]> git.sesse.net Git - ffmpeg/blob - libavcodec/h264.c
intra16x16 fix
[ffmpeg] / libavcodec / h264.c
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  */
20  
21 /**
22  * @file h264.c
23  * H.264 / AVC / MPEG4 part10 codec.
24  * @author Michael Niedermayer <michaelni@gmx.at>
25  */
26
27 #include "common.h"
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264data.h"
32 #include "golomb.h"
33
34 #undef NDEBUG
35 #include <assert.h>
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_isnt_initalized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX   25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS           8
45 #define TOTAL_ZEROS_VLC_BITS           9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS                   3
48 #define RUN7_VLC_BITS                  6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 /**
56  * Sequence parameter set
57  */
58 typedef struct SPS{
59     
60     int profile_idc;
61     int level_idc;
62     int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
63     int poc_type;                      ///< pic_order_cnt_type
64     int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
65     int delta_pic_order_always_zero_flag;
66     int offset_for_non_ref_pic;
67     int offset_for_top_to_bottom_field;
68     int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
69     int ref_frame_count;               ///< num_ref_frames
70     int gaps_in_frame_num_allowed_flag;
71     int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
72     int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
73     int frame_mbs_only_flag;
74     int mb_aff;                        ///<mb_adaptive_frame_field_flag
75     int direct_8x8_inference_flag;
76     int crop;                   ///< frame_cropping_flag
77     int crop_left;              ///< frame_cropping_rect_left_offset
78     int crop_right;             ///< frame_cropping_rect_right_offset
79     int crop_top;               ///< frame_cropping_rect_top_offset
80     int crop_bottom;            ///< frame_cropping_rect_bottom_offset
81     int vui_parameters_present_flag;
82     AVRational sar;
83     short offset_for_ref_frame[256]; //FIXME dyn aloc?
84 }SPS;
85
86 /**
87  * Picture parameter set
88  */
89 typedef struct PPS{
90     int sps_id;
91     int cabac;                  ///< entropy_coding_mode_flag
92     int pic_order_present;      ///< pic_order_present_flag
93     int slice_group_count;      ///< num_slice_groups_minus1 + 1
94     int mb_slice_group_map_type;
95     int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
96     int weighted_pred;          ///< weighted_pred_flag
97     int weighted_bipred_idc;
98     int init_qp;                ///< pic_init_qp_minus26 + 26
99     int init_qs;                ///< pic_init_qs_minus26 + 26
100     int chroma_qp_index_offset;
101     int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
102     int constrained_intra_pred; ///< constrained_intra_pred_flag
103     int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
104 }PPS;
105
106 /**
107  * Memory management control operation opcode.
108  */
109 typedef enum MMCOOpcode{
110     MMCO_END=0,
111     MMCO_SHORT2UNUSED,
112     MMCO_LONG2UNUSED,
113     MMCO_SHORT2LONG,
114     MMCO_SET_MAX_LONG,
115     MMCO_RESET, 
116     MMCO_LONG,
117 } MMCOOpcode;
118
119 /**
120  * Memory management control operation.
121  */
122 typedef struct MMCO{
123     MMCOOpcode opcode;
124     int short_frame_num;
125     int long_index;
126 } MMCO;
127
128 /**
129  * H264Context
130  */
131 typedef struct H264Context{
132     MpegEncContext s;
133     int nal_ref_idc;    
134     int nal_unit_type;
135 #define NAL_SLICE               1
136 #define NAL_DPA                 2
137 #define NAL_DPB                 3
138 #define NAL_DPC                 4
139 #define NAL_IDR_SLICE           5
140 #define NAL_SEI                 6
141 #define NAL_SPS                 7
142 #define NAL_PPS                 8
143 #define NAL_PICTURE_DELIMITER   9
144 #define NAL_FILTER_DATA         10
145     uint8_t *rbsp_buffer;
146     int rbsp_buffer_size;
147
148     int chroma_qp; //QPc
149
150     int prev_mb_skiped; //FIXME remove (IMHO not used)
151
152     //prediction stuff
153     int chroma_pred_mode;
154     int intra16x16_pred_mode;
155     
156     int8_t intra4x4_pred_mode_cache[5*8];
157     int8_t (*intra4x4_pred_mode)[8];
158     void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
159     void (*pred8x8  [4+3])(uint8_t *src, int stride);
160     void (*pred16x16[4+3])(uint8_t *src, int stride);
161     unsigned int topleft_samples_available;
162     unsigned int top_samples_available;
163     unsigned int topright_samples_available;
164     unsigned int left_samples_available;
165
166     /**
167      * non zero coeff count cache.
168      * is 64 if not available.
169      */
170     uint8_t non_zero_count_cache[6*8];
171     uint8_t (*non_zero_count)[16];
172
173     /**
174      * Motion vector cache.
175      */
176     int16_t mv_cache[2][5*8][2];
177     int8_t ref_cache[2][5*8];
178 #define LIST_NOT_USED -1 //FIXME rename?
179 #define PART_NOT_AVAILABLE -2
180     
181     /**
182      * is 1 if the specific list MV&references are set to 0,0,-2.
183      */
184     int mv_cache_clean[2];
185
186     int block_offset[16+8];
187     int chroma_subblock_offset[16]; //FIXME remove
188     
189     uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
190     uint16_t *mb2b8_xy;
191     int b_stride;
192     int b8_stride;
193
194     int halfpel_flag;
195     int thirdpel_flag;
196
197     int unknown_svq3_flag;
198     int next_slice_index;
199
200     SPS sps_buffer[MAX_SPS_COUNT];
201     SPS sps; ///< current sps
202     
203     PPS pps_buffer[MAX_PPS_COUNT];
204     /**
205      * current pps
206      */
207     PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
208
209     int slice_num;
210     uint8_t *slice_table_base;
211     uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
212     int slice_type;
213     int slice_type_fixed;
214     
215     //interlacing specific flags
216     int mb_field_decoding_flag;
217     
218     int sub_mb_type[4];
219     
220     //POC stuff
221     int poc_lsb;
222     int poc_msb;
223     int delta_poc_bottom;
224     int delta_poc[2];
225     int frame_num;
226     int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
227     int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
228     int frame_num_offset;         ///< for POC type 2
229     int prev_frame_num_offset;    ///< for POC type 2
230     int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
231
232     /**
233      * frame_num for frames or 2*frame_num for field pics.
234      */
235     int curr_pic_num;
236     
237     /**
238      * max_frame_num or 2*max_frame_num for field pics.
239      */
240     int max_pic_num;
241
242     //Weighted pred stuff
243     int luma_log2_weight_denom;
244     int chroma_log2_weight_denom;
245     int luma_weight[2][16];
246     int luma_offset[2][16];
247     int chroma_weight[2][16][2];
248     int chroma_offset[2][16][2];
249    
250     //deblock
251     int disable_deblocking_filter_idc;
252     int slice_alpha_c0_offset_div2;
253     int slice_beta_offset_div2;
254      
255     int redundant_pic_count;
256     
257     int direct_spatial_mv_pred;
258
259     /**
260      * num_ref_idx_l0/1_active_minus1 + 1
261      */
262     int ref_count[2];// FIXME split for AFF
263     Picture *short_ref[16];
264     Picture *long_ref[16];
265     Picture default_ref_list[2][32];
266     Picture ref_list[2][32]; //FIXME size?
267     Picture field_ref_list[2][32]; //FIXME size?
268     
269     /**
270      * memory management control operations buffer.
271      */
272     MMCO mmco[MAX_MMCO_COUNT];
273     int mmco_index;
274     
275     int long_ref_count;  ///< number of actual long term references
276     int short_ref_count; ///< number of actual short term references
277     
278     //data partitioning
279     GetBitContext intra_gb;
280     GetBitContext inter_gb;
281     GetBitContext *intra_gb_ptr;
282     GetBitContext *inter_gb_ptr;
283     
284     DCTELEM mb[16*24] __align8;
285 }H264Context;
286
287 static VLC coeff_token_vlc[4];
288 static VLC chroma_dc_coeff_token_vlc;
289
290 static VLC total_zeros_vlc[15];
291 static VLC chroma_dc_total_zeros_vlc[3];
292
293 static VLC run_vlc[6];
294 static VLC run7_vlc;
295
296 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
297 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
298
299 static inline uint32_t pack16to32(int a, int b){
300 #ifdef WORDS_BIGENDIAN
301    return (b&0xFFFF) + (a<<16);
302 #else
303    return (a&0xFFFF) + (b<<16);
304 #endif
305 }
306
307 /**
308  * fill a rectangle.
309  * @param h height of the recatangle, should be a constant
310  * @param w width of the recatangle, should be a constant
311  * @param size the size of val (1 or 4), should be a constant
312  */
313 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
314     uint8_t *p= (uint8_t*)vp;
315     assert(size==1 || size==4);
316     
317     w      *= size;
318     stride *= size;
319     
320 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
321     if(w==2 && h==2){
322         *(uint16_t*)(p + 0)=
323         *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
324     }else if(w==2 && h==4){
325         *(uint16_t*)(p + 0*stride)=
326         *(uint16_t*)(p + 1*stride)=
327         *(uint16_t*)(p + 2*stride)=
328         *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
329     }else if(w==4 && h==1){
330         *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
331     }else if(w==4 && h==2){
332         *(uint32_t*)(p + 0*stride)=
333         *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
334     }else if(w==4 && h==4){
335         *(uint32_t*)(p + 0*stride)=
336         *(uint32_t*)(p + 1*stride)=
337         *(uint32_t*)(p + 2*stride)=
338         *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
339     }else if(w==8 && h==1){
340         *(uint32_t*)(p + 0)=
341         *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
342     }else if(w==8 && h==2){
343         *(uint32_t*)(p + 0 + 0*stride)=
344         *(uint32_t*)(p + 4 + 0*stride)=
345         *(uint32_t*)(p + 0 + 1*stride)=
346         *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
347     }else if(w==8 && h==4){
348         *(uint64_t*)(p + 0*stride)=
349         *(uint64_t*)(p + 1*stride)=
350         *(uint64_t*)(p + 2*stride)=
351         *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
352     }else if(w==16 && h==2){
353         *(uint64_t*)(p + 0+0*stride)=
354         *(uint64_t*)(p + 8+0*stride)=
355         *(uint64_t*)(p + 0+1*stride)=
356         *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
357     }else if(w==16 && h==4){
358         *(uint64_t*)(p + 0+0*stride)=
359         *(uint64_t*)(p + 8+0*stride)=
360         *(uint64_t*)(p + 0+1*stride)=
361         *(uint64_t*)(p + 8+1*stride)=
362         *(uint64_t*)(p + 0+2*stride)=
363         *(uint64_t*)(p + 8+2*stride)=
364         *(uint64_t*)(p + 0+3*stride)=
365         *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
366     }else
367         assert(0);
368 }
369
370 static inline void fill_caches(H264Context *h, int mb_type){
371     MpegEncContext * const s = &h->s;
372     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
373     int topleft_xy, top_xy, topright_xy, left_xy[2];
374     int topleft_type, top_type, topright_type, left_type[2];
375     int left_block[4];
376     int i;
377
378     //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
379     
380     if(h->sps.mb_aff){
381     //FIXME
382         topleft_xy = 0; /* avoid warning */
383         top_xy = 0; /* avoid warning */
384         topright_xy = 0; /* avoid warning */
385     }else{
386         topleft_xy = mb_xy-1 - s->mb_stride;
387         top_xy     = mb_xy   - s->mb_stride;
388         topright_xy= mb_xy+1 - s->mb_stride;
389         left_xy[0]   = mb_xy-1;
390         left_xy[1]   = mb_xy-1;
391         left_block[0]= 0;
392         left_block[1]= 1;
393         left_block[2]= 2;
394         left_block[3]= 3;
395     }
396
397     topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
398     top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
399     topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
400     left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
401     left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
402
403     if(IS_INTRA(mb_type)){
404         h->topleft_samples_available= 
405         h->top_samples_available= 
406         h->left_samples_available= 0xFFFF;
407         h->topright_samples_available= 0xEEEA;
408
409         if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
410             h->topleft_samples_available= 0xB3FF;
411             h->top_samples_available= 0x33FF;
412             h->topright_samples_available= 0x26EA;
413         }
414         for(i=0; i<2; i++){
415             if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
416                 h->topleft_samples_available&= 0xDF5F;
417                 h->left_samples_available&= 0x5F5F;
418             }
419         }
420         
421         if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
422             h->topleft_samples_available&= 0x7FFF;
423         
424         if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
425             h->topright_samples_available&= 0xFBFF;
426     
427         if(IS_INTRA4x4(mb_type)){
428             if(IS_INTRA4x4(top_type)){
429                 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
430                 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
431                 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
432                 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
433             }else{
434                 int pred;
435                 if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
436                     pred= 2;
437                 else{
438                     pred= -1;
439                 }
440                 h->intra4x4_pred_mode_cache[4+8*0]=
441                 h->intra4x4_pred_mode_cache[5+8*0]=
442                 h->intra4x4_pred_mode_cache[6+8*0]=
443                 h->intra4x4_pred_mode_cache[7+8*0]= pred;
444             }
445             for(i=0; i<2; i++){
446                 if(IS_INTRA4x4(left_type[i])){
447                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
448                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
449                 }else{
450                     int pred;
451                     if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
452                         pred= 2;
453                     else{
454                         pred= -1;
455                     }
456                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
457                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
458                 }
459             }
460         }
461     }
462     
463     
464 /*
465 0 . T T. T T T T 
466 1 L . .L . . . . 
467 2 L . .L . . . . 
468 3 . T TL . . . . 
469 4 L . .L . . . . 
470 5 L . .. . . . . 
471 */
472 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
473     if(top_type){
474         h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
475         h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
476         h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
477         h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
478     
479         h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
480         h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
481     
482         h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
483         h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
484     }else{
485         h->non_zero_count_cache[4+8*0]=      
486         h->non_zero_count_cache[5+8*0]=
487         h->non_zero_count_cache[6+8*0]=
488         h->non_zero_count_cache[7+8*0]=
489     
490         h->non_zero_count_cache[1+8*0]=
491         h->non_zero_count_cache[2+8*0]=
492     
493         h->non_zero_count_cache[1+8*3]=
494         h->non_zero_count_cache[2+8*3]= 64;
495     }
496     
497     if(left_type[0]){
498         h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
499         h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
500         h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
501         h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
502     }else{
503         h->non_zero_count_cache[3+8*1]= 
504         h->non_zero_count_cache[3+8*2]= 
505         h->non_zero_count_cache[0+8*1]= 
506         h->non_zero_count_cache[0+8*4]= 64;
507     }
508     
509     if(left_type[1]){
510         h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
511         h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
512         h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
513         h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
514     }else{
515         h->non_zero_count_cache[3+8*3]= 
516         h->non_zero_count_cache[3+8*4]= 
517         h->non_zero_count_cache[0+8*2]= 
518         h->non_zero_count_cache[0+8*5]= 64;
519     }
520     
521 #if 1
522     if(IS_INTER(mb_type)){
523         int list;
524         for(list=0; list<2; list++){
525             if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
526                 /*if(!h->mv_cache_clean[list]){
527                     memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
528                     memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
529                     h->mv_cache_clean[list]= 1;
530                 }*/
531                 continue; //FIXME direct mode ...
532             }
533             h->mv_cache_clean[list]= 0;
534             
535             if(IS_INTER(topleft_type)){
536                 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
537                 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
538                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
539                 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
540             }else{
541                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
542                 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
543             }
544             
545             if(IS_INTER(top_type)){
546                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
547                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
548                 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
549                 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
550                 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
551                 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
552                 h->ref_cache[list][scan8[0] + 0 - 1*8]=
553                 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
554                 h->ref_cache[list][scan8[0] + 2 - 1*8]=
555                 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
556             }else{
557                 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
558                 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
559                 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
560                 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
561                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
562             }
563
564             if(IS_INTER(topright_type)){
565                 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
566                 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
567                 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
568                 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
569             }else{
570                 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
571                 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
572             }
573             
574             //FIXME unify cleanup or sth
575             if(IS_INTER(left_type[0])){
576                 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
577                 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
578                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
579                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
580                 h->ref_cache[list][scan8[0] - 1 + 0*8]= 
581                 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
582             }else{
583                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
584                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
585                 h->ref_cache[list][scan8[0] - 1 + 0*8]=
586                 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
587             }
588             
589             if(IS_INTER(left_type[1])){
590                 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
591                 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
592                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
593                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
594                 h->ref_cache[list][scan8[0] - 1 + 2*8]= 
595                 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
596             }else{
597                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
598                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
599                 h->ref_cache[list][scan8[0] - 1 + 2*8]=
600                 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
601             }
602
603             h->ref_cache[list][scan8[5 ]+1] = 
604             h->ref_cache[list][scan8[7 ]+1] = 
605             h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
606             h->ref_cache[list][scan8[4 ]] = 
607             h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
608             *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
609             *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
610             *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
611             *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
612             *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
613         }
614 //FIXME
615
616     }
617 #endif
618 }
619
620 static inline void write_back_intra_pred_mode(H264Context *h){
621     MpegEncContext * const s = &h->s;
622     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
623
624     h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
625     h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
626     h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
627     h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
628     h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
629     h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
630     h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
631 }
632
633 /**
634  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
635  */
636 static inline int check_intra4x4_pred_mode(H264Context *h){
637     MpegEncContext * const s = &h->s;
638     static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
639     static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
640     int i;
641     
642     if(!(h->top_samples_available&0x8000)){
643         for(i=0; i<4; i++){
644             int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
645             if(status<0){
646                 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
647                 return -1;
648             } else if(status){
649                 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
650             }
651         }
652     }
653     
654     if(!(h->left_samples_available&0x8000)){
655         for(i=0; i<4; i++){
656             int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
657             if(status<0){
658                 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
659                 return -1;
660             } else if(status){
661                 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
662             }
663         }
664     }
665
666     return 0;
667 } //FIXME cleanup like next
668
669 /**
670  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
671  */
672 static inline int check_intra_pred_mode(H264Context *h, int mode){
673     MpegEncContext * const s = &h->s;
674     static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
675     static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
676     
677     if(!(h->top_samples_available&0x8000)){
678         mode= top[ mode ];
679         if(mode<0){
680             av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
681             return -1;
682         }
683     }
684     
685     if(!(h->left_samples_available&0x8000)){
686         mode= left[ mode ];
687         if(mode<0){
688             av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
689             return -1;
690         } 
691     }
692
693     return mode;
694 }
695
696 /**
697  * gets the predicted intra4x4 prediction mode.
698  */
699 static inline int pred_intra_mode(H264Context *h, int n){
700     const int index8= scan8[n];
701     const int left= h->intra4x4_pred_mode_cache[index8 - 1];
702     const int top = h->intra4x4_pred_mode_cache[index8 - 8];
703     const int min= FFMIN(left, top);
704
705     tprintf("mode:%d %d min:%d\n", left ,top, min);
706
707     if(min<0) return DC_PRED;
708     else      return min;
709 }
710
711 static inline void write_back_non_zero_count(H264Context *h){
712     MpegEncContext * const s = &h->s;
713     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
714
715     h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
716     h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
717     h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
718     h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
719     h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
720     h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
721     h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
722     
723     h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
724     h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
725     h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
726
727     h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
728     h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
729     h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
730 }
731
732 /**
733  * gets the predicted number of non zero coefficients.
734  * @param n block index
735  */
736 static inline int pred_non_zero_count(H264Context *h, int n){
737     const int index8= scan8[n];
738     const int left= h->non_zero_count_cache[index8 - 1];
739     const int top = h->non_zero_count_cache[index8 - 8];
740     int i= left + top;
741     
742     if(i<64) i= (i+1)>>1;
743
744     tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
745
746     return i&31;
747 }
748
749 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
750     const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
751
752     if(topright_ref != PART_NOT_AVAILABLE){
753         *C= h->mv_cache[list][ i - 8 + part_width ];
754         return topright_ref;
755     }else{
756         tprintf("topright MV not available\n");
757
758         *C= h->mv_cache[list][ i - 8 - 1 ];
759         return h->ref_cache[list][ i - 8 - 1 ];
760     }
761 }
762
763 /**
764  * gets the predicted MV.
765  * @param n the block index
766  * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
767  * @param mx the x component of the predicted motion vector
768  * @param my the y component of the predicted motion vector
769  */
770 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
771     const int index8= scan8[n];
772     const int top_ref=      h->ref_cache[list][ index8 - 8 ];
773     const int left_ref=     h->ref_cache[list][ index8 - 1 ];
774     const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
775     const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
776     const int16_t * C;
777     int diagonal_ref, match_count;
778
779     assert(part_width==1 || part_width==2 || part_width==4);
780
781 /* mv_cache
782   B . . A T T T T 
783   U . . L . . , .
784   U . . L . . . .
785   U . . L . . , .
786   . . . L . . . .
787 */
788
789     diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
790     match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
791     if(match_count > 1){ //most common
792         *mx= mid_pred(A[0], B[0], C[0]);
793         *my= mid_pred(A[1], B[1], C[1]);
794     }else if(match_count==1){
795         if(left_ref==ref){
796             *mx= A[0];
797             *my= A[1];        
798         }else if(top_ref==ref){
799             *mx= B[0];
800             *my= B[1];        
801         }else{
802             *mx= C[0];
803             *my= C[1];        
804         }
805     }else{
806         if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
807             *mx= A[0];
808             *my= A[1];        
809         }else{
810             *mx= mid_pred(A[0], B[0], C[0]);
811             *my= mid_pred(A[1], B[1], C[1]);
812         }
813     }
814         
815     tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
816 }
817
818 /**
819  * gets the directionally predicted 16x8 MV.
820  * @param n the block index
821  * @param mx the x component of the predicted motion vector
822  * @param my the y component of the predicted motion vector
823  */
824 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
825     if(n==0){
826         const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
827         const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
828
829         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
830         
831         if(top_ref == ref){
832             *mx= B[0];
833             *my= B[1];
834             return;
835         }
836     }else{
837         const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
838         const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
839         
840         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
841
842         if(left_ref == ref){
843             *mx= A[0];
844             *my= A[1];
845             return;
846         }
847     }
848
849     //RARE
850     pred_motion(h, n, 4, list, ref, mx, my);
851 }
852
853 /**
854  * gets the directionally predicted 8x16 MV.
855  * @param n the block index
856  * @param mx the x component of the predicted motion vector
857  * @param my the y component of the predicted motion vector
858  */
859 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
860     if(n==0){
861         const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
862         const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
863         
864         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
865
866         if(left_ref == ref){
867             *mx= A[0];
868             *my= A[1];
869             return;
870         }
871     }else{
872         const int16_t * C;
873         int diagonal_ref;
874
875         diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
876         
877         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
878
879         if(diagonal_ref == ref){ 
880             *mx= C[0];
881             *my= C[1];
882             return;
883         }
884     }
885
886     //RARE
887     pred_motion(h, n, 2, list, ref, mx, my);
888 }
889
890 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
891     const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
892     const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
893
894     tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
895
896     if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
897        || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
898        || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
899        
900         *mx = *my = 0;
901         return;
902     }
903         
904     pred_motion(h, 0, 4, 0, 0, mx, my);
905
906     return;
907 }
908
909 static inline void write_back_motion(H264Context *h, int mb_type){
910     MpegEncContext * const s = &h->s;
911     const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
912     const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
913     int list;
914
915     for(list=0; list<2; list++){
916         int y;
917         if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
918             if(1){ //FIXME skip or never read if mb_type doesnt use it
919                 for(y=0; y<4; y++){
920                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
921                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
922                 }
923                 for(y=0; y<2; y++){
924                     *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
925                 }
926             }
927             continue; //FIXME direct mode ...
928         }
929         
930         for(y=0; y<4; y++){
931             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
932             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
933         }
934         for(y=0; y<2; y++){
935             s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
936             s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
937         }
938     }
939 }
940
941 /**
942  * Decodes a network abstraction layer unit.
943  * @param consumed is the number of bytes used as input
944  * @param length is the length of the array
945  * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
946  * @returns decoded bytes, might be src+1 if no escapes 
947  */
948 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
949     int i, si, di;
950     uint8_t *dst;
951
952 //    src[0]&0x80;              //forbidden bit
953     h->nal_ref_idc= src[0]>>5;
954     h->nal_unit_type= src[0]&0x1F;
955
956     src++; length--;
957 #if 0    
958     for(i=0; i<length; i++)
959         printf("%2X ", src[i]);
960 #endif
961     for(i=0; i+1<length; i+=2){
962         if(src[i]) continue;
963         if(i>0 && src[i-1]==0) i--;
964         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
965             if(src[i+2]!=3){
966                 /* startcode, so we must be past the end */
967                 length=i;
968             }
969             break;
970         }
971     }
972
973     if(i>=length-1){ //no escaped 0
974         *dst_length= length;
975         *consumed= length+1; //+1 for the header
976         return src; 
977     }
978
979     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
980     dst= h->rbsp_buffer;
981
982 //printf("deoding esc\n");
983     si=di=0;
984     while(si<length){ 
985         //remove escapes (very rare 1:2^22)
986         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
987             if(src[si+2]==3){ //escape
988                 dst[di++]= 0;
989                 dst[di++]= 0;
990                 si+=3;
991             }else //next start code
992                 break;
993         }
994
995         dst[di++]= src[si++];
996     }
997
998     *dst_length= di;
999     *consumed= si + 1;//+1 for the header
1000 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1001     return dst;
1002 }
1003
1004 /**
1005  * @param src the data which should be escaped
1006  * @param dst the target buffer, dst+1 == src is allowed as a special case
1007  * @param length the length of the src data
1008  * @param dst_length the length of the dst array
1009  * @returns length of escaped data in bytes or -1 if an error occured
1010  */
1011 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1012     int i, escape_count, si, di;
1013     uint8_t *temp;
1014     
1015     assert(length>=0);
1016     assert(dst_length>0);
1017     
1018     dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1019
1020     if(length==0) return 1;
1021
1022     escape_count= 0;
1023     for(i=0; i<length; i+=2){
1024         if(src[i]) continue;
1025         if(i>0 && src[i-1]==0) 
1026             i--;
1027         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1028             escape_count++;
1029             i+=2;
1030         }
1031     }
1032     
1033     if(escape_count==0){ 
1034         if(dst+1 != src)
1035             memcpy(dst+1, src, length);
1036         return length + 1;
1037     }
1038     
1039     if(length + escape_count + 1> dst_length)
1040         return -1;
1041
1042     //this should be damn rare (hopefully)
1043
1044     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1045     temp= h->rbsp_buffer;
1046 //printf("encoding esc\n");
1047     
1048     si= 0;
1049     di= 0;
1050     while(si < length){
1051         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1052             temp[di++]= 0; si++;
1053             temp[di++]= 0; si++;
1054             temp[di++]= 3; 
1055             temp[di++]= src[si++];
1056         }
1057         else
1058             temp[di++]= src[si++];
1059     }
1060     memcpy(dst+1, temp, length+escape_count);
1061     
1062     assert(di == length+escape_count);
1063     
1064     return di + 1;
1065 }
1066
1067 /**
1068  * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1069  */
1070 static void encode_rbsp_trailing(PutBitContext *pb){
1071     int length;
1072     put_bits(pb, 1, 1);
1073     length= (-get_bit_count(pb))&7;
1074     if(length) put_bits(pb, length, 0);
1075 }
1076
1077 /**
1078  * identifies the exact end of the bitstream
1079  * @return the length of the trailing, or 0 if damaged
1080  */
1081 static int decode_rbsp_trailing(uint8_t *src){
1082     int v= *src;
1083     int r;
1084
1085     tprintf("rbsp trailing %X\n", v);
1086
1087     for(r=1; r<9; r++){
1088         if(v&1) return r;
1089         v>>=1;
1090     }
1091     return 0;
1092 }
1093
1094 /**
1095  * idct tranforms the 16 dc values and dequantize them.
1096  * @param qp quantization parameter
1097  */
1098 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1099     const int qmul= dequant_coeff[qp][0];
1100 #define stride 16
1101     int i;
1102     int temp[16]; //FIXME check if this is a good idea
1103     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1104     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1105
1106 //memset(block, 64, 2*256);
1107 //return;
1108     for(i=0; i<4; i++){
1109         const int offset= y_offset[i];
1110         const int z0= block[offset+stride*0] + block[offset+stride*4];
1111         const int z1= block[offset+stride*0] - block[offset+stride*4];
1112         const int z2= block[offset+stride*1] - block[offset+stride*5];
1113         const int z3= block[offset+stride*1] + block[offset+stride*5];
1114
1115         temp[4*i+0]= z0+z3;
1116         temp[4*i+1]= z1+z2;
1117         temp[4*i+2]= z1-z2;
1118         temp[4*i+3]= z0-z3;
1119     }
1120
1121     for(i=0; i<4; i++){
1122         const int offset= x_offset[i];
1123         const int z0= temp[4*0+i] + temp[4*2+i];
1124         const int z1= temp[4*0+i] - temp[4*2+i];
1125         const int z2= temp[4*1+i] - temp[4*3+i];
1126         const int z3= temp[4*1+i] + temp[4*3+i];
1127
1128         block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1129         block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1130         block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1131         block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1132     }
1133 }
1134
1135 /**
1136  * dct tranforms the 16 dc values.
1137  * @param qp quantization parameter ??? FIXME
1138  */
1139 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1140 //    const int qmul= dequant_coeff[qp][0];
1141     int i;
1142     int temp[16]; //FIXME check if this is a good idea
1143     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1144     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1145
1146     for(i=0; i<4; i++){
1147         const int offset= y_offset[i];
1148         const int z0= block[offset+stride*0] + block[offset+stride*4];
1149         const int z1= block[offset+stride*0] - block[offset+stride*4];
1150         const int z2= block[offset+stride*1] - block[offset+stride*5];
1151         const int z3= block[offset+stride*1] + block[offset+stride*5];
1152
1153         temp[4*i+0]= z0+z3;
1154         temp[4*i+1]= z1+z2;
1155         temp[4*i+2]= z1-z2;
1156         temp[4*i+3]= z0-z3;
1157     }
1158
1159     for(i=0; i<4; i++){
1160         const int offset= x_offset[i];
1161         const int z0= temp[4*0+i] + temp[4*2+i];
1162         const int z1= temp[4*0+i] - temp[4*2+i];
1163         const int z2= temp[4*1+i] - temp[4*3+i];
1164         const int z3= temp[4*1+i] + temp[4*3+i];
1165
1166         block[stride*0 +offset]= (z0 + z3)>>1;
1167         block[stride*2 +offset]= (z1 + z2)>>1;
1168         block[stride*8 +offset]= (z1 - z2)>>1;
1169         block[stride*10+offset]= (z0 - z3)>>1;
1170     }
1171 }
1172 #undef xStride
1173 #undef stride
1174
1175 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1176     const int qmul= dequant_coeff[qp][0];
1177     const int stride= 16*2;
1178     const int xStride= 16;
1179     int a,b,c,d,e;
1180
1181     a= block[stride*0 + xStride*0];
1182     b= block[stride*0 + xStride*1];
1183     c= block[stride*1 + xStride*0];
1184     d= block[stride*1 + xStride*1];
1185
1186     e= a-b;
1187     a= a+b;
1188     b= c-d;
1189     c= c+d;
1190
1191     block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1192     block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1193     block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1194     block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1195 }
1196
1197 static void chroma_dc_dct_c(DCTELEM *block){
1198     const int stride= 16*2;
1199     const int xStride= 16;
1200     int a,b,c,d,e;
1201
1202     a= block[stride*0 + xStride*0];
1203     b= block[stride*0 + xStride*1];
1204     c= block[stride*1 + xStride*0];
1205     d= block[stride*1 + xStride*1];
1206
1207     e= a-b;
1208     a= a+b;
1209     b= c-d;
1210     c= c+d;
1211
1212     block[stride*0 + xStride*0]= (a+c);
1213     block[stride*0 + xStride*1]= (e+b);
1214     block[stride*1 + xStride*0]= (a-c);
1215     block[stride*1 + xStride*1]= (e-b);
1216 }
1217
1218 /**
1219  * gets the chroma qp.
1220  */
1221 static inline int get_chroma_qp(H264Context *h, int qscale){
1222     
1223     return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1224 }
1225
1226
1227 /**
1228  *
1229  */
1230 static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
1231     int i;
1232     uint8_t *cm = cropTbl + MAX_NEG_CROP;
1233
1234     block[0] += 32;
1235 #if 1
1236     for(i=0; i<4; i++){
1237         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1238         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1239         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1240         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1241
1242         block[i + 4*0]= z0 + z3;
1243         block[i + 4*1]= z1 + z2;
1244         block[i + 4*2]= z1 - z2;
1245         block[i + 4*3]= z0 - z3;
1246     }
1247
1248     for(i=0; i<4; i++){
1249         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1250         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1251         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1252         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1253
1254         dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ];
1255         dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ];
1256         dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ];
1257         dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ];
1258     }
1259 #else
1260     for(i=0; i<4; i++){
1261         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1262         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1263         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1264         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1265
1266         block[0 + 4*i]= z0 + z3;
1267         block[1 + 4*i]= z1 + z2;
1268         block[2 + 4*i]= z1 - z2;
1269         block[3 + 4*i]= z0 - z3;
1270     }
1271
1272     for(i=0; i<4; i++){
1273         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1274         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1275         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1276         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1277
1278         dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
1279         dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
1280         dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
1281         dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
1282     }
1283 #endif
1284 }
1285
1286 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1287     int i;
1288     //FIXME try int temp instead of block
1289     
1290     for(i=0; i<4; i++){
1291         const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1292         const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1293         const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1294         const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1295         const int z0= d0 + d3;
1296         const int z3= d0 - d3;
1297         const int z1= d1 + d2;
1298         const int z2= d1 - d2;
1299         
1300         block[0 + 4*i]=   z0 +   z1;
1301         block[1 + 4*i]= 2*z3 +   z2;
1302         block[2 + 4*i]=   z0 -   z1;
1303         block[3 + 4*i]=   z3 - 2*z2;
1304     }    
1305
1306     for(i=0; i<4; i++){
1307         const int z0= block[0*4 + i] + block[3*4 + i];
1308         const int z3= block[0*4 + i] - block[3*4 + i];
1309         const int z1= block[1*4 + i] + block[2*4 + i];
1310         const int z2= block[1*4 + i] - block[2*4 + i];
1311         
1312         block[0*4 + i]=   z0 +   z1;
1313         block[1*4 + i]= 2*z3 +   z2;
1314         block[2*4 + i]=   z0 -   z1;
1315         block[3*4 + i]=   z3 - 2*z2;
1316     }
1317 }
1318
1319 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1320 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1321 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1322     int i;
1323     const int * const quant_table= quant_coeff[qscale];
1324     const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1325     const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1326     const unsigned int threshold2= (threshold1<<1);
1327     int last_non_zero;
1328
1329     if(seperate_dc){
1330         if(qscale<=18){
1331             //avoid overflows
1332             const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1333             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1334             const unsigned int dc_threshold2= (dc_threshold1<<1);
1335
1336             int level= block[0]*quant_coeff[qscale+18][0];
1337             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1338                 if(level>0){
1339                     level= (dc_bias + level)>>(QUANT_SHIFT-2);
1340                     block[0]= level;
1341                 }else{
1342                     level= (dc_bias - level)>>(QUANT_SHIFT-2);
1343                     block[0]= -level;
1344                 }
1345 //                last_non_zero = i;
1346             }else{
1347                 block[0]=0;
1348             }
1349         }else{
1350             const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1351             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1352             const unsigned int dc_threshold2= (dc_threshold1<<1);
1353
1354             int level= block[0]*quant_table[0];
1355             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1356                 if(level>0){
1357                     level= (dc_bias + level)>>(QUANT_SHIFT+1);
1358                     block[0]= level;
1359                 }else{
1360                     level= (dc_bias - level)>>(QUANT_SHIFT+1);
1361                     block[0]= -level;
1362                 }
1363 //                last_non_zero = i;
1364             }else{
1365                 block[0]=0;
1366             }
1367         }
1368         last_non_zero= 0;
1369         i=1;
1370     }else{
1371         last_non_zero= -1;
1372         i=0;
1373     }
1374
1375     for(; i<16; i++){
1376         const int j= scantable[i];
1377         int level= block[j]*quant_table[j];
1378
1379 //        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1380 //           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1381         if(((unsigned)(level+threshold1))>threshold2){
1382             if(level>0){
1383                 level= (bias + level)>>QUANT_SHIFT;
1384                 block[j]= level;
1385             }else{
1386                 level= (bias - level)>>QUANT_SHIFT;
1387                 block[j]= -level;
1388             }
1389             last_non_zero = i;
1390         }else{
1391             block[j]=0;
1392         }
1393     }
1394
1395     return last_non_zero;
1396 }
1397
1398 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1399     const uint32_t a= ((uint32_t*)(src-stride))[0];
1400     ((uint32_t*)(src+0*stride))[0]= a;
1401     ((uint32_t*)(src+1*stride))[0]= a;
1402     ((uint32_t*)(src+2*stride))[0]= a;
1403     ((uint32_t*)(src+3*stride))[0]= a;
1404 }
1405
1406 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1407     ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1408     ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1409     ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1410     ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1411 }
1412
1413 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1414     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1415                    + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1416     
1417     ((uint32_t*)(src+0*stride))[0]= 
1418     ((uint32_t*)(src+1*stride))[0]= 
1419     ((uint32_t*)(src+2*stride))[0]= 
1420     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1421 }
1422
1423 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1424     const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1425     
1426     ((uint32_t*)(src+0*stride))[0]= 
1427     ((uint32_t*)(src+1*stride))[0]= 
1428     ((uint32_t*)(src+2*stride))[0]= 
1429     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1430 }
1431
1432 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1433     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1434     
1435     ((uint32_t*)(src+0*stride))[0]= 
1436     ((uint32_t*)(src+1*stride))[0]= 
1437     ((uint32_t*)(src+2*stride))[0]= 
1438     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1439 }
1440
1441 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1442     ((uint32_t*)(src+0*stride))[0]= 
1443     ((uint32_t*)(src+1*stride))[0]= 
1444     ((uint32_t*)(src+2*stride))[0]= 
1445     ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1446 }
1447
1448
1449 #define LOAD_TOP_RIGHT_EDGE\
1450     const int t4= topright[0];\
1451     const int t5= topright[1];\
1452     const int t6= topright[2];\
1453     const int t7= topright[3];\
1454
1455 #define LOAD_LEFT_EDGE\
1456     const int l0= src[-1+0*stride];\
1457     const int l1= src[-1+1*stride];\
1458     const int l2= src[-1+2*stride];\
1459     const int l3= src[-1+3*stride];\
1460
1461 #define LOAD_TOP_EDGE\
1462     const int t0= src[ 0-1*stride];\
1463     const int t1= src[ 1-1*stride];\
1464     const int t2= src[ 2-1*stride];\
1465     const int t3= src[ 3-1*stride];\
1466
1467 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1468     const int lt= src[-1-1*stride];
1469     LOAD_TOP_EDGE
1470     LOAD_LEFT_EDGE
1471
1472     src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1473     src[0+2*stride]=
1474     src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1475     src[0+1*stride]=
1476     src[1+2*stride]=
1477     src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1478     src[0+0*stride]=
1479     src[1+1*stride]=
1480     src[2+2*stride]=
1481     src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1482     src[1+0*stride]=
1483     src[2+1*stride]=
1484     src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1485     src[2+0*stride]=
1486     src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1487     src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1488 }
1489
1490 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1491     LOAD_TOP_EDGE    
1492     LOAD_TOP_RIGHT_EDGE    
1493 //    LOAD_LEFT_EDGE    
1494
1495     src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1496     src[1+0*stride]=
1497     src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1498     src[2+0*stride]=
1499     src[1+1*stride]=
1500     src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1501     src[3+0*stride]=
1502     src[2+1*stride]=
1503     src[1+2*stride]=
1504     src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1505     src[3+1*stride]=
1506     src[2+2*stride]=
1507     src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1508     src[3+2*stride]=
1509     src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1510     src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1511 }
1512
1513 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1514     const int lt= src[-1-1*stride];
1515     LOAD_TOP_EDGE    
1516     LOAD_LEFT_EDGE    
1517     const __attribute__((unused)) int unu= l3;
1518
1519     src[0+0*stride]=
1520     src[1+2*stride]=(lt + t0 + 1)>>1;
1521     src[1+0*stride]=
1522     src[2+2*stride]=(t0 + t1 + 1)>>1;
1523     src[2+0*stride]=
1524     src[3+2*stride]=(t1 + t2 + 1)>>1;
1525     src[3+0*stride]=(t2 + t3 + 1)>>1;
1526     src[0+1*stride]=
1527     src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1528     src[1+1*stride]=
1529     src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1530     src[2+1*stride]=
1531     src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1532     src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1533     src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1534     src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1535 }
1536
1537 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1538     LOAD_TOP_EDGE    
1539     LOAD_TOP_RIGHT_EDGE    
1540     const __attribute__((unused)) int unu= t7;
1541
1542     src[0+0*stride]=(t0 + t1 + 1)>>1;
1543     src[1+0*stride]=
1544     src[0+2*stride]=(t1 + t2 + 1)>>1;
1545     src[2+0*stride]=
1546     src[1+2*stride]=(t2 + t3 + 1)>>1;
1547     src[3+0*stride]=
1548     src[2+2*stride]=(t3 + t4+ 1)>>1;
1549     src[3+2*stride]=(t4 + t5+ 1)>>1;
1550     src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1551     src[1+1*stride]=
1552     src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1553     src[2+1*stride]=
1554     src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1555     src[3+1*stride]=
1556     src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1557     src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1558 }
1559
1560 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1561     LOAD_LEFT_EDGE    
1562
1563     src[0+0*stride]=(l0 + l1 + 1)>>1;
1564     src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1565     src[2+0*stride]=
1566     src[0+1*stride]=(l1 + l2 + 1)>>1;
1567     src[3+0*stride]=
1568     src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1569     src[2+1*stride]=
1570     src[0+2*stride]=(l2 + l3 + 1)>>1;
1571     src[3+1*stride]=
1572     src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1573     src[3+2*stride]=
1574     src[1+3*stride]=
1575     src[0+3*stride]=
1576     src[2+2*stride]=
1577     src[2+3*stride]=
1578     src[3+3*stride]=l3;
1579 }
1580     
1581 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1582     const int lt= src[-1-1*stride];
1583     LOAD_TOP_EDGE    
1584     LOAD_LEFT_EDGE    
1585     const __attribute__((unused)) int unu= t3;
1586
1587     src[0+0*stride]=
1588     src[2+1*stride]=(lt + l0 + 1)>>1;
1589     src[1+0*stride]=
1590     src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1591     src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1592     src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1593     src[0+1*stride]=
1594     src[2+2*stride]=(l0 + l1 + 1)>>1;
1595     src[1+1*stride]=
1596     src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1597     src[0+2*stride]=
1598     src[2+3*stride]=(l1 + l2+ 1)>>1;
1599     src[1+2*stride]=
1600     src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1601     src[0+3*stride]=(l2 + l3 + 1)>>1;
1602     src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1603 }
1604
1605 static void pred16x16_vertical_c(uint8_t *src, int stride){
1606     int i;
1607     const uint32_t a= ((uint32_t*)(src-stride))[0];
1608     const uint32_t b= ((uint32_t*)(src-stride))[1];
1609     const uint32_t c= ((uint32_t*)(src-stride))[2];
1610     const uint32_t d= ((uint32_t*)(src-stride))[3];
1611     
1612     for(i=0; i<16; i++){
1613         ((uint32_t*)(src+i*stride))[0]= a;
1614         ((uint32_t*)(src+i*stride))[1]= b;
1615         ((uint32_t*)(src+i*stride))[2]= c;
1616         ((uint32_t*)(src+i*stride))[3]= d;
1617     }
1618 }
1619
1620 static void pred16x16_horizontal_c(uint8_t *src, int stride){
1621     int i;
1622
1623     for(i=0; i<16; i++){
1624         ((uint32_t*)(src+i*stride))[0]=
1625         ((uint32_t*)(src+i*stride))[1]=
1626         ((uint32_t*)(src+i*stride))[2]=
1627         ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1628     }
1629 }
1630
1631 static void pred16x16_dc_c(uint8_t *src, int stride){
1632     int i, dc=0;
1633
1634     for(i=0;i<16; i++){
1635         dc+= src[-1+i*stride];
1636     }
1637     
1638     for(i=0;i<16; i++){
1639         dc+= src[i-stride];
1640     }
1641
1642     dc= 0x01010101*((dc + 16)>>5);
1643
1644     for(i=0; i<16; i++){
1645         ((uint32_t*)(src+i*stride))[0]=
1646         ((uint32_t*)(src+i*stride))[1]=
1647         ((uint32_t*)(src+i*stride))[2]=
1648         ((uint32_t*)(src+i*stride))[3]= dc;
1649     }
1650 }
1651
1652 static void pred16x16_left_dc_c(uint8_t *src, int stride){
1653     int i, dc=0;
1654
1655     for(i=0;i<16; i++){
1656         dc+= src[-1+i*stride];
1657     }
1658     
1659     dc= 0x01010101*((dc + 8)>>4);
1660
1661     for(i=0; i<16; i++){
1662         ((uint32_t*)(src+i*stride))[0]=
1663         ((uint32_t*)(src+i*stride))[1]=
1664         ((uint32_t*)(src+i*stride))[2]=
1665         ((uint32_t*)(src+i*stride))[3]= dc;
1666     }
1667 }
1668
1669 static void pred16x16_top_dc_c(uint8_t *src, int stride){
1670     int i, dc=0;
1671
1672     for(i=0;i<16; i++){
1673         dc+= src[i-stride];
1674     }
1675     dc= 0x01010101*((dc + 8)>>4);
1676
1677     for(i=0; i<16; i++){
1678         ((uint32_t*)(src+i*stride))[0]=
1679         ((uint32_t*)(src+i*stride))[1]=
1680         ((uint32_t*)(src+i*stride))[2]=
1681         ((uint32_t*)(src+i*stride))[3]= dc;
1682     }
1683 }
1684
1685 static void pred16x16_128_dc_c(uint8_t *src, int stride){
1686     int i;
1687
1688     for(i=0; i<16; i++){
1689         ((uint32_t*)(src+i*stride))[0]=
1690         ((uint32_t*)(src+i*stride))[1]=
1691         ((uint32_t*)(src+i*stride))[2]=
1692         ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1693     }
1694 }
1695
1696 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1697   int i, j, k;
1698   int a;
1699   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1700   const uint8_t * const src0 = src+7-stride;
1701   const uint8_t *src1 = src+8*stride-1;
1702   const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1703   int H = src0[1] - src0[-1];
1704   int V = src1[0] - src2[ 0];
1705   for(k=2; k<=8; ++k) {
1706     src1 += stride; src2 -= stride;
1707     H += k*(src0[k] - src0[-k]);
1708     V += k*(src1[0] - src2[ 0]);
1709   }
1710   if(svq3){
1711     H = ( 5*(H/4) ) / 16;
1712     V = ( 5*(V/4) ) / 16;
1713
1714     /* required for 100% accuracy */
1715     i = H; H = V; V = i;
1716   }else{
1717     H = ( 5*H+32 ) >> 6;
1718     V = ( 5*V+32 ) >> 6;
1719   }
1720
1721   a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
1722   for(j=16; j>0; --j) {
1723     int b = a;
1724     a += V;
1725     for(i=-16; i<0; i+=4) {
1726       src[16+i] = cm[ (b    ) >> 5 ];
1727       src[17+i] = cm[ (b+  H) >> 5 ];
1728       src[18+i] = cm[ (b+2*H) >> 5 ];
1729       src[19+i] = cm[ (b+3*H) >> 5 ];
1730       b += 4*H;
1731     }
1732     src += stride;
1733   }
1734 }
1735
1736 static void pred16x16_plane_c(uint8_t *src, int stride){
1737     pred16x16_plane_compat_c(src, stride, 0);
1738 }
1739
1740 static void pred8x8_vertical_c(uint8_t *src, int stride){
1741     int i;
1742     const uint32_t a= ((uint32_t*)(src-stride))[0];
1743     const uint32_t b= ((uint32_t*)(src-stride))[1];
1744     
1745     for(i=0; i<8; i++){
1746         ((uint32_t*)(src+i*stride))[0]= a;
1747         ((uint32_t*)(src+i*stride))[1]= b;
1748     }
1749 }
1750
1751 static void pred8x8_horizontal_c(uint8_t *src, int stride){
1752     int i;
1753
1754     for(i=0; i<8; i++){
1755         ((uint32_t*)(src+i*stride))[0]=
1756         ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
1757     }
1758 }
1759
1760 static void pred8x8_128_dc_c(uint8_t *src, int stride){
1761     int i;
1762
1763     for(i=0; i<4; i++){
1764         ((uint32_t*)(src+i*stride))[0]= 
1765         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1766     }
1767     for(i=4; i<8; i++){
1768         ((uint32_t*)(src+i*stride))[0]= 
1769         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1770     }
1771 }
1772
1773 static void pred8x8_left_dc_c(uint8_t *src, int stride){
1774     int i;
1775     int dc0, dc2;
1776
1777     dc0=dc2=0;
1778     for(i=0;i<4; i++){
1779         dc0+= src[-1+i*stride];
1780         dc2+= src[-1+(i+4)*stride];
1781     }
1782     dc0= 0x01010101*((dc0 + 2)>>2);
1783     dc2= 0x01010101*((dc2 + 2)>>2);
1784
1785     for(i=0; i<4; i++){
1786         ((uint32_t*)(src+i*stride))[0]=
1787         ((uint32_t*)(src+i*stride))[1]= dc0;
1788     }
1789     for(i=4; i<8; i++){
1790         ((uint32_t*)(src+i*stride))[0]=
1791         ((uint32_t*)(src+i*stride))[1]= dc2;
1792     }
1793 }
1794
1795 static void pred8x8_top_dc_c(uint8_t *src, int stride){
1796     int i;
1797     int dc0, dc1;
1798
1799     dc0=dc1=0;
1800     for(i=0;i<4; i++){
1801         dc0+= src[i-stride];
1802         dc1+= src[4+i-stride];
1803     }
1804     dc0= 0x01010101*((dc0 + 2)>>2);
1805     dc1= 0x01010101*((dc1 + 2)>>2);
1806
1807     for(i=0; i<4; i++){
1808         ((uint32_t*)(src+i*stride))[0]= dc0;
1809         ((uint32_t*)(src+i*stride))[1]= dc1;
1810     }
1811     for(i=4; i<8; i++){
1812         ((uint32_t*)(src+i*stride))[0]= dc0;
1813         ((uint32_t*)(src+i*stride))[1]= dc1;
1814     }
1815 }
1816
1817
1818 static void pred8x8_dc_c(uint8_t *src, int stride){
1819     int i;
1820     int dc0, dc1, dc2, dc3;
1821
1822     dc0=dc1=dc2=0;
1823     for(i=0;i<4; i++){
1824         dc0+= src[-1+i*stride] + src[i-stride];
1825         dc1+= src[4+i-stride];
1826         dc2+= src[-1+(i+4)*stride];
1827     }
1828     dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
1829     dc0= 0x01010101*((dc0 + 4)>>3);
1830     dc1= 0x01010101*((dc1 + 2)>>2);
1831     dc2= 0x01010101*((dc2 + 2)>>2);
1832
1833     for(i=0; i<4; i++){
1834         ((uint32_t*)(src+i*stride))[0]= dc0;
1835         ((uint32_t*)(src+i*stride))[1]= dc1;
1836     }
1837     for(i=4; i<8; i++){
1838         ((uint32_t*)(src+i*stride))[0]= dc2;
1839         ((uint32_t*)(src+i*stride))[1]= dc3;
1840     }
1841 }
1842
1843 static void pred8x8_plane_c(uint8_t *src, int stride){
1844   int j, k;
1845   int a;
1846   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1847   const uint8_t * const src0 = src+3-stride;
1848   const uint8_t *src1 = src+4*stride-1;
1849   const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
1850   int H = src0[1] - src0[-1];
1851   int V = src1[0] - src2[ 0];
1852   for(k=2; k<=4; ++k) {
1853     src1 += stride; src2 -= stride;
1854     H += k*(src0[k] - src0[-k]);
1855     V += k*(src1[0] - src2[ 0]);
1856   }
1857   H = ( 17*H+16 ) >> 5;
1858   V = ( 17*V+16 ) >> 5;
1859
1860   a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
1861   for(j=8; j>0; --j) {
1862     int b = a;
1863     a += V;
1864     src[0] = cm[ (b    ) >> 5 ];
1865     src[1] = cm[ (b+  H) >> 5 ];
1866     src[2] = cm[ (b+2*H) >> 5 ];
1867     src[3] = cm[ (b+3*H) >> 5 ];
1868     src[4] = cm[ (b+4*H) >> 5 ];
1869     src[5] = cm[ (b+5*H) >> 5 ];
1870     src[6] = cm[ (b+6*H) >> 5 ];
1871     src[7] = cm[ (b+7*H) >> 5 ];
1872     src += stride;
1873   }
1874 }
1875
1876 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1877                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1878                            int src_x_offset, int src_y_offset,
1879                            qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1880     MpegEncContext * const s = &h->s;
1881     const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1882     const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1883     const int luma_xy= (mx&3) + ((my&3)<<2);
1884     uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
1885     uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
1886     uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
1887     int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
1888     int extra_height= extra_width;
1889     int emu=0;
1890     const int full_mx= mx>>2;
1891     const int full_my= my>>2;
1892     
1893     assert(pic->data[0]);
1894     
1895     if(mx&7) extra_width -= 3;
1896     if(my&7) extra_height -= 3;
1897     
1898     if(   full_mx < 0-extra_width 
1899        || full_my < 0-extra_height 
1900        || full_mx + 16/*FIXME*/ > s->width + extra_width 
1901        || full_my + 16/*FIXME*/ > s->height + extra_height){
1902         ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
1903             src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
1904         emu=1;
1905     }
1906     
1907     qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
1908     if(!square){
1909         qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
1910     }
1911     
1912     if(s->flags&CODEC_FLAG_GRAY) return;
1913     
1914     if(emu){
1915         ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1916             src_cb= s->edge_emu_buffer;
1917     }
1918     chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
1919
1920     if(emu){
1921         ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1922             src_cr= s->edge_emu_buffer;
1923     }
1924     chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
1925 }
1926
1927 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1928                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1929                            int x_offset, int y_offset,
1930                            qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1931                            qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1932                            int list0, int list1){
1933     MpegEncContext * const s = &h->s;
1934     qpel_mc_func *qpix_op=  qpix_put;
1935     h264_chroma_mc_func chroma_op= chroma_put;
1936     
1937     dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
1938     dest_cb +=   x_offset +   y_offset*s->uvlinesize;
1939     dest_cr +=   x_offset +   y_offset*s->uvlinesize;
1940     x_offset += 8*s->mb_x;
1941     y_offset += 8*s->mb_y;
1942     
1943     if(list0){
1944         Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1945         mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1946                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1947                            qpix_op, chroma_op);
1948
1949         qpix_op=  qpix_avg;
1950         chroma_op= chroma_avg;
1951     }
1952
1953     if(list1){
1954         Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1955         mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1956                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1957                            qpix_op, chroma_op);
1958     }
1959 }
1960
1961 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1962                       qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1963                       qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
1964     MpegEncContext * const s = &h->s;
1965     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1966     const int mb_type= s->current_picture.mb_type[mb_xy];
1967     
1968     assert(IS_INTER(mb_type));
1969     
1970     if(IS_16X16(mb_type)){
1971         mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1972                 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1973                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1974     }else if(IS_16X8(mb_type)){
1975         mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1976                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1977                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1978         mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1979                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1980                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1981     }else if(IS_8X16(mb_type)){
1982         mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
1983                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1984                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1985         mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
1986                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1987                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1988     }else{
1989         int i;
1990         
1991         assert(IS_8X8(mb_type));
1992
1993         for(i=0; i<4; i++){
1994             const int sub_mb_type= h->sub_mb_type[i];
1995             const int n= 4*i;
1996             int x_offset= (i&1)<<2;
1997             int y_offset= (i&2)<<1;
1998
1999             if(IS_SUB_8X8(sub_mb_type)){
2000                 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2001                     qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2002                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2003             }else if(IS_SUB_8X4(sub_mb_type)){
2004                 mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2005                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2006                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2007                 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2008                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2009                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2010             }else if(IS_SUB_4X8(sub_mb_type)){
2011                 mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2012                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2013                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2014                 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2015                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2016                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2017             }else{
2018                 int j;
2019                 assert(IS_SUB_4X4(sub_mb_type));
2020                 for(j=0; j<4; j++){
2021                     int sub_x_offset= x_offset + 2*(j&1);
2022                     int sub_y_offset= y_offset +   (j&2);
2023                     mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2024                         qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2025                         IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2026                 }
2027             }
2028         }
2029     }
2030 }
2031
2032 static void decode_init_vlc(H264Context *h){
2033     static int done = 0;
2034
2035     if (!done) {
2036         int i;
2037         done = 1;
2038
2039         init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2040                  &chroma_dc_coeff_token_len [0], 1, 1,
2041                  &chroma_dc_coeff_token_bits[0], 1, 1);
2042
2043         for(i=0; i<4; i++){
2044             init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2045                      &coeff_token_len [i][0], 1, 1,
2046                      &coeff_token_bits[i][0], 1, 1);
2047         }
2048
2049         for(i=0; i<3; i++){
2050             init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2051                      &chroma_dc_total_zeros_len [i][0], 1, 1,
2052                      &chroma_dc_total_zeros_bits[i][0], 1, 1);
2053         }
2054         for(i=0; i<15; i++){
2055             init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2056                      &total_zeros_len [i][0], 1, 1,
2057                      &total_zeros_bits[i][0], 1, 1);
2058         }
2059
2060         for(i=0; i<6; i++){
2061             init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2062                      &run_len [i][0], 1, 1,
2063                      &run_bits[i][0], 1, 1);
2064         }
2065         init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2066                  &run_len [6][0], 1, 1,
2067                  &run_bits[6][0], 1, 1);
2068     }
2069 }
2070
2071 /**
2072  * Sets the intra prediction function pointers.
2073  */
2074 static void init_pred_ptrs(H264Context *h){
2075 //    MpegEncContext * const s = &h->s;
2076
2077     h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2078     h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2079     h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2080     h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2081     h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2082     h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2083     h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2084     h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2085     h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2086     h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2087     h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2088     h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2089
2090     h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2091     h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2092     h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2093     h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2094     h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2095     h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2096     h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2097
2098     h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2099     h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2100     h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2101     h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2102     h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2103     h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2104     h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2105 }
2106
2107 static void free_tables(H264Context *h){
2108     av_freep(&h->intra4x4_pred_mode);
2109     av_freep(&h->non_zero_count);
2110     av_freep(&h->slice_table_base);
2111     h->slice_table= NULL;
2112     
2113     av_freep(&h->mb2b_xy);
2114     av_freep(&h->mb2b8_xy);
2115 }
2116
2117 /**
2118  * allocates tables.
2119  * needs widzh/height
2120  */
2121 static int alloc_tables(H264Context *h){
2122     MpegEncContext * const s = &h->s;
2123     const int big_mb_num= s->mb_stride * (s->mb_height+1);
2124     int x,y;
2125
2126     CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2127     CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2128     CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2129
2130     memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2131     h->slice_table= h->slice_table_base + s->mb_stride + 1;
2132
2133     CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2134     CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2135     for(y=0; y<s->mb_height; y++){
2136         for(x=0; x<s->mb_width; x++){
2137             const int mb_xy= x + y*s->mb_stride;
2138             const int b_xy = 4*x + 4*y*h->b_stride;
2139             const int b8_xy= 2*x + 2*y*h->b8_stride;
2140         
2141             h->mb2b_xy [mb_xy]= b_xy;
2142             h->mb2b8_xy[mb_xy]= b8_xy;
2143         }
2144     }
2145     
2146     return 0;
2147 fail:
2148     free_tables(h);
2149     return -1;
2150 }
2151
2152 static void common_init(H264Context *h){
2153     MpegEncContext * const s = &h->s;
2154
2155     s->width = s->avctx->width;
2156     s->height = s->avctx->height;
2157     s->codec_id= s->avctx->codec->id;
2158     
2159     init_pred_ptrs(h);
2160
2161     s->decode=1; //FIXME
2162 }
2163
2164 static int decode_init(AVCodecContext *avctx){
2165     H264Context *h= avctx->priv_data;
2166     MpegEncContext * const s = &h->s;
2167
2168     s->avctx = avctx;
2169     common_init(h);
2170
2171     s->out_format = FMT_H264;
2172     s->workaround_bugs= avctx->workaround_bugs;
2173
2174     // set defaults
2175     s->progressive_sequence=1;
2176 //    s->decode_mb= ff_h263_decode_mb;
2177     s->low_delay= 1;
2178     avctx->pix_fmt= PIX_FMT_YUV420P;
2179
2180     decode_init_vlc(h);
2181     
2182     return 0;
2183 }
2184
2185 static void frame_start(H264Context *h){
2186     MpegEncContext * const s = &h->s;
2187     int i;
2188
2189     MPV_frame_start(s, s->avctx);
2190     ff_er_frame_start(s);
2191     h->mmco_index=0;
2192
2193     assert(s->linesize && s->uvlinesize);
2194
2195     for(i=0; i<16; i++){
2196         h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2197         h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2198     }
2199     for(i=0; i<4; i++){
2200         h->block_offset[16+i]=
2201         h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2202     }
2203
2204 //    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2205 }
2206
2207 static void hl_decode_mb(H264Context *h){
2208     MpegEncContext * const s = &h->s;
2209     const int mb_x= s->mb_x;
2210     const int mb_y= s->mb_y;
2211     const int mb_xy= mb_x + mb_y*s->mb_stride;
2212     const int mb_type= s->current_picture.mb_type[mb_xy];
2213     uint8_t  *dest_y, *dest_cb, *dest_cr;
2214     int linesize, uvlinesize /*dct_offset*/;
2215     int i;
2216
2217     if(!s->decode)
2218         return;
2219
2220     if(s->mb_skiped){
2221     }
2222
2223     dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2224     dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2225     dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2226
2227     if (h->mb_field_decoding_flag) {
2228         linesize = s->linesize * 2;
2229         uvlinesize = s->uvlinesize * 2;
2230         if(mb_y&1){ //FIXME move out of this func?
2231             dest_y -= s->linesize*15;
2232             dest_cb-= s->linesize*7;
2233             dest_cr-= s->linesize*7;
2234         }
2235     } else {
2236         linesize = s->linesize;
2237         uvlinesize = s->uvlinesize;
2238 //        dct_offset = s->linesize * 16;
2239     }
2240
2241     if(IS_INTRA(mb_type)){
2242         if(!(s->flags&CODEC_FLAG_GRAY)){
2243             h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2244             h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2245         }
2246
2247         if(IS_INTRA4x4(mb_type)){
2248             if(!s->encoding){
2249                 for(i=0; i<16; i++){
2250                     uint8_t * const ptr= dest_y + h->block_offset[i];
2251                     uint8_t *topright= ptr + 4 - linesize;
2252                     const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2253                     const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2254                     int tr;
2255
2256                     if(!topright_avail){
2257                         tr= ptr[3 - linesize]*0x01010101;
2258                         topright= (uint8_t*) &tr;
2259                     }
2260
2261                     h->pred4x4[ dir ](ptr, topright, linesize);
2262                     if(h->non_zero_count_cache[ scan8[i] ]){
2263                         if(s->codec_id == CODEC_ID_H264)
2264                             h264_add_idct_c(ptr, h->mb + i*16, linesize);
2265                         else
2266                             svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2267                     }
2268                 }
2269             }
2270         }else{
2271             h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2272             if(s->codec_id == CODEC_ID_H264)
2273                 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2274             else
2275                 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2276         }
2277     }else if(s->codec_id == CODEC_ID_H264){
2278         hl_motion(h, dest_y, dest_cb, dest_cr,
2279                   s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2280                   s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2281     }
2282
2283
2284     if(!IS_INTRA4x4(mb_type)){
2285         if(s->codec_id == CODEC_ID_H264){
2286             for(i=0; i<16; i++){
2287                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2288                     uint8_t * const ptr= dest_y + h->block_offset[i];
2289                     h264_add_idct_c(ptr, h->mb + i*16, linesize);
2290                 }
2291             }
2292         }else{
2293             for(i=0; i<16; i++){
2294                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2295                     uint8_t * const ptr= dest_y + h->block_offset[i];
2296                     svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2297                 }
2298             }
2299         }
2300     }
2301
2302     if(!(s->flags&CODEC_FLAG_GRAY)){
2303         chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2304         chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2305         if(s->codec_id == CODEC_ID_H264){
2306             for(i=16; i<16+4; i++){
2307                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2308                     uint8_t * const ptr= dest_cb + h->block_offset[i];
2309                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2310                 }
2311             }
2312             for(i=20; i<20+4; i++){
2313                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2314                     uint8_t * const ptr= dest_cr + h->block_offset[i];
2315                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2316                 }
2317             }
2318         }else{
2319             for(i=16; i<16+4; i++){
2320                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2321                     uint8_t * const ptr= dest_cb + h->block_offset[i];
2322                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2323                 }
2324             }
2325             for(i=20; i<20+4; i++){
2326                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2327                     uint8_t * const ptr= dest_cr + h->block_offset[i];
2328                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2329                 }
2330             }
2331         }
2332     }
2333 }
2334
2335 static void decode_mb_cabac(H264Context *h){
2336 //    MpegEncContext * const s = &h->s;
2337 }
2338
2339 /**
2340  * fills the default_ref_list.
2341  */
2342 static int fill_default_ref_list(H264Context *h){
2343     MpegEncContext * const s = &h->s;
2344     int i;
2345     Picture sorted_short_ref[16];
2346     
2347     if(h->slice_type==B_TYPE){
2348         int out_i;
2349         int limit= -1;
2350
2351         for(out_i=0; out_i<h->short_ref_count; out_i++){
2352             int best_i=-1;
2353             int best_poc=-1;
2354
2355             for(i=0; i<h->short_ref_count; i++){
2356                 const int poc= h->short_ref[i]->poc;
2357                 if(poc > limit && poc < best_poc){
2358                     best_poc= poc;
2359                     best_i= i;
2360                 }
2361             }
2362             
2363             assert(best_i != -1);
2364             
2365             limit= best_poc;
2366             sorted_short_ref[out_i]= *h->short_ref[best_i];
2367         }
2368     }
2369
2370     if(s->picture_structure == PICT_FRAME){
2371         if(h->slice_type==B_TYPE){
2372             const int current_poc= s->current_picture_ptr->poc;
2373             int list;
2374
2375             for(list=0; list<2; list++){
2376                 int index=0;
2377
2378                 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2379                     const int i2= list ? h->short_ref_count - i - 1 : i;
2380                     const int poc= sorted_short_ref[i2].poc;
2381                     
2382                     if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2383
2384                     if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2385                         h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2386                         h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2387                     }
2388                 }
2389
2390                 for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2391                     if(h->long_ref[i]->reference != 3) continue;
2392
2393                     h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2394                     h->default_ref_list[ list ][index++].pic_id= i;;
2395                 }
2396                 
2397                 if(h->long_ref_count > 1 && h->short_ref_count==0){
2398                     Picture temp= h->default_ref_list[1][0];
2399                     h->default_ref_list[1][0] = h->default_ref_list[1][1];
2400                     h->default_ref_list[1][0] = temp;
2401                 }
2402
2403                 if(index < h->ref_count[ list ])
2404                     memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2405             }
2406         }else{
2407             int index=0;
2408             for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2409                 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2410                 h->default_ref_list[0][index  ]= *h->short_ref[i];
2411                 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2412             }
2413             for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2414                 if(h->long_ref[i]->reference != 3) continue;
2415                 h->default_ref_list[0][index  ]= *h->long_ref[i];
2416                 h->default_ref_list[0][index++].pic_id= i;;
2417             }
2418             if(index < h->ref_count[0])
2419                 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2420         }
2421     }else{ //FIELD
2422         if(h->slice_type==B_TYPE){
2423         }else{
2424             //FIXME second field balh
2425         }
2426     }
2427     return 0;
2428 }
2429
2430 static int decode_ref_pic_list_reordering(H264Context *h){
2431     MpegEncContext * const s = &h->s;
2432     int list;
2433     
2434     if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2435     
2436     for(list=0; list<2; list++){
2437         memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2438
2439         if(get_bits1(&s->gb)){
2440             int pred= h->curr_pic_num;
2441             int index;
2442
2443             for(index=0; ; index++){
2444                 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2445                 int pic_id;
2446                 int i;
2447                 
2448                 
2449                 if(index >= h->ref_count[list]){
2450                     av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2451                     return -1;
2452                 }
2453                 
2454                 if(reordering_of_pic_nums_idc<3){
2455                     if(reordering_of_pic_nums_idc<2){
2456                         const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2457
2458                         if(abs_diff_pic_num >= h->max_pic_num){
2459                             av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2460                             return -1;
2461                         }
2462
2463                         if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2464                         else                                pred+= abs_diff_pic_num;
2465                         pred &= h->max_pic_num - 1;
2466                     
2467                         for(i= h->ref_count[list]-1; i>=index; i--){
2468                             if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2469                                 break;
2470                         }
2471                     }else{
2472                         pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2473
2474                         for(i= h->ref_count[list]-1; i>=index; i--){
2475                             if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2476                                 break;
2477                         }
2478                     }
2479
2480                     if(i < index){
2481                         av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2482                         memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2483                     }else if(i > index){
2484                         Picture tmp= h->ref_list[list][i];
2485                         for(; i>index; i--){
2486                             h->ref_list[list][i]= h->ref_list[list][i-1];
2487                         }
2488                         h->ref_list[list][index]= tmp;
2489                     }
2490                 }else if(reordering_of_pic_nums_idc==3) 
2491                     break;
2492                 else{
2493                     av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2494                     return -1;
2495                 }
2496             }
2497         }
2498
2499         if(h->slice_type!=B_TYPE) break;
2500     }
2501     return 0;    
2502 }
2503
2504 static int pred_weight_table(H264Context *h){
2505     MpegEncContext * const s = &h->s;
2506     int list, i;
2507     
2508     h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2509     h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2510
2511     for(list=0; list<2; list++){
2512         for(i=0; i<h->ref_count[list]; i++){
2513             int luma_weight_flag, chroma_weight_flag;
2514             
2515             luma_weight_flag= get_bits1(&s->gb);
2516             if(luma_weight_flag){
2517                 h->luma_weight[list][i]= get_se_golomb(&s->gb);
2518                 h->luma_offset[list][i]= get_se_golomb(&s->gb);
2519             }
2520
2521             chroma_weight_flag= get_bits1(&s->gb);
2522             if(chroma_weight_flag){
2523                 int j;
2524                 for(j=0; j<2; j++){
2525                     h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2526                     h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2527                 }
2528             }
2529         }
2530         if(h->slice_type != B_TYPE) break;
2531     }
2532     return 0;
2533 }
2534
2535 /**
2536  * instantaneos decoder refresh.
2537  */
2538 static void idr(H264Context *h){
2539     int i;
2540
2541     for(i=0; i<h->long_ref_count; i++){
2542         h->long_ref[i]->reference=0;
2543         h->long_ref[i]= NULL;
2544     }
2545     h->long_ref_count=0;
2546
2547     for(i=0; i<h->short_ref_count; i++){
2548         h->short_ref[i]->reference=0;
2549         h->short_ref[i]= NULL;
2550     }
2551     h->short_ref_count=0;
2552 }
2553
2554 /**
2555  *
2556  * @return the removed picture or NULL if an error occures
2557  */
2558 static Picture * remove_short(H264Context *h, int frame_num){
2559     MpegEncContext * const s = &h->s;
2560     int i;
2561     
2562     if(s->avctx->debug&FF_DEBUG_MMCO)
2563         av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
2564     
2565     for(i=0; i<h->short_ref_count; i++){
2566         Picture *pic= h->short_ref[i];
2567         if(s->avctx->debug&FF_DEBUG_MMCO)
2568             av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
2569         if(pic->frame_num == frame_num){
2570             h->short_ref[i]= NULL;
2571             memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2572             h->short_ref_count--;
2573             return pic;
2574         }
2575     }
2576     return NULL;
2577 }
2578
2579 /**
2580  *
2581  * @return the removed picture or NULL if an error occures
2582  */
2583 static Picture * remove_long(H264Context *h, int i){
2584     Picture *pic;
2585
2586     if(i >= h->long_ref_count) return NULL;
2587     pic= h->long_ref[i];
2588     if(pic==NULL) return NULL;
2589     
2590     h->long_ref[i]= NULL;
2591     memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2592     h->long_ref_count--;
2593
2594     return pic;
2595 }
2596
2597 /**
2598  * Executes the reference picture marking (memory management control operations).
2599  */
2600 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
2601     MpegEncContext * const s = &h->s;
2602     int i;
2603     int current_is_long=0;
2604     Picture *pic;
2605     
2606     if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
2607         av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
2608         
2609     for(i=0; i<mmco_count; i++){
2610         if(s->avctx->debug&FF_DEBUG_MMCO)
2611             av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
2612
2613         switch(mmco[i].opcode){
2614         case MMCO_SHORT2UNUSED:
2615             pic= remove_short(h, mmco[i].short_frame_num);
2616             if(pic==NULL) return -1;
2617             pic->reference= 0;
2618             break;
2619         case MMCO_SHORT2LONG:
2620             pic= remove_long(h, mmco[i].long_index);
2621             if(pic) pic->reference=0;
2622             
2623             h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
2624             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2625             break;
2626         case MMCO_LONG2UNUSED:
2627             pic= remove_long(h, mmco[i].long_index);
2628             if(pic==NULL) return -1;
2629             pic->reference= 0;
2630             break;
2631         case MMCO_LONG:
2632             pic= remove_long(h, mmco[i].long_index);
2633             if(pic) pic->reference=0;
2634             
2635             h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
2636             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2637             h->long_ref_count++;
2638             
2639             current_is_long=1;
2640             break;
2641         case MMCO_SET_MAX_LONG:
2642             assert(mmco[i].long_index <= 16);
2643             while(mmco[i].long_index < h->long_ref_count){
2644                 pic= remove_long(h, mmco[i].long_index);
2645                 pic->reference=0;
2646             }
2647             while(mmco[i].long_index > h->long_ref_count){
2648                 h->long_ref[ h->long_ref_count++ ]= NULL;
2649             }
2650             break;
2651         case MMCO_RESET:
2652             while(h->short_ref_count){
2653                 pic= remove_short(h, h->short_ref[0]->frame_num);
2654                 pic->reference=0;
2655             }
2656             while(h->long_ref_count){
2657                 pic= remove_long(h, h->long_ref_count-1);
2658                 pic->reference=0;
2659             }
2660             break;
2661         default: assert(0);
2662         }
2663     }
2664     
2665     if(!current_is_long){
2666         pic= remove_short(h, s->current_picture_ptr->frame_num);
2667         if(pic){
2668             pic->reference=0;
2669             av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
2670         }
2671         
2672         if(h->short_ref_count)
2673             memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
2674
2675         h->short_ref[0]= s->current_picture_ptr;
2676         h->short_ref[0]->long_ref=0;
2677         h->short_ref_count++;
2678     }
2679     
2680     return 0; 
2681 }
2682
2683 static int decode_ref_pic_marking(H264Context *h){
2684     MpegEncContext * const s = &h->s;
2685     int i;
2686     
2687     if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
2688         s->broken_link= get_bits1(&s->gb) -1;
2689         h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
2690         if(h->mmco[0].long_index == -1)
2691             h->mmco_index= 0;
2692         else{
2693             h->mmco[0].opcode= MMCO_LONG;
2694             h->mmco_index= 1;
2695         } 
2696     }else{
2697         if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
2698             for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) { 
2699                 MMCOOpcode opcode= get_ue_golomb(&s->gb);;
2700
2701                 h->mmco[i].opcode= opcode;
2702                 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
2703                     h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
2704 /*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2705                         fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2706                         return -1;
2707                     }*/
2708                 }
2709                 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
2710                     h->mmco[i].long_index= get_ue_golomb(&s->gb);
2711                     if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
2712                         av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
2713                         return -1;
2714                     }
2715                 }
2716                     
2717                 if(opcode > MMCO_LONG){
2718                     av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
2719                     return -1;
2720                 }
2721             }
2722             h->mmco_index= i;
2723         }else{
2724             assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
2725
2726             if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
2727                 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
2728                 h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
2729                 h->mmco_index= 1;
2730             }else
2731                 h->mmco_index= 0;
2732         }
2733     }
2734     
2735     return 0; 
2736 }
2737
2738 static int init_poc(H264Context *h){
2739     MpegEncContext * const s = &h->s;
2740     const int max_frame_num= 1<<h->sps.log2_max_frame_num;
2741     int field_poc[2];
2742
2743     if(h->nal_unit_type == NAL_IDR_SLICE){
2744         h->frame_num_offset= 0;
2745     }else{
2746         if(h->frame_num < h->prev_frame_num)
2747             h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
2748         else
2749             h->frame_num_offset= h->prev_frame_num_offset;
2750     }
2751
2752     if(h->sps.poc_type==0){
2753         const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
2754
2755         if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
2756             h->poc_msb = h->prev_poc_msb + max_poc_lsb;
2757         else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
2758             h->poc_msb = h->prev_poc_msb - max_poc_lsb;
2759         else
2760             h->poc_msb = h->prev_poc_msb;
2761 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
2762         field_poc[0] = 
2763         field_poc[1] = h->poc_msb + h->poc_lsb;
2764         if(s->picture_structure == PICT_FRAME) 
2765             field_poc[1] += h->delta_poc_bottom;
2766     }else if(h->sps.poc_type==1){
2767         int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
2768         int i;
2769
2770         if(h->sps.poc_cycle_length != 0)
2771             abs_frame_num = h->frame_num_offset + h->frame_num;
2772         else
2773             abs_frame_num = 0;
2774
2775         if(h->nal_ref_idc==0 && abs_frame_num > 0)
2776             abs_frame_num--;
2777             
2778         expected_delta_per_poc_cycle = 0;
2779         for(i=0; i < h->sps.poc_cycle_length; i++)
2780             expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
2781
2782         if(abs_frame_num > 0){
2783             int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
2784             int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
2785
2786             expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
2787             for(i = 0; i <= frame_num_in_poc_cycle; i++)
2788                 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
2789         } else
2790             expectedpoc = 0;
2791
2792         if(h->nal_ref_idc == 0) 
2793             expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
2794         
2795         field_poc[0] = expectedpoc + h->delta_poc[0];
2796         field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
2797
2798         if(s->picture_structure == PICT_FRAME)
2799             field_poc[1] += h->delta_poc[1];
2800     }else{
2801         int poc;
2802         if(h->nal_unit_type == NAL_IDR_SLICE){
2803             poc= 0;
2804         }else{
2805             if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
2806             else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
2807         }
2808         field_poc[0]= poc;
2809         field_poc[1]= poc;
2810     }
2811     
2812     if(s->picture_structure != PICT_BOTTOM_FIELD)
2813         s->current_picture_ptr->field_poc[0]= field_poc[0];
2814     if(s->picture_structure != PICT_TOP_FIELD)
2815         s->current_picture_ptr->field_poc[1]= field_poc[1];
2816     if(s->picture_structure == PICT_FRAME) // FIXME field pix?
2817         s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
2818
2819     return 0;
2820 }
2821
2822 /**
2823  * decodes a slice header.
2824  * this will allso call MPV_common_init() and frame_start() as needed
2825  */
2826 static int decode_slice_header(H264Context *h){
2827     MpegEncContext * const s = &h->s;
2828     int first_mb_in_slice, pps_id;
2829     int num_ref_idx_active_override_flag;
2830     static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
2831
2832     s->current_picture.reference= h->nal_ref_idc != 0;
2833
2834     first_mb_in_slice= get_ue_golomb(&s->gb);
2835
2836     h->slice_type= get_ue_golomb(&s->gb);
2837     if(h->slice_type > 9){
2838         av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
2839     }
2840     if(h->slice_type > 4){
2841         h->slice_type -= 5;
2842         h->slice_type_fixed=1;
2843     }else
2844         h->slice_type_fixed=0;
2845     
2846     h->slice_type= slice_type_map[ h->slice_type ];
2847     
2848     s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
2849         
2850     pps_id= get_ue_golomb(&s->gb);
2851     if(pps_id>255){
2852         av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
2853         return -1;
2854     }
2855     h->pps= h->pps_buffer[pps_id];
2856     if(h->pps.slice_group_count == 0){
2857         av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
2858         return -1;
2859     }
2860
2861     h->sps= h->sps_buffer[ h->pps.sps_id ];
2862     if(h->sps.log2_max_frame_num == 0){
2863         av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
2864         return -1;
2865     }
2866     
2867     s->mb_width= h->sps.mb_width;
2868     s->mb_height= h->sps.mb_height;
2869     
2870     h->b_stride=  s->mb_width*4;
2871     h->b8_stride= s->mb_width*2;
2872
2873     s->mb_x = first_mb_in_slice % s->mb_width;
2874     s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
2875     
2876     s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
2877     if(h->sps.frame_mbs_only_flag)
2878         s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
2879     else
2880         s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
2881     
2882     if (s->context_initialized 
2883         && (   s->width != s->avctx->width || s->height != s->avctx->height)) {
2884         free_tables(h);
2885         MPV_common_end(s);
2886     }
2887     if (!s->context_initialized) {
2888         if (MPV_common_init(s) < 0)
2889             return -1;
2890
2891         alloc_tables(h);
2892
2893         s->avctx->width = s->width;
2894         s->avctx->height = s->height;
2895         s->avctx->sample_aspect_ratio= h->sps.sar;
2896     }
2897
2898     if(first_mb_in_slice == 0){
2899         frame_start(h);
2900     }
2901
2902     s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
2903     h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
2904
2905     if(h->sps.frame_mbs_only_flag){
2906         s->picture_structure= PICT_FRAME;
2907     }else{
2908         if(get_bits1(&s->gb)) //field_pic_flag
2909             s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
2910         else
2911             s->picture_structure= PICT_FRAME;
2912     }
2913
2914     if(s->picture_structure==PICT_FRAME){
2915         h->curr_pic_num=   h->frame_num;
2916         h->max_pic_num= 1<< h->sps.log2_max_frame_num;
2917     }else{
2918         h->curr_pic_num= 2*h->frame_num;
2919         h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
2920     }
2921         
2922     if(h->nal_unit_type == NAL_IDR_SLICE){
2923         get_ue_golomb(&s->gb); /* idr_pic_id */
2924     }
2925    
2926     if(h->sps.poc_type==0){
2927         h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
2928         
2929         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
2930             h->delta_poc_bottom= get_se_golomb(&s->gb);
2931         }
2932     }
2933     
2934     if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
2935         h->delta_poc[0]= get_se_golomb(&s->gb);
2936         
2937         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
2938             h->delta_poc[1]= get_se_golomb(&s->gb);
2939     }
2940     
2941     init_poc(h);
2942     
2943     if(h->pps.redundant_pic_cnt_present){
2944         h->redundant_pic_count= get_ue_golomb(&s->gb);
2945     }
2946
2947     //set defaults, might be overriden a few line later
2948     h->ref_count[0]= h->pps.ref_count[0];
2949     h->ref_count[1]= h->pps.ref_count[1];
2950
2951     if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
2952         if(h->slice_type == B_TYPE){
2953             h->direct_spatial_mv_pred= get_bits1(&s->gb);
2954         }
2955         num_ref_idx_active_override_flag= get_bits1(&s->gb);
2956     
2957         if(num_ref_idx_active_override_flag){
2958             h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
2959             if(h->slice_type==B_TYPE)
2960                 h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
2961
2962             if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
2963                 av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
2964                 return -1;
2965             }
2966         }
2967     }
2968
2969     if(first_mb_in_slice == 0){
2970         fill_default_ref_list(h);
2971     }
2972
2973     decode_ref_pic_list_reordering(h);
2974
2975     if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
2976        || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
2977         pred_weight_table(h);
2978     
2979     if(s->current_picture.reference)
2980         decode_ref_pic_marking(h);
2981     //FIXME CABAC stuff
2982
2983     s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta
2984     //FIXME qscale / qp ... stuff
2985     if(h->slice_type == SP_TYPE){
2986         get_bits1(&s->gb); /* sp_for_switch_flag */
2987     }
2988     if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
2989         get_se_golomb(&s->gb); /* slice_qs_delta */
2990     }
2991
2992     if( h->pps.deblocking_filter_parameters_present ) {
2993         h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb);
2994         if( h->disable_deblocking_filter_idc  !=  1 ) {
2995             h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb);
2996             h->slice_beta_offset_div2= get_se_golomb(&s->gb);
2997         }
2998     }else
2999         h->disable_deblocking_filter_idc= 0;
3000
3001 #if 0 //FMO
3002     if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3003         slice_group_change_cycle= get_bits(&s->gb, ?);
3004 #endif
3005
3006     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3007         av_log(h->s.avctx, AV_LOG_DEBUG, "mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", 
3008                first_mb_in_slice, 
3009                av_get_pict_type_char(h->slice_type),
3010                pps_id, h->frame_num,
3011                s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3012                h->ref_count[0], h->ref_count[1],
3013                s->qscale,
3014                h->disable_deblocking_filter_idc
3015                );
3016     }
3017
3018     return 0;
3019 }
3020
3021 /**
3022  *
3023  */
3024 static inline int get_level_prefix(GetBitContext *gb){
3025     unsigned int buf;
3026     int log;
3027     
3028     OPEN_READER(re, gb);
3029     UPDATE_CACHE(re, gb);
3030     buf=GET_CACHE(re, gb);
3031     
3032     log= 32 - av_log2(buf);
3033 #ifdef TRACE
3034     print_bin(buf>>(32-log), log);
3035     printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3036 #endif
3037
3038     LAST_SKIP_BITS(re, gb, log);
3039     CLOSE_READER(re, gb);
3040
3041     return log-1;
3042 }
3043
3044 /**
3045  * decodes a residual block.
3046  * @param n block index
3047  * @param scantable scantable
3048  * @param max_coeff number of coefficients in the block
3049  * @return <0 if an error occured
3050  */
3051 static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3052     MpegEncContext * const s = &h->s;
3053     const uint16_t *qmul= dequant_coeff[qp];
3054     static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3055     int level[16], run[16];
3056     int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3057
3058     //FIXME put trailing_onex into the context
3059
3060     if(n == CHROMA_DC_BLOCK_INDEX){
3061         coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3062         total_coeff= coeff_token>>2;
3063     }else{    
3064         if(n == LUMA_DC_BLOCK_INDEX){
3065             total_coeff= pred_non_zero_count(h, 0);
3066             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3067             total_coeff= coeff_token>>2;
3068         }else{
3069             total_coeff= pred_non_zero_count(h, n);
3070             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3071             total_coeff= coeff_token>>2;
3072             h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3073         }
3074     }
3075
3076     //FIXME set last_non_zero?
3077
3078     if(total_coeff==0)
3079         return 0;
3080         
3081     trailing_ones= coeff_token&3;
3082     tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3083     assert(total_coeff<=16);
3084     
3085     for(i=0; i<trailing_ones; i++){
3086         level[i]= 1 - 2*get_bits1(gb);
3087     }
3088
3089     suffix_length= total_coeff > 10 && trailing_ones < 3;
3090
3091     for(; i<total_coeff; i++){
3092         const int prefix= get_level_prefix(gb);
3093         int level_code, mask;
3094
3095         if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3096             if(suffix_length)
3097                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3098             else
3099                 level_code= (prefix<<suffix_length); //part
3100         }else if(prefix==14){
3101             if(suffix_length)
3102                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3103             else
3104                 level_code= prefix + get_bits(gb, 4); //part
3105         }else if(prefix==15){
3106             level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3107             if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3108         }else{
3109             av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3110             return -1;
3111         }
3112
3113         if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3114
3115         mask= -(level_code&1);
3116         level[i]= (((2+level_code)>>1) ^ mask) - mask;
3117
3118         if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3119
3120 #if 1
3121         if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3122 #else        
3123         if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3124         ? == prefix > 2 or sth
3125 #endif
3126         tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3127     }
3128
3129     if(total_coeff == max_coeff)
3130         zeros_left=0;
3131     else{
3132         if(n == CHROMA_DC_BLOCK_INDEX)
3133             zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3134         else
3135             zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3136     }
3137     
3138     for(i=0; i<total_coeff-1; i++){
3139         if(zeros_left <=0)
3140             break;
3141         else if(zeros_left < 7){
3142             run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3143         }else{
3144             run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3145         }
3146         zeros_left -= run[i];
3147     }
3148
3149     if(zeros_left<0){
3150         av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3151         return -1;
3152     }
3153     
3154     for(; i<total_coeff-1; i++){
3155         run[i]= 0;
3156     }
3157
3158     run[i]= zeros_left;
3159
3160     coeff_num=-1;
3161     if(n > 24){
3162         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3163             int j;
3164
3165             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3166             j= scantable[ coeff_num ];
3167
3168             block[j]= level[i];
3169         }
3170     }else{
3171         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3172             int j;
3173
3174             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3175             j= scantable[ coeff_num ];
3176
3177             block[j]= level[i] * qmul[j];
3178 //            printf("%d %d  ", block[j], qmul[j]);
3179         }
3180     }
3181     return 0;
3182 }
3183
3184 /**
3185  * decodes a macroblock
3186  * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3187  */
3188 static int decode_mb(H264Context *h){
3189     MpegEncContext * const s = &h->s;
3190     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3191     int mb_type, partition_count, cbp;
3192
3193     s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3194
3195     tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3196     cbp = 0; /* avoid warning. FIXME: find a solution without slowing
3197                 down the code */
3198     if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3199         if(s->mb_skip_run==-1)
3200             s->mb_skip_run= get_ue_golomb(&s->gb);
3201         
3202         if (s->mb_skip_run--) {
3203             int mx, my;
3204             /* skip mb */
3205 //FIXME b frame
3206             mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0;
3207
3208             memset(h->non_zero_count[mb_xy], 0, 16);
3209             memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3210
3211             if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3212                 h->mb_field_decoding_flag= get_bits1(&s->gb);
3213             }
3214
3215             if(h->mb_field_decoding_flag)
3216                 mb_type|= MB_TYPE_INTERLACED;
3217             
3218             fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3219             pred_pskip_motion(h, &mx, &my);
3220             fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3221             fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3222             write_back_motion(h, mb_type);
3223
3224             s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type
3225             h->slice_table[ mb_xy ]= h->slice_num;
3226
3227             h->prev_mb_skiped= 1;
3228             return 0;
3229         }
3230     }
3231     if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3232         if((s->mb_y&1)==0)
3233             h->mb_field_decoding_flag = get_bits1(&s->gb);
3234     }else
3235         h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3236     
3237     h->prev_mb_skiped= 0;
3238     
3239     mb_type= get_ue_golomb(&s->gb);
3240     if(h->slice_type == B_TYPE){
3241         if(mb_type < 23){
3242             partition_count= b_mb_type_info[mb_type].partition_count;
3243             mb_type=         b_mb_type_info[mb_type].type;
3244         }else{
3245             mb_type -= 23;
3246             goto decode_intra_mb;
3247         }
3248     }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3249         if(mb_type < 5){
3250             partition_count= p_mb_type_info[mb_type].partition_count;
3251             mb_type=         p_mb_type_info[mb_type].type;
3252         }else{
3253             mb_type -= 5;
3254             goto decode_intra_mb;
3255         }
3256     }else{
3257        assert(h->slice_type == I_TYPE);
3258 decode_intra_mb:
3259         if(mb_type > 25){
3260             av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3261             return -1;
3262         }
3263         partition_count=0;
3264         cbp= i_mb_type_info[mb_type].cbp;
3265         h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3266         mb_type= i_mb_type_info[mb_type].type;
3267     }
3268
3269     if(h->mb_field_decoding_flag)
3270         mb_type |= MB_TYPE_INTERLACED;
3271
3272     s->current_picture.mb_type[mb_xy]= mb_type;
3273     h->slice_table[ mb_xy ]= h->slice_num;
3274     
3275     if(IS_INTRA_PCM(mb_type)){
3276         const uint8_t *ptr;
3277         int x, y;
3278         
3279         // we assume these blocks are very rare so we dont optimize it
3280         align_get_bits(&s->gb);
3281         
3282         ptr= s->gb.buffer + get_bits_count(&s->gb);
3283     
3284         for(y=0; y<16; y++){
3285             const int index= 4*(y&3) + 64*(y>>2);
3286             for(x=0; x<16; x++){
3287                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3288             }
3289         }
3290         for(y=0; y<8; y++){
3291             const int index= 256 + 4*(y&3) + 32*(y>>2);
3292             for(x=0; x<8; x++){
3293                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3294             }
3295         }
3296         for(y=0; y<8; y++){
3297             const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3298             for(x=0; x<8; x++){
3299                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3300             }
3301         }
3302     
3303         skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3304         
3305         memset(h->non_zero_count[mb_xy], 16, 16);
3306         
3307         return 0;
3308     }
3309         
3310     fill_caches(h, mb_type);
3311
3312     //mb_pred
3313     if(IS_INTRA(mb_type)){
3314 //            init_top_left_availability(h);
3315             if(IS_INTRA4x4(mb_type)){
3316                 int i;
3317
3318 //                fill_intra4x4_pred_table(h);
3319                 for(i=0; i<16; i++){
3320                     const int mode_coded= !get_bits1(&s->gb);
3321                     const int predicted_mode=  pred_intra_mode(h, i);
3322                     int mode;
3323
3324                     if(mode_coded){
3325                         const int rem_mode= get_bits(&s->gb, 3);
3326                         if(rem_mode<predicted_mode)
3327                             mode= rem_mode;
3328                         else
3329                             mode= rem_mode + 1;
3330                     }else{
3331                         mode= predicted_mode;
3332                     }
3333                     
3334                     h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3335                 }
3336                 write_back_intra_pred_mode(h);
3337                 if( check_intra4x4_pred_mode(h) < 0)
3338                     return -1;
3339             }else{
3340                 h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3341                 if(h->intra16x16_pred_mode < 0)
3342                     return -1;
3343             }
3344             h->chroma_pred_mode= get_ue_golomb(&s->gb);
3345
3346             h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3347             if(h->chroma_pred_mode < 0)
3348                 return -1;
3349     }else if(partition_count==4){
3350         int i, j, sub_partition_count[4], list, ref[2][4];
3351         
3352         if(h->slice_type == B_TYPE){
3353             for(i=0; i<4; i++){
3354                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3355                 if(h->sub_mb_type[i] >=13){
3356                     av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3357                     return -1;
3358                 }
3359                 sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3360                 h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3361             }
3362         }else{
3363             assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3364             for(i=0; i<4; i++){
3365                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3366                 if(h->sub_mb_type[i] >=4){
3367                     av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3368                     return -1;
3369                 }
3370                 sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3371                 h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3372             }
3373         }
3374         
3375         for(list=0; list<2; list++){
3376             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3377             if(ref_count == 0) continue;
3378             for(i=0; i<4; i++){
3379                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3380                     ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
3381                 }else{
3382                  //FIXME
3383                     ref[list][i] = -1;
3384                 }
3385             }
3386         }
3387         
3388         for(list=0; list<2; list++){
3389             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3390             if(ref_count == 0) continue;
3391
3392             for(i=0; i<4; i++){
3393                 h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
3394                 h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
3395
3396                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3397                     const int sub_mb_type= h->sub_mb_type[i];
3398                     const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
3399                     for(j=0; j<sub_partition_count[i]; j++){
3400                         int mx, my;
3401                         const int index= 4*i + block_width*j;
3402                         int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
3403                         pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
3404                         mx += get_se_golomb(&s->gb);
3405                         my += get_se_golomb(&s->gb);
3406                         tprintf("final mv:%d %d\n", mx, my);
3407
3408                         if(IS_SUB_8X8(sub_mb_type)){
3409                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
3410                             mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
3411                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
3412                             mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
3413                         }else if(IS_SUB_8X4(sub_mb_type)){
3414                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
3415                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
3416                         }else if(IS_SUB_4X8(sub_mb_type)){
3417                             mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
3418                             mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
3419                         }else{
3420                             assert(IS_SUB_4X4(sub_mb_type));
3421                             mv_cache[ 0 ][0]= mx;
3422                             mv_cache[ 0 ][1]= my;
3423                         }
3424                     }
3425                 }else{
3426                     uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
3427                     p[0] = p[1]=
3428                     p[8] = p[9]= 0;
3429                 }
3430             }
3431         }
3432     }else if(!IS_DIRECT(mb_type)){
3433         int list, mx, my, i;
3434          //FIXME we should set ref_idx_l? to 0 if we use that later ...
3435         if(IS_16X16(mb_type)){
3436             for(list=0; list<2; list++){
3437                 if(h->ref_count[0]>0){
3438                     if(IS_DIR(mb_type, 0, list)){
3439                         const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3440                         fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
3441                     }
3442                 }
3443             }
3444             for(list=0; list<2; list++){
3445                 if(IS_DIR(mb_type, 0, list)){
3446                     pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
3447                     mx += get_se_golomb(&s->gb);
3448                     my += get_se_golomb(&s->gb);
3449                     tprintf("final mv:%d %d\n", mx, my);
3450
3451                     fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
3452                 }
3453             }
3454         }
3455         else if(IS_16X8(mb_type)){
3456             for(list=0; list<2; list++){
3457                 if(h->ref_count[list]>0){
3458                     for(i=0; i<2; i++){
3459                         if(IS_DIR(mb_type, i, list)){
3460                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3461                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
3462                         }
3463                     }
3464                 }
3465             }
3466             for(list=0; list<2; list++){
3467                 for(i=0; i<2; i++){
3468                     if(IS_DIR(mb_type, i, list)){
3469                         pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
3470                         mx += get_se_golomb(&s->gb);
3471                         my += get_se_golomb(&s->gb);
3472                         tprintf("final mv:%d %d\n", mx, my);
3473
3474                         fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
3475                     }
3476                 }
3477             }
3478         }else{
3479             assert(IS_8X16(mb_type));
3480             for(list=0; list<2; list++){
3481                 if(h->ref_count[list]>0){
3482                     for(i=0; i<2; i++){
3483                         if(IS_DIR(mb_type, i, list)){ //FIXME optimize
3484                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3485                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
3486                         }
3487                     }
3488                 }
3489             }
3490             for(list=0; list<2; list++){
3491                 for(i=0; i<2; i++){
3492                     if(IS_DIR(mb_type, i, list)){
3493                         pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
3494                         mx += get_se_golomb(&s->gb);
3495                         my += get_se_golomb(&s->gb);
3496                         tprintf("final mv:%d %d\n", mx, my);
3497
3498                         fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
3499                     }
3500                 }
3501             }
3502         }
3503     }
3504     
3505     if(IS_INTER(mb_type))
3506         write_back_motion(h, mb_type);
3507     
3508     if(!IS_INTRA16x16(mb_type)){
3509         cbp= get_ue_golomb(&s->gb);
3510         if(cbp > 47){
3511             av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
3512             return -1;
3513         }
3514         
3515         if(IS_INTRA4x4(mb_type))
3516             cbp= golomb_to_intra4x4_cbp[cbp];
3517         else
3518             cbp= golomb_to_inter_cbp[cbp];
3519     }
3520
3521     if(cbp || IS_INTRA16x16(mb_type)){
3522         int i8x8, i4x4, chroma_idx;
3523         int chroma_qp, dquant;
3524         GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
3525         const uint8_t *scan, *dc_scan;
3526         
3527 //        fill_non_zero_count_cache(h);
3528
3529         if(IS_INTERLACED(mb_type)){
3530             scan= field_scan;
3531             dc_scan= luma_dc_field_scan;
3532         }else{
3533             scan= zigzag_scan;
3534             dc_scan= luma_dc_zigzag_scan;
3535         }
3536
3537         dquant= get_se_golomb(&s->gb);
3538
3539         if( dquant > 25 || dquant < -26 ){
3540             av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
3541             return -1;
3542         }
3543         
3544         s->qscale += dquant;
3545         if(((unsigned)s->qscale) > 51){
3546             if(s->qscale<0) s->qscale+= 52;
3547             else            s->qscale-= 52;
3548         }
3549         
3550         h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
3551         if(IS_INTRA16x16(mb_type)){
3552             if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
3553                 return -1; //FIXME continue if partotioned and other retirn -1 too
3554             }
3555
3556             assert((cbp&15) == 0 || (cbp&15) == 15);
3557
3558             if(cbp&15){
3559                 for(i8x8=0; i8x8<4; i8x8++){
3560                     for(i4x4=0; i4x4<4; i4x4++){
3561                         const int index= i4x4 + 4*i8x8;
3562                         if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
3563                             return -1;
3564                         }
3565                     }
3566                 }
3567             }else{
3568                 fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
3569             }
3570         }else{
3571             for(i8x8=0; i8x8<4; i8x8++){
3572                 if(cbp & (1<<i8x8)){
3573                     for(i4x4=0; i4x4<4; i4x4++){
3574                         const int index= i4x4 + 4*i8x8;
3575                         
3576                         if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
3577                             return -1;
3578                         }
3579                     }
3580                 }else{
3581                     uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
3582                     nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
3583                 }
3584             }
3585         }
3586         
3587         if(cbp&0x30){
3588             for(chroma_idx=0; chroma_idx<2; chroma_idx++)
3589                 if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
3590                     return -1;
3591                 }
3592         }
3593
3594         if(cbp&0x20){
3595             for(chroma_idx=0; chroma_idx<2; chroma_idx++){
3596                 for(i4x4=0; i4x4<4; i4x4++){
3597                     const int index= 16 + 4*chroma_idx + i4x4;
3598                     if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
3599                         return -1;
3600                     }
3601                 }
3602             }
3603         }else{
3604             uint8_t * const nnz= &h->non_zero_count_cache[0];
3605             nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
3606             nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
3607         }
3608     }else{
3609         memset(&h->non_zero_count_cache[8], 0, 8*5);
3610     }
3611     write_back_non_zero_count(h);
3612
3613     return 0;
3614 }
3615
3616 static int decode_slice(H264Context *h){
3617     MpegEncContext * const s = &h->s;
3618     const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
3619
3620     s->mb_skip_run= -1;
3621     
3622 #if 1
3623     for(;;){
3624         int ret= decode_mb(h);
3625             
3626         hl_decode_mb(h);
3627         
3628         if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ?
3629             s->mb_y++;
3630             ret= decode_mb(h);
3631             
3632             hl_decode_mb(h);
3633             s->mb_y--;
3634         }
3635
3636         if(ret<0){
3637             av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3638             ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3639
3640             return -1;
3641         }
3642         
3643         if(++s->mb_x >= s->mb_width){
3644             s->mb_x=0;
3645             ff_draw_horiz_band(s, 16*s->mb_y, 16);
3646             if(++s->mb_y >= s->mb_height){
3647                 tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
3648
3649                 if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3650                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3651
3652                     return 0;
3653                 }else{
3654                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3655
3656                     return -1;
3657                 }
3658             }
3659         }
3660         
3661         if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
3662             if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3663                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3664
3665                 return 0;
3666             }else{
3667                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3668
3669                 return -1;
3670             }
3671         }
3672     }
3673 #endif
3674 #if 0
3675     for(;s->mb_y < s->mb_height; s->mb_y++){
3676         for(;s->mb_x < s->mb_width; s->mb_x++){
3677             int ret= decode_mb(h);
3678             
3679             hl_decode_mb(h);
3680
3681             if(ret<0){
3682                 fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3683                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3684
3685                 return -1;
3686             }
3687         
3688             if(++s->mb_x >= s->mb_width){
3689                 s->mb_x=0;
3690                 if(++s->mb_y >= s->mb_height){
3691                     if(get_bits_count(s->gb) == s->gb.size_in_bits){
3692                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3693
3694                         return 0;
3695                     }else{
3696                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3697
3698                         return -1;
3699                     }
3700                 }
3701             }
3702         
3703             if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
3704                 if(get_bits_count(s->gb) == s->gb.size_in_bits){
3705                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3706
3707                     return 0;
3708                 }else{
3709                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3710
3711                     return -1;
3712                 }
3713             }
3714         }
3715         s->mb_x=0;
3716         ff_draw_horiz_band(s, 16*s->mb_y, 16);
3717     }
3718 #endif
3719     return -1; //not reached
3720 }
3721
3722 static inline int decode_vui_parameters(H264Context *h, SPS *sps){
3723     MpegEncContext * const s = &h->s;
3724     int aspect_ratio_info_present_flag, aspect_ratio_idc;
3725
3726     aspect_ratio_info_present_flag= get_bits1(&s->gb);
3727     
3728     if( aspect_ratio_info_present_flag ) {
3729         aspect_ratio_idc= get_bits(&s->gb, 8);
3730         if( aspect_ratio_idc == EXTENDED_SAR ) {
3731             sps->sar.num= get_bits(&s->gb, 16);
3732             sps->sar.den= get_bits(&s->gb, 16);
3733         }else if(aspect_ratio_idc < 16){
3734             sps->sar=  pixel_aspect[aspect_ratio_idc];
3735         }else{
3736             av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
3737             return -1;
3738         }
3739     }else{
3740         sps->sar.num= 
3741         sps->sar.den= 0;
3742     }
3743 //            s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
3744 #if 0
3745 | overscan_info_present_flag                        |0  |u(1)    |
3746 | if( overscan_info_present_flag )                  |   |        |
3747 |  overscan_appropriate_flag                        |0  |u(1)    |
3748 | video_signal_type_present_flag                    |0  |u(1)    |
3749 | if( video_signal_type_present_flag ) {            |   |        |
3750 |  video_format                                     |0  |u(3)    |
3751 |  video_full_range_flag                            |0  |u(1)    |
3752 |  colour_description_present_flag                  |0  |u(1)    |
3753 |  if( colour_description_present_flag ) {          |   |        |
3754 |   colour_primaries                                |0  |u(8)    |
3755 |   transfer_characteristics                        |0  |u(8)    |
3756 |   matrix_coefficients                             |0  |u(8)    |
3757 |  }                                                |   |        |
3758 | }                                                 |   |        |
3759 | chroma_location_info_present_flag                 |0  |u(1)    |
3760 | if ( chroma_location_info_present_flag ) {        |   |        |
3761 |  chroma_sample_location_type_top_field            |0  |ue(v)   |
3762 |  chroma_sample_location_type_bottom_field         |0  |ue(v)   |
3763 | }                                                 |   |        |
3764 | timing_info_present_flag                          |0  |u(1)    |
3765 | if( timing_info_present_flag ) {                  |   |        |
3766 |  num_units_in_tick                                |0  |u(32)   |
3767 |  time_scale                                       |0  |u(32)   |
3768 |  fixed_frame_rate_flag                            |0  |u(1)    |
3769 | }                                                 |   |        |
3770 | nal_hrd_parameters_present_flag                   |0  |u(1)    |
3771 | if( nal_hrd_parameters_present_flag  = =  1)      |   |        |
3772 |  hrd_parameters( )                                |   |        |
3773 | vcl_hrd_parameters_present_flag                   |0  |u(1)    |
3774 | if( vcl_hrd_parameters_present_flag  = =  1)      |   |        |
3775 |  hrd_parameters( )                                |   |        |
3776 | if( ( nal_hrd_parameters_present_flag  = =  1  | ||   |        |
3777 |                                                   |   |        |
3778 |( vcl_hrd_parameters_present_flag  = =  1 ) )      |   |        |
3779 |  low_delay_hrd_flag                               |0  |u(1)    |
3780 | bitstream_restriction_flag                        |0  |u(1)    |
3781 | if( bitstream_restriction_flag ) {                |0  |u(1)    |
3782 |  motion_vectors_over_pic_boundaries_flag          |0  |u(1)    |
3783 |  max_bytes_per_pic_denom                          |0  |ue(v)   |
3784 |  max_bits_per_mb_denom                            |0  |ue(v)   |
3785 |  log2_max_mv_length_horizontal                    |0  |ue(v)   |
3786 |  log2_max_mv_length_vertical                      |0  |ue(v)   |
3787 |  num_reorder_frames                               |0  |ue(v)   |
3788 |  max_dec_frame_buffering                          |0  |ue(v)   |
3789 | }                                                 |   |        |
3790 |}                                                  |   |        |
3791 #endif
3792     return 0;
3793 }
3794
3795 static inline int decode_seq_parameter_set(H264Context *h){
3796     MpegEncContext * const s = &h->s;
3797     int profile_idc, level_idc;
3798     int sps_id, i;
3799     SPS *sps;
3800     
3801     profile_idc= get_bits(&s->gb, 8);
3802     get_bits1(&s->gb);   //constraint_set0_flag
3803     get_bits1(&s->gb);   //constraint_set1_flag
3804     get_bits1(&s->gb);   //constraint_set2_flag
3805     get_bits(&s->gb, 5); // reserved
3806     level_idc= get_bits(&s->gb, 8);
3807     sps_id= get_ue_golomb(&s->gb);
3808     
3809     sps= &h->sps_buffer[ sps_id ];
3810     sps->profile_idc= profile_idc;
3811     sps->level_idc= level_idc;
3812     
3813     sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
3814     sps->poc_type= get_ue_golomb(&s->gb);
3815     
3816     if(sps->poc_type == 0){ //FIXME #define
3817         sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
3818     } else if(sps->poc_type == 1){//FIXME #define
3819         sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
3820         sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
3821         sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
3822         sps->poc_cycle_length= get_ue_golomb(&s->gb);
3823         
3824         for(i=0; i<sps->poc_cycle_length; i++)
3825             sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
3826     }
3827     if(sps->poc_type > 2){
3828         av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
3829         return -1;
3830     }
3831
3832     sps->ref_frame_count= get_ue_golomb(&s->gb);
3833     sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
3834     sps->mb_width= get_ue_golomb(&s->gb) + 1;
3835     sps->mb_height= get_ue_golomb(&s->gb) + 1;
3836     sps->frame_mbs_only_flag= get_bits1(&s->gb);
3837     if(!sps->frame_mbs_only_flag)
3838         sps->mb_aff= get_bits1(&s->gb);
3839     else
3840         sps->mb_aff= 0;
3841
3842     sps->direct_8x8_inference_flag= get_bits1(&s->gb);
3843
3844     sps->crop= get_bits1(&s->gb);
3845     if(sps->crop){
3846         sps->crop_left  = get_ue_golomb(&s->gb);
3847         sps->crop_right = get_ue_golomb(&s->gb);
3848         sps->crop_top   = get_ue_golomb(&s->gb);
3849         sps->crop_bottom= get_ue_golomb(&s->gb);
3850         if(sps->crop_left || sps->crop_top){
3851             av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completly supported, this could look slightly wrong ...\n");
3852         }
3853     }else{
3854         sps->crop_left  = 
3855         sps->crop_right = 
3856         sps->crop_top   = 
3857         sps->crop_bottom= 0;
3858     }
3859
3860     sps->vui_parameters_present_flag= get_bits1(&s->gb);
3861     if( sps->vui_parameters_present_flag )
3862         decode_vui_parameters(h, sps);
3863     
3864     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3865         av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n", 
3866                sps_id, sps->profile_idc, sps->level_idc,
3867                sps->poc_type,
3868                sps->ref_frame_count,
3869                sps->mb_width, sps->mb_height,
3870                sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
3871                sps->direct_8x8_inference_flag ? "8B8" : "",
3872                sps->crop_left, sps->crop_right, 
3873                sps->crop_top, sps->crop_bottom, 
3874                sps->vui_parameters_present_flag ? "VUI" : ""
3875                );
3876     }
3877     return 0;
3878 }
3879
3880 static inline int decode_picture_parameter_set(H264Context *h){
3881     MpegEncContext * const s = &h->s;
3882     int pps_id= get_ue_golomb(&s->gb);
3883     PPS *pps= &h->pps_buffer[pps_id];
3884     
3885     pps->sps_id= get_ue_golomb(&s->gb);
3886     pps->cabac= get_bits1(&s->gb);
3887     pps->pic_order_present= get_bits1(&s->gb);
3888     pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
3889     if(pps->slice_group_count > 1 ){
3890         pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
3891         av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
3892         switch(pps->mb_slice_group_map_type){
3893         case 0:
3894 #if 0
3895 |   for( i = 0; i <= num_slice_groups_minus1; i++ ) |   |        |
3896 |    run_length[ i ]                                |1  |ue(v)   |
3897 #endif
3898             break;
3899         case 2:
3900 #if 0
3901 |   for( i = 0; i < num_slice_groups_minus1; i++ )  |   |        |
3902 |{                                                  |   |        |
3903 |    top_left_mb[ i ]                               |1  |ue(v)   |
3904 |    bottom_right_mb[ i ]                           |1  |ue(v)   |
3905 |   }                                               |   |        |
3906 #endif
3907             break;
3908         case 3:
3909         case 4:
3910         case 5:
3911 #if 0
3912 |   slice_group_change_direction_flag               |1  |u(1)    |
3913 |   slice_group_change_rate_minus1                  |1  |ue(v)   |
3914 #endif
3915             break;
3916         case 6:
3917 #if 0
3918 |   slice_group_id_cnt_minus1                       |1  |ue(v)   |
3919 |   for( i = 0; i <= slice_group_id_cnt_minus1; i++ |   |        |
3920 |)                                                  |   |        |
3921 |    slice_group_id[ i ]                            |1  |u(v)    |
3922 #endif
3923             break;
3924         }
3925     }
3926     pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3927     pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3928     if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
3929         av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
3930         return -1;
3931     }
3932     
3933     pps->weighted_pred= get_bits1(&s->gb);
3934     pps->weighted_bipred_idc= get_bits(&s->gb, 2);
3935     pps->init_qp= get_se_golomb(&s->gb) + 26;
3936     pps->init_qs= get_se_golomb(&s->gb) + 26;
3937     pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
3938     pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
3939     pps->constrained_intra_pred= get_bits1(&s->gb);
3940     pps->redundant_pic_cnt_present = get_bits1(&s->gb);
3941     
3942     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3943         av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s\n", 
3944                pps_id, pps->sps_id,
3945                pps->cabac ? "CABAC" : "CAVLC",
3946                pps->slice_group_count,
3947                pps->ref_count[0], pps->ref_count[1],
3948                pps->weighted_pred ? "weighted" : "",
3949                pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
3950                pps->deblocking_filter_parameters_present ? "LPAR" : "",
3951                pps->constrained_intra_pred ? "CONSTR" : "",
3952                pps->redundant_pic_cnt_present ? "REDU" : ""
3953                );
3954     }
3955     
3956     return 0;
3957 }
3958
3959 /**
3960  * finds the end of the current frame in the bitstream.
3961  * @return the position of the first byte of the next frame, or -1
3962  */
3963 static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){
3964     ParseContext *pc= &s->parse_context;
3965     int i;
3966     uint32_t state;
3967 //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
3968 //    mb_addr= pc->mb_addr - 1;
3969     state= pc->state;
3970     //FIXME this will fail with slices
3971     for(i=0; i<buf_size; i++){
3972         state= (state<<8) | buf[i];
3973         if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
3974             if(pc->frame_start_found){
3975                 pc->state=-1; 
3976                 pc->frame_start_found= 0;
3977                 return i-3;
3978             }
3979             pc->frame_start_found= 1;
3980         }
3981     }
3982     
3983     pc->state= state;
3984     return END_NOT_FOUND;
3985 }
3986
3987 static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
3988     MpegEncContext * const s = &h->s;
3989     AVCodecContext * const avctx= s->avctx;
3990     int buf_index=0;
3991 #if 0
3992     int i;
3993     for(i=0; i<32; i++){
3994         printf("%X ", buf[i]);
3995     }
3996 #endif
3997     for(;;){
3998         int consumed;
3999         int dst_length;
4000         int bit_length;
4001         uint8_t *ptr;
4002         
4003         // start code prefix search
4004         for(; buf_index + 3 < buf_size; buf_index++){
4005             // this should allways succeed in the first iteration
4006             if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
4007                 break;
4008         }
4009         
4010         if(buf_index+3 >= buf_size) break;
4011         
4012         buf_index+=3;
4013         
4014         ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index);
4015         if(ptr[dst_length - 1] == 0) dst_length--;
4016         bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
4017
4018         if(s->avctx->debug&FF_DEBUG_STARTCODE){
4019             av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length);
4020         }
4021         
4022         buf_index += consumed;
4023
4024         if(h->nal_ref_idc < s->hurry_up)
4025             continue;
4026         
4027         switch(h->nal_unit_type){
4028         case NAL_IDR_SLICE:
4029             idr(h); //FIXME ensure we dont loose some frames if there is reordering
4030         case NAL_SLICE:
4031             init_get_bits(&s->gb, ptr, bit_length);
4032             h->intra_gb_ptr=
4033             h->inter_gb_ptr= &s->gb;
4034             s->data_partitioning = 0;
4035             
4036             if(decode_slice_header(h) < 0) return -1;
4037             if(h->redundant_pic_count==0)
4038                 decode_slice(h);
4039             break;
4040         case NAL_DPA:
4041             init_get_bits(&s->gb, ptr, bit_length);
4042             h->intra_gb_ptr=
4043             h->inter_gb_ptr= NULL;
4044             s->data_partitioning = 1;
4045             
4046             if(decode_slice_header(h) < 0) return -1;
4047             break;
4048         case NAL_DPB:
4049             init_get_bits(&h->intra_gb, ptr, bit_length);
4050             h->intra_gb_ptr= &h->intra_gb;
4051             break;
4052         case NAL_DPC:
4053             init_get_bits(&h->inter_gb, ptr, bit_length);
4054             h->inter_gb_ptr= &h->inter_gb;
4055
4056             if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning)
4057                 decode_slice(h);
4058             break;
4059         case NAL_SEI:
4060             break;
4061         case NAL_SPS:
4062             init_get_bits(&s->gb, ptr, bit_length);
4063             decode_seq_parameter_set(h);
4064             
4065             if(s->flags& CODEC_FLAG_LOW_DELAY)
4066                 s->low_delay=1;
4067       
4068             avctx->has_b_frames= !s->low_delay;
4069             break;
4070         case NAL_PPS:
4071             init_get_bits(&s->gb, ptr, bit_length);
4072             
4073             decode_picture_parameter_set(h);
4074
4075             break;
4076         case NAL_PICTURE_DELIMITER:
4077             break;
4078         case NAL_FILTER_DATA:
4079             break;
4080         }        
4081
4082         //FIXME move after where irt is set
4083         s->current_picture.pict_type= s->pict_type;
4084         s->current_picture.key_frame= s->pict_type == I_TYPE;
4085     }
4086     
4087     if(!s->current_picture_ptr) return buf_index; //no frame
4088     
4089     h->prev_frame_num_offset= h->frame_num_offset;
4090     h->prev_frame_num= h->frame_num;
4091     if(s->current_picture_ptr->reference){
4092         h->prev_poc_msb= h->poc_msb;
4093         h->prev_poc_lsb= h->poc_lsb;
4094     }
4095     if(s->current_picture_ptr->reference)
4096         execute_ref_pic_marking(h, h->mmco, h->mmco_index);
4097     else
4098         assert(h->mmco_index==0);
4099
4100     ff_er_frame_end(s);
4101     MPV_frame_end(s);
4102
4103     return buf_index;
4104 }
4105
4106 /**
4107  * retunrs the number of bytes consumed for building the current frame
4108  */
4109 static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
4110     if(s->flags&CODEC_FLAG_TRUNCATED){
4111         pos -= s->parse_context.last_index;
4112         if(pos<0) pos=0; // FIXME remove (uneeded?)
4113         
4114         return pos;
4115     }else{
4116         if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
4117         if(pos+10>buf_size) pos=buf_size; // oops ;)
4118
4119         return pos;
4120     }
4121 }
4122
4123 static int decode_frame(AVCodecContext *avctx, 
4124                              void *data, int *data_size,
4125                              uint8_t *buf, int buf_size)
4126 {
4127     H264Context *h = avctx->priv_data;
4128     MpegEncContext *s = &h->s;
4129     AVFrame *pict = data; 
4130     int buf_index;
4131     
4132     s->flags= avctx->flags;
4133
4134     *data_size = 0;
4135    
4136    /* no supplementary picture */
4137     if (buf_size == 0) {
4138         return 0;
4139     }
4140     
4141     if(s->flags&CODEC_FLAG_TRUNCATED){
4142         int next= find_frame_end(s, buf, buf_size);
4143         
4144         if( ff_combine_frame(s, next, &buf, &buf_size) < 0 )
4145             return buf_size;
4146 //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
4147     }
4148
4149     if(s->avctx->extradata_size && s->picture_number==0){
4150         if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) ) 
4151             return -1;
4152     }
4153
4154     buf_index=decode_nal_units(h, buf, buf_size);
4155     if(buf_index < 0) 
4156         return -1;
4157
4158     //FIXME do something with unavailable reference frames    
4159  
4160 //    if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size);
4161 #if 0
4162     if(s->pict_type==B_TYPE || s->low_delay){
4163         *pict= *(AVFrame*)&s->current_picture;
4164     } else {
4165         *pict= *(AVFrame*)&s->last_picture;
4166     }
4167 #endif
4168     if(!s->current_picture_ptr){
4169         av_log(h->s.avctx, AV_LOG_DEBUG, "error, NO frame\n");
4170         return -1;
4171     }
4172
4173     *pict= *(AVFrame*)&s->current_picture; //FIXME 
4174     ff_print_debug_info(s, s->current_picture_ptr);
4175     assert(pict->data[0]);
4176 //printf("out %d\n", (int)pict->data[0]);
4177 #if 0 //?
4178
4179     /* Return the Picture timestamp as the frame number */
4180     /* we substract 1 because it is added on utils.c    */
4181     avctx->frame_number = s->picture_number - 1;
4182 #endif
4183 #if 0
4184     /* dont output the last pic after seeking */
4185     if(s->last_picture_ptr || s->low_delay)
4186     //Note this isnt a issue as a IDR pic should flush teh buffers
4187 #endif
4188         *data_size = sizeof(AVFrame);
4189     return get_consumed_bytes(s, buf_index, buf_size);
4190 }
4191 #if 0
4192 static inline void fill_mb_avail(H264Context *h){
4193     MpegEncContext * const s = &h->s;
4194     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4195
4196     if(s->mb_y){
4197         h->mb_avail[0]= s->mb_x                 && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
4198         h->mb_avail[1]=                            h->slice_table[mb_xy - s->mb_stride    ] == h->slice_num;
4199         h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
4200     }else{
4201         h->mb_avail[0]=
4202         h->mb_avail[1]=
4203         h->mb_avail[2]= 0;
4204     }
4205     h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
4206     h->mb_avail[4]= 1; //FIXME move out
4207     h->mb_avail[5]= 0; //FIXME move out
4208 }
4209 #endif
4210
4211 #if 0 //selftest
4212 #define COUNT 8000
4213 #define SIZE (COUNT*40)
4214 int main(){
4215     int i;
4216     uint8_t temp[SIZE];
4217     PutBitContext pb;
4218     GetBitContext gb;
4219 //    int int_temp[10000];
4220     DSPContext dsp;
4221     AVCodecContext avctx;
4222     
4223     dsputil_init(&dsp, &avctx);
4224
4225     init_put_bits(&pb, temp, SIZE);
4226     printf("testing unsigned exp golomb\n");
4227     for(i=0; i<COUNT; i++){
4228         START_TIMER
4229         set_ue_golomb(&pb, i);
4230         STOP_TIMER("set_ue_golomb");
4231     }
4232     flush_put_bits(&pb);
4233     
4234     init_get_bits(&gb, temp, 8*SIZE);
4235     for(i=0; i<COUNT; i++){
4236         int j, s;
4237         
4238         s= show_bits(&gb, 24);
4239         
4240         START_TIMER
4241         j= get_ue_golomb(&gb);
4242         if(j != i){
4243             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4244 //            return -1;
4245         }
4246         STOP_TIMER("get_ue_golomb");
4247     }
4248     
4249     
4250     init_put_bits(&pb, temp, SIZE);
4251     printf("testing signed exp golomb\n");
4252     for(i=0; i<COUNT; i++){
4253         START_TIMER
4254         set_se_golomb(&pb, i - COUNT/2);
4255         STOP_TIMER("set_se_golomb");
4256     }
4257     flush_put_bits(&pb);
4258     
4259     init_get_bits(&gb, temp, 8*SIZE);
4260     for(i=0; i<COUNT; i++){
4261         int j, s;
4262         
4263         s= show_bits(&gb, 24);
4264         
4265         START_TIMER
4266         j= get_se_golomb(&gb);
4267         if(j != i - COUNT/2){
4268             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4269 //            return -1;
4270         }
4271         STOP_TIMER("get_se_golomb");
4272     }
4273
4274     printf("testing 4x4 (I)DCT\n");
4275     
4276     DCTELEM block[16];
4277     uint8_t src[16], ref[16];
4278     uint64_t error= 0, max_error=0;
4279
4280     for(i=0; i<COUNT; i++){
4281         int j;
4282 //        printf("%d %d %d\n", r1, r2, (r2-r1)*16);
4283         for(j=0; j<16; j++){
4284             ref[j]= random()%255;
4285             src[j]= random()%255;
4286         }
4287
4288         h264_diff_dct_c(block, src, ref, 4);
4289         
4290         //normalize
4291         for(j=0; j<16; j++){
4292 //            printf("%d ", block[j]);
4293             block[j]= block[j]*4;
4294             if(j&1) block[j]= (block[j]*4 + 2)/5;
4295             if(j&4) block[j]= (block[j]*4 + 2)/5;
4296         }
4297 //        printf("\n");
4298         
4299         h264_add_idct_c(ref, block, 4);
4300 /*        for(j=0; j<16; j++){
4301             printf("%d ", ref[j]);
4302         }
4303         printf("\n");*/
4304             
4305         for(j=0; j<16; j++){
4306             int diff= ABS(src[j] - ref[j]);
4307             
4308             error+= diff*diff;
4309             max_error= FFMAX(max_error, diff);
4310         }
4311     }
4312     printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
4313 #if 0
4314     printf("testing quantizer\n");
4315     for(qp=0; qp<52; qp++){
4316         for(i=0; i<16; i++)
4317             src1_block[i]= src2_block[i]= random()%255;
4318         
4319     }
4320 #endif
4321     printf("Testing NAL layer\n");
4322     
4323     uint8_t bitstream[COUNT];
4324     uint8_t nal[COUNT*2];
4325     H264Context h;
4326     memset(&h, 0, sizeof(H264Context));
4327     
4328     for(i=0; i<COUNT; i++){
4329         int zeros= i;
4330         int nal_length;
4331         int consumed;
4332         int out_length;
4333         uint8_t *out;
4334         int j;
4335         
4336         for(j=0; j<COUNT; j++){
4337             bitstream[j]= (random() % 255) + 1;
4338         }
4339         
4340         for(j=0; j<zeros; j++){
4341             int pos= random() % COUNT;
4342             while(bitstream[pos] == 0){
4343                 pos++;
4344                 pos %= COUNT;
4345             }
4346             bitstream[pos]=0;
4347         }
4348         
4349         START_TIMER
4350         
4351         nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
4352         if(nal_length<0){
4353             printf("encoding failed\n");
4354             return -1;
4355         }
4356         
4357         out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
4358
4359         STOP_TIMER("NAL")
4360         
4361         if(out_length != COUNT){
4362             printf("incorrect length %d %d\n", out_length, COUNT);
4363             return -1;
4364         }
4365         
4366         if(consumed != nal_length){
4367             printf("incorrect consumed length %d %d\n", nal_length, consumed);
4368             return -1;
4369         }
4370         
4371         if(memcmp(bitstream, out, COUNT)){
4372             printf("missmatch\n");
4373             return -1;
4374         }
4375     }
4376     
4377     printf("Testing RBSP\n");
4378     
4379     
4380     return 0;
4381 }
4382 #endif
4383
4384
4385 static int decode_end(AVCodecContext *avctx)
4386 {
4387     H264Context *h = avctx->priv_data;
4388     MpegEncContext *s = &h->s;
4389     
4390     free_tables(h); //FIXME cleanup init stuff perhaps
4391     MPV_common_end(s);
4392
4393 //    memset(h, 0, sizeof(H264Context));
4394         
4395     return 0;
4396 }
4397
4398
4399 AVCodec h264_decoder = {
4400     "h264",
4401     CODEC_TYPE_VIDEO,
4402     CODEC_ID_H264,
4403     sizeof(H264Context),
4404     decode_init,
4405     NULL,
4406     decode_end,
4407     decode_frame,
4408     /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED,
4409 };
4410
4411 #include "svq3.c"