j]);
4300             
4301             error+= diff*diff;
4302             max_error= FFMAX(max_error, diff);
4303         }
4304     }
4305     printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
4306 #if 0
4307     printf("testing quantizer\n");
4308     for(qp=0; qp<52; qp++){
4309         for(i=0; i<16; i++)
4310             src1_block[i]= src2_block[i]= random()%255;
4311         
4312     }
4313 #endif
4314     printf("Testing NAL layer\n");
4315     
4316     uint8_t bitstream[COUNT];
4317     uint8_t nal[COUNT*2];
4318     H264Context h;
4319     memset(&h, 0, sizeof(H264Context));
4320     
4321     for(i=0; i<COUNT; i++){
4322         int zeros= i;
4323         int nal_length;
4324         int consumed;
4325         int out_length;
4326         uint8_t *out;
4327         int j;
4328         
4329         for(j=0; j<COUNT; j++){
4330             bitstream[j]= (random() % 255) + 1;
4331         }
4332         
4333         for(j=0; j<zeros; j++){
4334             int pos= random() % COUNT;
4335             while(bitstream[pos] == 0){
4336                 pos++;
4337                 pos %= COUNT;
4338             }
4339             bitstream[pos]=0;
4340         }
4341         
4342         START_TIMER
4343         
4344         nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
4345         if(nal_length<0){
4346             printf("encoding failed\n");
4347             return -1;
4348         }
4349         
4350         out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
4351
4352         STOP_TIMER("NAL")
4353         
4354         if(out_length != COUNT){
4355             printf("incorrect length %d %d\n", out_length, COUNT);
4356             return -1;
4357         }
4358         
4359         if(consumed != nal_length){
4360             printf("incorrect consumed length %d %d\n", nal_length, consumed);
4361             return -1;
4362         }
4363         
4364         if(memcmp(bitstream, out, COUNT)){
4365             printf("missmatch\n");
4366             return -1;
4367         }
4368     }
4369     
4370     printf("Testing RBSP\n");
4371     
4372     
4373     return 0;
4374 }
4375 #endif
4376
4377
4378 static int decode_end(AVCodecContext *avctx)
4379 {
4380     H264Context *h = avctx->priv_data;
4381     MpegEncContext *s = &h->s;
4382     
4383     free_tables(h); //FIXME cleanup init stuff perhaps
4384     MPV_common_end(s);
4385
4386 //    memset(h, 0, sizeof(H264Context));
4387         
4388     return 0;
4389 }
4390
4391
4392 AVCodec h264_decoder = {
4393     "h264",
4394     CODEC_TYPE_VIDEO,
4395     CODEC_ID_H264,
4396     sizeof(H264Context),
4397     decode_init,
4398     NULL,
4399     decode_end,
4400     decode_frame,
4401     /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED,
4402 };
4403
4404 #include "svq3.c"