]> git.sesse.net Git - ffmpeg/blob - libavcodec/h264.c
bitstream changes to match JM7.2
[ffmpeg] / libavcodec / h264.c
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  */
20  
21 /**
22  * @file h264.c
23  * H.264 / AVC / MPEG4 part10 codec.
24  * @author Michael Niedermayer <michaelni@gmx.at>
25  */
26
27 #include "common.h"
28 #include "dsputil.h"
29 #include "avcodec.h"
30 #include "mpegvideo.h"
31 #include "h264data.h"
32 #include "golomb.h"
33
34 #undef NDEBUG
35 #include <assert.h>
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_isnt_initalized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX   25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS           8
45 #define TOTAL_ZEROS_VLC_BITS           9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS                   3
48 #define RUN7_VLC_BITS                  6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 /**
56  * Sequence parameter set
57  */
58 typedef struct SPS{
59     
60     int profile_idc;
61     int level_idc;
62     int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
63     int poc_type;                      ///< pic_order_cnt_type
64     int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
65     int delta_pic_order_always_zero_flag;
66     int offset_for_non_ref_pic;
67     int offset_for_top_to_bottom_field;
68     int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
69     int ref_frame_count;               ///< num_ref_frames
70     int gaps_in_frame_num_allowed_flag;
71     int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
72     int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
73     int frame_mbs_only_flag;
74     int mb_aff;                        ///<mb_adaptive_frame_field_flag
75     int direct_8x8_inference_flag;
76     int crop;                   ///< frame_cropping_flag
77     int crop_left;              ///< frame_cropping_rect_left_offset
78     int crop_right;             ///< frame_cropping_rect_right_offset
79     int crop_top;               ///< frame_cropping_rect_top_offset
80     int crop_bottom;            ///< frame_cropping_rect_bottom_offset
81     int vui_parameters_present_flag;
82     int sar_width;
83     int sar_height;
84     short offset_for_ref_frame[256]; //FIXME dyn aloc?
85 }SPS;
86
87 /**
88  * Picture parameter set
89  */
90 typedef struct PPS{
91     int sps_id;
92     int cabac;                  ///< entropy_coding_mode_flag
93     int pic_order_present;      ///< pic_order_present_flag
94     int slice_group_count;      ///< num_slice_groups_minus1 + 1
95     int mb_slice_group_map_type;
96     int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
97     int weighted_pred;          ///< weighted_pred_flag
98     int weighted_bipred_idc;
99     int init_qp;                ///< pic_init_qp_minus26 + 26
100     int init_qs;                ///< pic_init_qs_minus26 + 26
101     int chroma_qp_index_offset;
102     int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
103     int constrained_intra_pred; ///< constrained_intra_pred_flag
104     int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
105 }PPS;
106
107 /**
108  * Memory management control operation opcode.
109  */
110 typedef enum MMCOOpcode{
111     MMCO_END=0,
112     MMCO_SHORT2UNUSED,
113     MMCO_LONG2UNUSED,
114     MMCO_SHORT2LONG,
115     MMCO_SET_MAX_LONG,
116     MMCO_RESET, 
117     MMCO_LONG,
118 } MMCOOpcode;
119
120 /**
121  * Memory management control operation.
122  */
123 typedef struct MMCO{
124     MMCOOpcode opcode;
125     int short_frame_num;
126     int long_index;
127 } MMCO;
128
129 /**
130  * H264Context
131  */
132 typedef struct H264Context{
133     MpegEncContext s;
134     int nal_ref_idc;    
135     int nal_unit_type;
136 #define NAL_SLICE               1
137 #define NAL_DPA                 2
138 #define NAL_DPB                 3
139 #define NAL_DPC                 4
140 #define NAL_IDR_SLICE           5
141 #define NAL_SEI                 6
142 #define NAL_SPS                 7
143 #define NAL_PPS                 8
144 #define NAL_PICTURE_DELIMITER   9
145 #define NAL_FILTER_DATA         10
146     uint8_t *rbsp_buffer;
147     int rbsp_buffer_size;
148
149     int chroma_qp; //QPc
150
151     int prev_mb_skiped; //FIXME remove (IMHO not used)
152
153     //prediction stuff
154     int chroma_pred_mode;
155     int intra16x16_pred_mode;
156     
157     int8_t intra4x4_pred_mode_cache[5*8];
158     int8_t (*intra4x4_pred_mode)[8];
159     void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
160     void (*pred8x8  [4+3])(uint8_t *src, int stride);
161     void (*pred16x16[4+3])(uint8_t *src, int stride);
162     unsigned int topleft_samples_available;
163     unsigned int top_samples_available;
164     unsigned int topright_samples_available;
165     unsigned int left_samples_available;
166
167     /**
168      * non zero coeff count cache.
169      * is 64 if not available.
170      */
171     uint8_t non_zero_count_cache[6*8];
172     uint8_t (*non_zero_count)[16];
173
174     /**
175      * Motion vector cache.
176      */
177     int16_t mv_cache[2][5*8][2];
178     int8_t ref_cache[2][5*8];
179 #define LIST_NOT_USED -1 //FIXME rename?
180 #define PART_NOT_AVAILABLE -2
181     
182     /**
183      * is 1 if the specific list MV&references are set to 0,0,-2.
184      */
185     int mv_cache_clean[2];
186
187     int block_offset[16+8];
188     int chroma_subblock_offset[16]; //FIXME remove
189     
190     uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
191     uint16_t *mb2b8_xy;
192     int b_stride;
193     int b8_stride;
194
195     int halfpel_flag;
196     int thirdpel_flag;
197
198     int unknown_svq3_flag;
199     int next_slice_index;
200
201     SPS sps_buffer[MAX_SPS_COUNT];
202     SPS sps; ///< current sps
203     
204     PPS pps_buffer[MAX_PPS_COUNT];
205     /**
206      * current pps
207      */
208     PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
209
210     int slice_num;
211     uint8_t *slice_table_base;
212     uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
213     int slice_type;
214     int slice_type_fixed;
215     
216     //interlacing specific flags
217     int mb_field_decoding_flag;
218     
219     int sub_mb_type[4];
220     
221     //POC stuff
222     int poc_lsb;
223     int poc_msb;
224     int delta_poc_bottom;
225     int delta_poc[2];
226     int frame_num;
227     int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
228     int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
229     int frame_num_offset;         ///< for POC type 2
230     int prev_frame_num_offset;    ///< for POC type 2
231     int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
232
233     /**
234      * frame_num for frames or 2*frame_num for field pics.
235      */
236     int curr_pic_num;
237     
238     /**
239      * max_frame_num or 2*max_frame_num for field pics.
240      */
241     int max_pic_num;
242
243     //Weighted pred stuff
244     int luma_log2_weight_denom;
245     int chroma_log2_weight_denom;
246     int luma_weight[2][16];
247     int luma_offset[2][16];
248     int chroma_weight[2][16][2];
249     int chroma_offset[2][16][2];
250    
251     //deblock
252     int disable_deblocking_filter_idc;
253     int slice_alpha_c0_offset_div2;
254     int slice_beta_offset_div2;
255      
256     int redundant_pic_count;
257     
258     int direct_spatial_mv_pred;
259
260     /**
261      * num_ref_idx_l0/1_active_minus1 + 1
262      */
263     int ref_count[2];// FIXME split for AFF
264     Picture *short_ref[16];
265     Picture *long_ref[16];
266     Picture default_ref_list[2][32];
267     Picture ref_list[2][32]; //FIXME size?
268     Picture field_ref_list[2][32]; //FIXME size?
269     
270     /**
271      * memory management control operations buffer.
272      */
273     MMCO mmco[MAX_MMCO_COUNT];
274     int mmco_index;
275     
276     int long_ref_count;  ///< number of actual long term references
277     int short_ref_count; ///< number of actual short term references
278     
279     //data partitioning
280     GetBitContext intra_gb;
281     GetBitContext inter_gb;
282     GetBitContext *intra_gb_ptr;
283     GetBitContext *inter_gb_ptr;
284     
285     DCTELEM mb[16*24] __align8;
286 }H264Context;
287
288 static VLC coeff_token_vlc[4];
289 static VLC chroma_dc_coeff_token_vlc;
290
291 static VLC total_zeros_vlc[15];
292 static VLC chroma_dc_total_zeros_vlc[3];
293
294 static VLC run_vlc[6];
295 static VLC run7_vlc;
296
297 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
298 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
299
300 static inline uint32_t pack16to32(int a, int b){
301 #ifdef WORDS_BIGENDIAN
302    return (b&0xFFFF) + (a<<16);
303 #else
304    return (a&0xFFFF) + (b<<16);
305 #endif
306 }
307
308 /**
309  * fill a rectangle.
310  * @param h height of the recatangle, should be a constant
311  * @param w width of the recatangle, should be a constant
312  * @param size the size of val (1 or 4), should be a constant
313  */
314 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
315     uint8_t *p= (uint8_t*)vp;
316     assert(size==1 || size==4);
317     
318     w      *= size;
319     stride *= size;
320     
321 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
322     if(w==2 && h==2){
323         *(uint16_t*)(p + 0)=
324         *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
325     }else if(w==2 && h==4){
326         *(uint16_t*)(p + 0*stride)=
327         *(uint16_t*)(p + 1*stride)=
328         *(uint16_t*)(p + 2*stride)=
329         *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
330     }else if(w==4 && h==1){
331         *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
332     }else if(w==4 && h==2){
333         *(uint32_t*)(p + 0*stride)=
334         *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
335     }else if(w==4 && h==4){
336         *(uint32_t*)(p + 0*stride)=
337         *(uint32_t*)(p + 1*stride)=
338         *(uint32_t*)(p + 2*stride)=
339         *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
340     }else if(w==8 && h==1){
341         *(uint32_t*)(p + 0)=
342         *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
343     }else if(w==8 && h==2){
344         *(uint32_t*)(p + 0 + 0*stride)=
345         *(uint32_t*)(p + 4 + 0*stride)=
346         *(uint32_t*)(p + 0 + 1*stride)=
347         *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
348     }else if(w==8 && h==4){
349         *(uint64_t*)(p + 0*stride)=
350         *(uint64_t*)(p + 1*stride)=
351         *(uint64_t*)(p + 2*stride)=
352         *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
353     }else if(w==16 && h==2){
354         *(uint64_t*)(p + 0+0*stride)=
355         *(uint64_t*)(p + 8+0*stride)=
356         *(uint64_t*)(p + 0+1*stride)=
357         *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
358     }else if(w==16 && h==4){
359         *(uint64_t*)(p + 0+0*stride)=
360         *(uint64_t*)(p + 8+0*stride)=
361         *(uint64_t*)(p + 0+1*stride)=
362         *(uint64_t*)(p + 8+1*stride)=
363         *(uint64_t*)(p + 0+2*stride)=
364         *(uint64_t*)(p + 8+2*stride)=
365         *(uint64_t*)(p + 0+3*stride)=
366         *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
367     }else
368         assert(0);
369 }
370
371 static inline void fill_caches(H264Context *h, int mb_type){
372     MpegEncContext * const s = &h->s;
373     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
374     int topleft_xy, top_xy, topright_xy, left_xy[2];
375     int topleft_type, top_type, topright_type, left_type[2];
376     int left_block[4];
377     int i;
378
379     //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
380     
381     if(h->sps.mb_aff){
382     //FIXME
383     }else{
384         topleft_xy = mb_xy-1 - s->mb_stride;
385         top_xy     = mb_xy   - s->mb_stride;
386         topright_xy= mb_xy+1 - s->mb_stride;
387         left_xy[0]   = mb_xy-1;
388         left_xy[1]   = mb_xy-1;
389         left_block[0]= 0;
390         left_block[1]= 1;
391         left_block[2]= 2;
392         left_block[3]= 3;
393     }
394
395     topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
396     top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
397     topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
398     left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
399     left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
400
401     if(IS_INTRA(mb_type)){
402         h->topleft_samples_available= 
403         h->top_samples_available= 
404         h->left_samples_available= 0xFFFF;
405         h->topright_samples_available= 0xEEEA;
406
407         if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
408             h->topleft_samples_available= 0xB3FF;
409             h->top_samples_available= 0x33FF;
410             h->topright_samples_available= 0x26EA;
411         }
412         for(i=0; i<2; i++){
413             if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
414                 h->topleft_samples_available&= 0xDF5F;
415                 h->left_samples_available&= 0x5F5F;
416             }
417         }
418         
419         if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
420             h->topleft_samples_available&= 0x7FFF;
421         
422         if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
423             h->topright_samples_available&= 0xFBFF;
424     
425         if(IS_INTRA4x4(mb_type)){
426             if(IS_INTRA4x4(top_type)){
427                 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
428                 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
429                 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
430                 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
431             }else{
432                 int pred;
433                 if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
434                     pred= 2;
435                 else{
436                     pred= -1;
437                 }
438                 h->intra4x4_pred_mode_cache[4+8*0]=
439                 h->intra4x4_pred_mode_cache[5+8*0]=
440                 h->intra4x4_pred_mode_cache[6+8*0]=
441                 h->intra4x4_pred_mode_cache[7+8*0]= pred;
442             }
443             for(i=0; i<2; i++){
444                 if(IS_INTRA4x4(left_type[i])){
445                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
446                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
447                 }else{
448                     int pred;
449                     if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
450                         pred= 2;
451                     else{
452                         pred= -1;
453                     }
454                     h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
455                     h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
456                 }
457             }
458         }
459     }
460     
461     
462 /*
463 0 . T T. T T T T 
464 1 L . .L . . . . 
465 2 L . .L . . . . 
466 3 . T TL . . . . 
467 4 L . .L . . . . 
468 5 L . .. . . . . 
469 */
470 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
471     if(top_type){
472         h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
473         h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
474         h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
475         h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
476     
477         h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
478         h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
479     
480         h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
481         h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
482     }else{
483         h->non_zero_count_cache[4+8*0]=      
484         h->non_zero_count_cache[5+8*0]=
485         h->non_zero_count_cache[6+8*0]=
486         h->non_zero_count_cache[7+8*0]=
487     
488         h->non_zero_count_cache[1+8*0]=
489         h->non_zero_count_cache[2+8*0]=
490     
491         h->non_zero_count_cache[1+8*3]=
492         h->non_zero_count_cache[2+8*3]= 64;
493     }
494     
495     if(left_type[0]){
496         h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
497         h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
498         h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
499         h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
500     }else{
501         h->non_zero_count_cache[3+8*1]= 
502         h->non_zero_count_cache[3+8*2]= 
503         h->non_zero_count_cache[0+8*1]= 
504         h->non_zero_count_cache[0+8*4]= 64;
505     }
506     
507     if(left_type[1]){
508         h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
509         h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
510         h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
511         h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
512     }else{
513         h->non_zero_count_cache[3+8*3]= 
514         h->non_zero_count_cache[3+8*4]= 
515         h->non_zero_count_cache[0+8*2]= 
516         h->non_zero_count_cache[0+8*5]= 64;
517     }
518     
519 #if 1
520     if(IS_INTER(mb_type)){
521         int list;
522         for(list=0; list<2; list++){
523             if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
524                 /*if(!h->mv_cache_clean[list]){
525                     memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
526                     memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
527                     h->mv_cache_clean[list]= 1;
528                 }*/
529                 continue; //FIXME direct mode ...
530             }
531             h->mv_cache_clean[list]= 0;
532             
533             if(IS_INTER(topleft_type)){
534                 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
535                 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
536                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
537                 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
538             }else{
539                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
540                 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
541             }
542             
543             if(IS_INTER(top_type)){
544                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
545                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
546                 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
547                 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
548                 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
549                 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
550                 h->ref_cache[list][scan8[0] + 0 - 1*8]=
551                 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
552                 h->ref_cache[list][scan8[0] + 2 - 1*8]=
553                 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
554             }else{
555                 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
556                 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
557                 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
558                 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
559                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
560             }
561
562             if(IS_INTER(topright_type)){
563                 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
564                 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
565                 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
566                 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
567             }else{
568                 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
569                 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
570             }
571             
572             //FIXME unify cleanup or sth
573             if(IS_INTER(left_type[0])){
574                 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
575                 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
576                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
577                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
578                 h->ref_cache[list][scan8[0] - 1 + 0*8]= 
579                 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
580             }else{
581                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
582                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
583                 h->ref_cache[list][scan8[0] - 1 + 0*8]=
584                 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
585             }
586             
587             if(IS_INTER(left_type[1])){
588                 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
589                 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
590                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
591                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
592                 h->ref_cache[list][scan8[0] - 1 + 2*8]= 
593                 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
594             }else{
595                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
596                 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
597                 h->ref_cache[list][scan8[0] - 1 + 2*8]=
598                 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
599             }
600
601             h->ref_cache[list][scan8[5 ]+1] = 
602             h->ref_cache[list][scan8[7 ]+1] = 
603             h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
604             h->ref_cache[list][scan8[4 ]] = 
605             h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
606             *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
607             *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
608             *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
609             *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
610             *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
611         }
612 //FIXME
613
614     }
615 #endif
616 }
617
618 static inline void write_back_intra_pred_mode(H264Context *h){
619     MpegEncContext * const s = &h->s;
620     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
621
622     h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
623     h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
624     h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
625     h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
626     h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
627     h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
628     h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
629 }
630
631 /**
632  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
633  */
634 static inline int check_intra4x4_pred_mode(H264Context *h){
635     MpegEncContext * const s = &h->s;
636     static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
637     static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
638     int i;
639     
640     if(!(h->top_samples_available&0x8000)){
641         for(i=0; i<4; i++){
642             int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
643             if(status<0){
644                 fprintf(stderr, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
645                 return -1;
646             } else if(status){
647                 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
648             }
649         }
650     }
651     
652     if(!(h->left_samples_available&0x8000)){
653         for(i=0; i<4; i++){
654             int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
655             if(status<0){
656                 fprintf(stderr, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
657                 return -1;
658             } else if(status){
659                 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
660             }
661         }
662     }
663
664     return 0;
665 } //FIXME cleanup like next
666
667 /**
668  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
669  */
670 static inline int check_intra_pred_mode(H264Context *h, int mode){
671     MpegEncContext * const s = &h->s;
672     static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
673     static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
674     
675     if(!(h->top_samples_available&0x8000)){
676         mode= top[ mode ];
677         if(mode<0){
678             fprintf(stderr, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
679             return -1;
680         }
681     }
682     
683     if(!(h->left_samples_available&0x8000)){
684         mode= left[ mode ];
685         if(mode<0){
686             fprintf(stderr, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
687             return -1;
688         } 
689     }
690
691     return mode;
692 }
693
694 /**
695  * gets the predicted intra4x4 prediction mode.
696  */
697 static inline int pred_intra_mode(H264Context *h, int n){
698     const int index8= scan8[n];
699     const int left= h->intra4x4_pred_mode_cache[index8 - 1];
700     const int top = h->intra4x4_pred_mode_cache[index8 - 8];
701     const int min= FFMIN(left, top);
702
703     tprintf("mode:%d %d min:%d\n", left ,top, min);
704
705     if(min<0) return DC_PRED;
706     else      return min;
707 }
708
709 static inline void write_back_non_zero_count(H264Context *h){
710     MpegEncContext * const s = &h->s;
711     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
712
713     h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
714     h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
715     h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
716     h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
717     h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
718     h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
719     h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
720     
721     h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
722     h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
723     h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
724
725     h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
726     h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
727     h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
728 }
729
730 /**
731  * gets the predicted number of non zero coefficients.
732  * @param n block index
733  */
734 static inline int pred_non_zero_count(H264Context *h, int n){
735     const int index8= scan8[n];
736     const int left= h->non_zero_count_cache[index8 - 1];
737     const int top = h->non_zero_count_cache[index8 - 8];
738     int i= left + top;
739     
740     if(i<64) i= (i+1)>>1;
741
742     tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
743
744     return i&31;
745 }
746
747 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
748     const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
749
750     if(topright_ref != PART_NOT_AVAILABLE){
751         *C= h->mv_cache[list][ i - 8 + part_width ];
752         return topright_ref;
753     }else{
754         tprintf("topright MV not available\n");
755
756         *C= h->mv_cache[list][ i - 8 - 1 ];
757         return h->ref_cache[list][ i - 8 - 1 ];
758     }
759 }
760
761 /**
762  * gets the predicted MV.
763  * @param n the block index
764  * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
765  * @param mx the x component of the predicted motion vector
766  * @param my the y component of the predicted motion vector
767  */
768 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
769     const int index8= scan8[n];
770     const int top_ref=      h->ref_cache[list][ index8 - 8 ];
771     const int left_ref=     h->ref_cache[list][ index8 - 1 ];
772     const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
773     const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
774     const int16_t * C;
775     int diagonal_ref, match_count;
776
777     assert(part_width==1 || part_width==2 || part_width==4);
778
779 /* mv_cache
780   B . . A T T T T 
781   U . . L . . , .
782   U . . L . . . .
783   U . . L . . , .
784   . . . L . . . .
785 */
786
787     diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
788     match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
789     if(match_count > 1){ //most common
790         *mx= mid_pred(A[0], B[0], C[0]);
791         *my= mid_pred(A[1], B[1], C[1]);
792     }else if(match_count==1){
793         if(left_ref==ref){
794             *mx= A[0];
795             *my= A[1];        
796         }else if(top_ref==ref){
797             *mx= B[0];
798             *my= B[1];        
799         }else{
800             *mx= C[0];
801             *my= C[1];        
802         }
803     }else{
804         if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
805             *mx= A[0];
806             *my= A[1];        
807         }else{
808             *mx= mid_pred(A[0], B[0], C[0]);
809             *my= mid_pred(A[1], B[1], C[1]);
810         }
811     }
812         
813     tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
814 }
815
816 /**
817  * gets the directionally predicted 16x8 MV.
818  * @param n the block index
819  * @param mx the x component of the predicted motion vector
820  * @param my the y component of the predicted motion vector
821  */
822 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
823     if(n==0){
824         const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
825         const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
826
827         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
828         
829         if(top_ref == ref){
830             *mx= B[0];
831             *my= B[1];
832             return;
833         }
834     }else{
835         const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
836         const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
837         
838         tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
839
840         if(left_ref == ref){
841             *mx= A[0];
842             *my= A[1];
843             return;
844         }
845     }
846
847     //RARE
848     pred_motion(h, n, 4, list, ref, mx, my);
849 }
850
851 /**
852  * gets the directionally predicted 8x16 MV.
853  * @param n the block index
854  * @param mx the x component of the predicted motion vector
855  * @param my the y component of the predicted motion vector
856  */
857 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
858     if(n==0){
859         const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
860         const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
861         
862         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
863
864         if(left_ref == ref){
865             *mx= A[0];
866             *my= A[1];
867             return;
868         }
869     }else{
870         const int16_t * C;
871         int diagonal_ref;
872
873         diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
874         
875         tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
876
877         if(diagonal_ref == ref){ 
878             *mx= C[0];
879             *my= C[1];
880             return;
881         }
882     }
883
884     //RARE
885     pred_motion(h, n, 2, list, ref, mx, my);
886 }
887
888 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
889     const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
890     const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
891
892     tprintf("pred_pskip: (%d) (%d) at %2d %2d", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
893
894     if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
895        || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
896        || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
897        
898         *mx = *my = 0;
899         return;
900     }
901         
902     pred_motion(h, 0, 4, 0, 0, mx, my);
903
904     return;
905 }
906
907 static inline void write_back_motion(H264Context *h, int mb_type){
908     MpegEncContext * const s = &h->s;
909     const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
910     const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
911     int list;
912
913     for(list=0; list<2; list++){
914         int y;
915         if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
916             if(1){ //FIXME skip or never read if mb_type doesnt use it
917                 for(y=0; y<4; y++){
918                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
919                     *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
920                 }
921                 for(y=0; y<2; y++){
922                     *(uint16_t*)s->current_picture.motion_val[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
923                 }
924             }
925             continue; //FIXME direct mode ...
926         }
927         
928         for(y=0; y<4; y++){
929             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
930             *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
931         }
932         for(y=0; y<2; y++){
933             s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
934             s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
935         }
936     }
937 }
938
939 /**
940  * Decodes a network abstraction layer unit.
941  * @param consumed is the number of bytes used as input
942  * @param length is the length of the array
943  * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
944  * @returns decoded bytes, might be src+1 if no escapes 
945  */
946 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
947     int i, si, di;
948     uint8_t *dst;
949
950 //    src[0]&0x80;              //forbidden bit
951     h->nal_ref_idc= src[0]>>5;
952     h->nal_unit_type= src[0]&0x1F;
953
954     src++; length--;
955 #if 0    
956     for(i=0; i<length; i++)
957         printf("%2X ", src[i]);
958 #endif
959     for(i=0; i+1<length; i+=2){
960         if(src[i]) continue;
961         if(i>0 && src[i-1]==0) i--;
962         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
963             if(src[i+2]!=3){
964                 /* startcode, so we must be past the end */
965                 length=i;
966             }
967             break;
968         }
969     }
970
971     if(i>=length-1){ //no escaped 0
972         *dst_length= length;
973         *consumed= length+1; //+1 for the header
974         return src; 
975     }
976
977     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
978     dst= h->rbsp_buffer;
979
980 //printf("deoding esc\n");
981     si=di=0;
982     while(si<length){ 
983         //remove escapes (very rare 1:2^22)
984         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
985             if(src[si+2]==3){ //escape
986                 dst[di++]= 0;
987                 dst[di++]= 0;
988                 si+=3;
989             }else //next start code
990                 break;
991         }
992
993         dst[di++]= src[si++];
994     }
995
996     *dst_length= di;
997     *consumed= si + 1;//+1 for the header
998 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
999     return dst;
1000 }
1001
1002 /**
1003  * @param src the data which should be escaped
1004  * @param dst the target buffer, dst+1 == src is allowed as a special case
1005  * @param length the length of the src data
1006  * @param dst_length the length of the dst array
1007  * @returns length of escaped data in bytes or -1 if an error occured
1008  */
1009 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1010     int i, escape_count, si, di;
1011     uint8_t *temp;
1012     
1013     assert(length>=0);
1014     assert(dst_length>0);
1015     
1016     dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1017
1018     if(length==0) return 1;
1019
1020     escape_count= 0;
1021     for(i=0; i<length; i+=2){
1022         if(src[i]) continue;
1023         if(i>0 && src[i-1]==0) 
1024             i--;
1025         if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1026             escape_count++;
1027             i+=2;
1028         }
1029     }
1030     
1031     if(escape_count==0){ 
1032         if(dst+1 != src)
1033             memcpy(dst+1, src, length);
1034         return length + 1;
1035     }
1036     
1037     if(length + escape_count + 1> dst_length)
1038         return -1;
1039
1040     //this should be damn rare (hopefully)
1041
1042     h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1043     temp= h->rbsp_buffer;
1044 //printf("encoding esc\n");
1045     
1046     si= 0;
1047     di= 0;
1048     while(si < length){
1049         if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1050             temp[di++]= 0; si++;
1051             temp[di++]= 0; si++;
1052             temp[di++]= 3; 
1053             temp[di++]= src[si++];
1054         }
1055         else
1056             temp[di++]= src[si++];
1057     }
1058     memcpy(dst+1, temp, length+escape_count);
1059     
1060     assert(di == length+escape_count);
1061     
1062     return di + 1;
1063 }
1064
1065 /**
1066  * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1067  */
1068 static void encode_rbsp_trailing(PutBitContext *pb){
1069     int length;
1070     put_bits(pb, 1, 1);
1071     length= (-get_bit_count(pb))&7;
1072     if(length) put_bits(pb, length, 0);
1073 }
1074
1075 /**
1076  * identifies the exact end of the bitstream
1077  * @return the length of the trailing, or 0 if damaged
1078  */
1079 static int decode_rbsp_trailing(uint8_t *src){
1080     int v= *src;
1081     int r;
1082
1083     tprintf("rbsp trailing %X\n", v);
1084
1085     for(r=1; r<9; r++){
1086         if(v&1) return r;
1087         v>>=1;
1088     }
1089     return 0;
1090 }
1091
1092 /**
1093  * idct tranforms the 16 dc values and dequantize them.
1094  * @param qp quantization parameter
1095  */
1096 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1097     const int qmul= dequant_coeff[qp][0];
1098 #define stride 16
1099     int i;
1100     int temp[16]; //FIXME check if this is a good idea
1101     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1102     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1103
1104 //memset(block, 64, 2*256);
1105 //return;
1106     for(i=0; i<4; i++){
1107         const int offset= y_offset[i];
1108         const int z0= block[offset+stride*0] + block[offset+stride*4];
1109         const int z1= block[offset+stride*0] - block[offset+stride*4];
1110         const int z2= block[offset+stride*1] - block[offset+stride*5];
1111         const int z3= block[offset+stride*1] + block[offset+stride*5];
1112
1113         temp[4*i+0]= z0+z3;
1114         temp[4*i+1]= z1+z2;
1115         temp[4*i+2]= z1-z2;
1116         temp[4*i+3]= z0-z3;
1117     }
1118
1119     for(i=0; i<4; i++){
1120         const int offset= x_offset[i];
1121         const int z0= temp[4*0+i] + temp[4*2+i];
1122         const int z1= temp[4*0+i] - temp[4*2+i];
1123         const int z2= temp[4*1+i] - temp[4*3+i];
1124         const int z3= temp[4*1+i] + temp[4*3+i];
1125
1126         block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1127         block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1128         block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1129         block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1130     }
1131 }
1132
1133 /**
1134  * dct tranforms the 16 dc values.
1135  * @param qp quantization parameter ??? FIXME
1136  */
1137 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1138 //    const int qmul= dequant_coeff[qp][0];
1139     int i;
1140     int temp[16]; //FIXME check if this is a good idea
1141     static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1142     static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1143
1144     for(i=0; i<4; i++){
1145         const int offset= y_offset[i];
1146         const int z0= block[offset+stride*0] + block[offset+stride*4];
1147         const int z1= block[offset+stride*0] - block[offset+stride*4];
1148         const int z2= block[offset+stride*1] - block[offset+stride*5];
1149         const int z3= block[offset+stride*1] + block[offset+stride*5];
1150
1151         temp[4*i+0]= z0+z3;
1152         temp[4*i+1]= z1+z2;
1153         temp[4*i+2]= z1-z2;
1154         temp[4*i+3]= z0-z3;
1155     }
1156
1157     for(i=0; i<4; i++){
1158         const int offset= x_offset[i];
1159         const int z0= temp[4*0+i] + temp[4*2+i];
1160         const int z1= temp[4*0+i] - temp[4*2+i];
1161         const int z2= temp[4*1+i] - temp[4*3+i];
1162         const int z3= temp[4*1+i] + temp[4*3+i];
1163
1164         block[stride*0 +offset]= (z0 + z3)>>1;
1165         block[stride*2 +offset]= (z1 + z2)>>1;
1166         block[stride*8 +offset]= (z1 - z2)>>1;
1167         block[stride*10+offset]= (z0 - z3)>>1;
1168     }
1169 }
1170 #undef xStride
1171 #undef stride
1172
1173 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1174     const int qmul= dequant_coeff[qp][0];
1175     const int stride= 16*2;
1176     const int xStride= 16;
1177     int a,b,c,d,e;
1178
1179     a= block[stride*0 + xStride*0];
1180     b= block[stride*0 + xStride*1];
1181     c= block[stride*1 + xStride*0];
1182     d= block[stride*1 + xStride*1];
1183
1184     e= a-b;
1185     a= a+b;
1186     b= c-d;
1187     c= c+d;
1188
1189     block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1190     block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1191     block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1192     block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1193 }
1194
1195 static void chroma_dc_dct_c(DCTELEM *block){
1196     const int stride= 16*2;
1197     const int xStride= 16;
1198     int a,b,c,d,e;
1199
1200     a= block[stride*0 + xStride*0];
1201     b= block[stride*0 + xStride*1];
1202     c= block[stride*1 + xStride*0];
1203     d= block[stride*1 + xStride*1];
1204
1205     e= a-b;
1206     a= a+b;
1207     b= c-d;
1208     c= c+d;
1209
1210     block[stride*0 + xStride*0]= (a+c);
1211     block[stride*0 + xStride*1]= (e+b);
1212     block[stride*1 + xStride*0]= (a-c);
1213     block[stride*1 + xStride*1]= (e-b);
1214 }
1215
1216 /**
1217  * gets the chroma qp.
1218  */
1219 static inline int get_chroma_qp(H264Context *h, int qscale){
1220     
1221     return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1222 }
1223
1224
1225 /**
1226  *
1227  */
1228 static void h264_add_idct_c(uint8_t *dst, DCTELEM *block, int stride){
1229     int i;
1230     uint8_t *cm = cropTbl + MAX_NEG_CROP;
1231
1232     block[0] += 32;
1233 #if 1
1234     for(i=0; i<4; i++){
1235         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1236         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1237         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1238         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1239
1240         block[i + 4*0]= z0 + z3;
1241         block[i + 4*1]= z1 + z2;
1242         block[i + 4*2]= z1 - z2;
1243         block[i + 4*3]= z0 - z3;
1244     }
1245
1246     for(i=0; i<4; i++){
1247         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1248         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1249         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1250         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1251
1252         dst[0 + i*stride]= cm[ dst[0 + i*stride] + ((z0 + z3) >> 6) ];
1253         dst[1 + i*stride]= cm[ dst[1 + i*stride] + ((z1 + z2) >> 6) ];
1254         dst[2 + i*stride]= cm[ dst[2 + i*stride] + ((z1 - z2) >> 6) ];
1255         dst[3 + i*stride]= cm[ dst[3 + i*stride] + ((z0 - z3) >> 6) ];
1256     }
1257 #else
1258     for(i=0; i<4; i++){
1259         const int z0=  block[0 + 4*i]     +  block[2 + 4*i];
1260         const int z1=  block[0 + 4*i]     -  block[2 + 4*i];
1261         const int z2= (block[1 + 4*i]>>1) -  block[3 + 4*i];
1262         const int z3=  block[1 + 4*i]     + (block[3 + 4*i]>>1);
1263
1264         block[0 + 4*i]= z0 + z3;
1265         block[1 + 4*i]= z1 + z2;
1266         block[2 + 4*i]= z1 - z2;
1267         block[3 + 4*i]= z0 - z3;
1268     }
1269
1270     for(i=0; i<4; i++){
1271         const int z0=  block[i + 4*0]     +  block[i + 4*2];
1272         const int z1=  block[i + 4*0]     -  block[i + 4*2];
1273         const int z2= (block[i + 4*1]>>1) -  block[i + 4*3];
1274         const int z3=  block[i + 4*1]     + (block[i + 4*3]>>1);
1275
1276         dst[i + 0*stride]= cm[ dst[i + 0*stride] + ((z0 + z3) >> 6) ];
1277         dst[i + 1*stride]= cm[ dst[i + 1*stride] + ((z1 + z2) >> 6) ];
1278         dst[i + 2*stride]= cm[ dst[i + 2*stride] + ((z1 - z2) >> 6) ];
1279         dst[i + 3*stride]= cm[ dst[i + 3*stride] + ((z0 - z3) >> 6) ];
1280     }
1281 #endif
1282 }
1283
1284 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1285     int i;
1286     //FIXME try int temp instead of block
1287     
1288     for(i=0; i<4; i++){
1289         const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1290         const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1291         const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1292         const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1293         const int z0= d0 + d3;
1294         const int z3= d0 - d3;
1295         const int z1= d1 + d2;
1296         const int z2= d1 - d2;
1297         
1298         block[0 + 4*i]=   z0 +   z1;
1299         block[1 + 4*i]= 2*z3 +   z2;
1300         block[2 + 4*i]=   z0 -   z1;
1301         block[3 + 4*i]=   z3 - 2*z2;
1302     }    
1303
1304     for(i=0; i<4; i++){
1305         const int z0= block[0*4 + i] + block[3*4 + i];
1306         const int z3= block[0*4 + i] - block[3*4 + i];
1307         const int z1= block[1*4 + i] + block[2*4 + i];
1308         const int z2= block[1*4 + i] - block[2*4 + i];
1309         
1310         block[0*4 + i]=   z0 +   z1;
1311         block[1*4 + i]= 2*z3 +   z2;
1312         block[2*4 + i]=   z0 -   z1;
1313         block[3*4 + i]=   z3 - 2*z2;
1314     }
1315 }
1316
1317 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1318 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1319 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1320     int i;
1321     const int * const quant_table= quant_coeff[qscale];
1322     const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1323     const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1324     const unsigned int threshold2= (threshold1<<1);
1325     int last_non_zero;
1326
1327     if(seperate_dc){
1328         if(qscale<=18){
1329             //avoid overflows
1330             const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1331             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1332             const unsigned int dc_threshold2= (dc_threshold1<<1);
1333
1334             int level= block[0]*quant_coeff[qscale+18][0];
1335             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1336                 if(level>0){
1337                     level= (dc_bias + level)>>(QUANT_SHIFT-2);
1338                     block[0]= level;
1339                 }else{
1340                     level= (dc_bias - level)>>(QUANT_SHIFT-2);
1341                     block[0]= -level;
1342                 }
1343 //                last_non_zero = i;
1344             }else{
1345                 block[0]=0;
1346             }
1347         }else{
1348             const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1349             const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1350             const unsigned int dc_threshold2= (dc_threshold1<<1);
1351
1352             int level= block[0]*quant_table[0];
1353             if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1354                 if(level>0){
1355                     level= (dc_bias + level)>>(QUANT_SHIFT+1);
1356                     block[0]= level;
1357                 }else{
1358                     level= (dc_bias - level)>>(QUANT_SHIFT+1);
1359                     block[0]= -level;
1360                 }
1361 //                last_non_zero = i;
1362             }else{
1363                 block[0]=0;
1364             }
1365         }
1366         last_non_zero= 0;
1367         i=1;
1368     }else{
1369         last_non_zero= -1;
1370         i=0;
1371     }
1372
1373     for(; i<16; i++){
1374         const int j= scantable[i];
1375         int level= block[j]*quant_table[j];
1376
1377 //        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1378 //           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1379         if(((unsigned)(level+threshold1))>threshold2){
1380             if(level>0){
1381                 level= (bias + level)>>QUANT_SHIFT;
1382                 block[j]= level;
1383             }else{
1384                 level= (bias - level)>>QUANT_SHIFT;
1385                 block[j]= -level;
1386             }
1387             last_non_zero = i;
1388         }else{
1389             block[j]=0;
1390         }
1391     }
1392
1393     return last_non_zero;
1394 }
1395
1396 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1397     const uint32_t a= ((uint32_t*)(src-stride))[0];
1398     ((uint32_t*)(src+0*stride))[0]= a;
1399     ((uint32_t*)(src+1*stride))[0]= a;
1400     ((uint32_t*)(src+2*stride))[0]= a;
1401     ((uint32_t*)(src+3*stride))[0]= a;
1402 }
1403
1404 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1405     ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1406     ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1407     ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1408     ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1409 }
1410
1411 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1412     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1413                    + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1414     
1415     ((uint32_t*)(src+0*stride))[0]= 
1416     ((uint32_t*)(src+1*stride))[0]= 
1417     ((uint32_t*)(src+2*stride))[0]= 
1418     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1419 }
1420
1421 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1422     const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1423     
1424     ((uint32_t*)(src+0*stride))[0]= 
1425     ((uint32_t*)(src+1*stride))[0]= 
1426     ((uint32_t*)(src+2*stride))[0]= 
1427     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1428 }
1429
1430 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1431     const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1432     
1433     ((uint32_t*)(src+0*stride))[0]= 
1434     ((uint32_t*)(src+1*stride))[0]= 
1435     ((uint32_t*)(src+2*stride))[0]= 
1436     ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1437 }
1438
1439 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1440     ((uint32_t*)(src+0*stride))[0]= 
1441     ((uint32_t*)(src+1*stride))[0]= 
1442     ((uint32_t*)(src+2*stride))[0]= 
1443     ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1444 }
1445
1446
1447 #define LOAD_TOP_RIGHT_EDGE\
1448     const int t4= topright[0];\
1449     const int t5= topright[1];\
1450     const int t6= topright[2];\
1451     const int t7= topright[3];\
1452
1453 #define LOAD_LEFT_EDGE\
1454     const int l0= src[-1+0*stride];\
1455     const int l1= src[-1+1*stride];\
1456     const int l2= src[-1+2*stride];\
1457     const int l3= src[-1+3*stride];\
1458
1459 #define LOAD_TOP_EDGE\
1460     const int t0= src[ 0-1*stride];\
1461     const int t1= src[ 1-1*stride];\
1462     const int t2= src[ 2-1*stride];\
1463     const int t3= src[ 3-1*stride];\
1464
1465 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1466     const int lt= src[-1-1*stride];
1467     LOAD_TOP_EDGE
1468     LOAD_LEFT_EDGE
1469
1470     src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1471     src[0+2*stride]=
1472     src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1473     src[0+1*stride]=
1474     src[1+2*stride]=
1475     src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1476     src[0+0*stride]=
1477     src[1+1*stride]=
1478     src[2+2*stride]=
1479     src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1480     src[1+0*stride]=
1481     src[2+1*stride]=
1482     src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1483     src[2+0*stride]=
1484     src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1485     src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1486 }
1487
1488 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1489     LOAD_TOP_EDGE    
1490     LOAD_TOP_RIGHT_EDGE    
1491 //    LOAD_LEFT_EDGE    
1492
1493     src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1494     src[1+0*stride]=
1495     src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1496     src[2+0*stride]=
1497     src[1+1*stride]=
1498     src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1499     src[3+0*stride]=
1500     src[2+1*stride]=
1501     src[1+2*stride]=
1502     src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1503     src[3+1*stride]=
1504     src[2+2*stride]=
1505     src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1506     src[3+2*stride]=
1507     src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1508     src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1509 }
1510
1511 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1512     const int lt= src[-1-1*stride];
1513     LOAD_TOP_EDGE    
1514     LOAD_LEFT_EDGE    
1515     const __attribute__((unused)) int unu= l3;
1516
1517     src[0+0*stride]=
1518     src[1+2*stride]=(lt + t0 + 1)>>1;
1519     src[1+0*stride]=
1520     src[2+2*stride]=(t0 + t1 + 1)>>1;
1521     src[2+0*stride]=
1522     src[3+2*stride]=(t1 + t2 + 1)>>1;
1523     src[3+0*stride]=(t2 + t3 + 1)>>1;
1524     src[0+1*stride]=
1525     src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1526     src[1+1*stride]=
1527     src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1528     src[2+1*stride]=
1529     src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1530     src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1531     src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1532     src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1533 }
1534
1535 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1536     LOAD_TOP_EDGE    
1537     LOAD_TOP_RIGHT_EDGE    
1538     const __attribute__((unused)) int unu= t7;
1539
1540     src[0+0*stride]=(t0 + t1 + 1)>>1;
1541     src[1+0*stride]=
1542     src[0+2*stride]=(t1 + t2 + 1)>>1;
1543     src[2+0*stride]=
1544     src[1+2*stride]=(t2 + t3 + 1)>>1;
1545     src[3+0*stride]=
1546     src[2+2*stride]=(t3 + t4+ 1)>>1;
1547     src[3+2*stride]=(t4 + t5+ 1)>>1;
1548     src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1549     src[1+1*stride]=
1550     src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1551     src[2+1*stride]=
1552     src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1553     src[3+1*stride]=
1554     src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1555     src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1556 }
1557
1558 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1559     LOAD_LEFT_EDGE    
1560
1561     src[0+0*stride]=(l0 + l1 + 1)>>1;
1562     src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1563     src[2+0*stride]=
1564     src[0+1*stride]=(l1 + l2 + 1)>>1;
1565     src[3+0*stride]=
1566     src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1567     src[2+1*stride]=
1568     src[0+2*stride]=(l2 + l3 + 1)>>1;
1569     src[3+1*stride]=
1570     src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1571     src[3+2*stride]=
1572     src[1+3*stride]=
1573     src[0+3*stride]=
1574     src[2+2*stride]=
1575     src[2+3*stride]=
1576     src[3+3*stride]=l3;
1577 }
1578     
1579 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1580     const int lt= src[-1-1*stride];
1581     LOAD_TOP_EDGE    
1582     LOAD_LEFT_EDGE    
1583     const __attribute__((unused)) int unu= t3;
1584
1585     src[0+0*stride]=
1586     src[2+1*stride]=(lt + l0 + 1)>>1;
1587     src[1+0*stride]=
1588     src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1589     src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1590     src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1591     src[0+1*stride]=
1592     src[2+2*stride]=(l0 + l1 + 1)>>1;
1593     src[1+1*stride]=
1594     src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1595     src[0+2*stride]=
1596     src[2+3*stride]=(l1 + l2+ 1)>>1;
1597     src[1+2*stride]=
1598     src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1599     src[0+3*stride]=(l2 + l3 + 1)>>1;
1600     src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1601 }
1602
1603 static void pred16x16_vertical_c(uint8_t *src, int stride){
1604     int i;
1605     const uint32_t a= ((uint32_t*)(src-stride))[0];
1606     const uint32_t b= ((uint32_t*)(src-stride))[1];
1607     const uint32_t c= ((uint32_t*)(src-stride))[2];
1608     const uint32_t d= ((uint32_t*)(src-stride))[3];
1609     
1610     for(i=0; i<16; i++){
1611         ((uint32_t*)(src+i*stride))[0]= a;
1612         ((uint32_t*)(src+i*stride))[1]= b;
1613         ((uint32_t*)(src+i*stride))[2]= c;
1614         ((uint32_t*)(src+i*stride))[3]= d;
1615     }
1616 }
1617
1618 static void pred16x16_horizontal_c(uint8_t *src, int stride){
1619     int i;
1620
1621     for(i=0; i<16; i++){
1622         ((uint32_t*)(src+i*stride))[0]=
1623         ((uint32_t*)(src+i*stride))[1]=
1624         ((uint32_t*)(src+i*stride))[2]=
1625         ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1626     }
1627 }
1628
1629 static void pred16x16_dc_c(uint8_t *src, int stride){
1630     int i, dc=0;
1631
1632     for(i=0;i<16; i++){
1633         dc+= src[-1+i*stride];
1634     }
1635     
1636     for(i=0;i<16; i++){
1637         dc+= src[i-stride];
1638     }
1639
1640     dc= 0x01010101*((dc + 16)>>5);
1641
1642     for(i=0; i<16; i++){
1643         ((uint32_t*)(src+i*stride))[0]=
1644         ((uint32_t*)(src+i*stride))[1]=
1645         ((uint32_t*)(src+i*stride))[2]=
1646         ((uint32_t*)(src+i*stride))[3]= dc;
1647     }
1648 }
1649
1650 static void pred16x16_left_dc_c(uint8_t *src, int stride){
1651     int i, dc=0;
1652
1653     for(i=0;i<16; i++){
1654         dc+= src[-1+i*stride];
1655     }
1656     
1657     dc= 0x01010101*((dc + 8)>>4);
1658
1659     for(i=0; i<16; i++){
1660         ((uint32_t*)(src+i*stride))[0]=
1661         ((uint32_t*)(src+i*stride))[1]=
1662         ((uint32_t*)(src+i*stride))[2]=
1663         ((uint32_t*)(src+i*stride))[3]= dc;
1664     }
1665 }
1666
1667 static void pred16x16_top_dc_c(uint8_t *src, int stride){
1668     int i, dc=0;
1669
1670     for(i=0;i<16; i++){
1671         dc+= src[i-stride];
1672     }
1673     dc= 0x01010101*((dc + 8)>>4);
1674
1675     for(i=0; i<16; i++){
1676         ((uint32_t*)(src+i*stride))[0]=
1677         ((uint32_t*)(src+i*stride))[1]=
1678         ((uint32_t*)(src+i*stride))[2]=
1679         ((uint32_t*)(src+i*stride))[3]= dc;
1680     }
1681 }
1682
1683 static void pred16x16_128_dc_c(uint8_t *src, int stride){
1684     int i;
1685
1686     for(i=0; i<16; i++){
1687         ((uint32_t*)(src+i*stride))[0]=
1688         ((uint32_t*)(src+i*stride))[1]=
1689         ((uint32_t*)(src+i*stride))[2]=
1690         ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1691     }
1692 }
1693
1694 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1695   int i, j, k;
1696   int a;
1697   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1698   const uint8_t * const src0 = src+7-stride;
1699   const uint8_t *src1 = src+8*stride-1;
1700   const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1701   int H = src0[1] - src0[-1];
1702   int V = src1[0] - src2[ 0];
1703   for(k=2; k<=8; ++k) {
1704     src1 += stride; src2 -= stride;
1705     H += k*(src0[k] - src0[-k]);
1706     V += k*(src1[0] - src2[ 0]);
1707   }
1708   if(svq3){
1709     H = ( 5*(H/4) ) / 16;
1710     V = ( 5*(V/4) ) / 16;
1711
1712     /* required for 100% accuracy */
1713     i = H; H = V; V = i;
1714   }else{
1715     H = ( 5*H+32 ) >> 6;
1716     V = ( 5*V+32 ) >> 6;
1717   }
1718
1719   a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
1720   for(j=16; j>0; --j) {
1721     int b = a;
1722     a += V;
1723     for(i=-16; i<0; i+=4) {
1724       src[16+i] = cm[ (b    ) >> 5 ];
1725       src[17+i] = cm[ (b+  H) >> 5 ];
1726       src[18+i] = cm[ (b+2*H) >> 5 ];
1727       src[19+i] = cm[ (b+3*H) >> 5 ];
1728       b += 4*H;
1729     }
1730     src += stride;
1731   }
1732 }
1733
1734 static void pred16x16_plane_c(uint8_t *src, int stride){
1735     pred16x16_plane_compat_c(src, stride, 0);
1736 }
1737
1738 static void pred8x8_vertical_c(uint8_t *src, int stride){
1739     int i;
1740     const uint32_t a= ((uint32_t*)(src-stride))[0];
1741     const uint32_t b= ((uint32_t*)(src-stride))[1];
1742     
1743     for(i=0; i<8; i++){
1744         ((uint32_t*)(src+i*stride))[0]= a;
1745         ((uint32_t*)(src+i*stride))[1]= b;
1746     }
1747 }
1748
1749 static void pred8x8_horizontal_c(uint8_t *src, int stride){
1750     int i;
1751
1752     for(i=0; i<8; i++){
1753         ((uint32_t*)(src+i*stride))[0]=
1754         ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
1755     }
1756 }
1757
1758 static void pred8x8_128_dc_c(uint8_t *src, int stride){
1759     int i;
1760
1761     for(i=0; i<4; i++){
1762         ((uint32_t*)(src+i*stride))[0]= 
1763         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1764     }
1765     for(i=4; i<8; i++){
1766         ((uint32_t*)(src+i*stride))[0]= 
1767         ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
1768     }
1769 }
1770
1771 static void pred8x8_left_dc_c(uint8_t *src, int stride){
1772     int i;
1773     int dc0, dc2;
1774
1775     dc0=dc2=0;
1776     for(i=0;i<4; i++){
1777         dc0+= src[-1+i*stride];
1778         dc2+= src[-1+(i+4)*stride];
1779     }
1780     dc0= 0x01010101*((dc0 + 2)>>2);
1781     dc2= 0x01010101*((dc2 + 2)>>2);
1782
1783     for(i=0; i<4; i++){
1784         ((uint32_t*)(src+i*stride))[0]=
1785         ((uint32_t*)(src+i*stride))[1]= dc0;
1786     }
1787     for(i=4; i<8; i++){
1788         ((uint32_t*)(src+i*stride))[0]=
1789         ((uint32_t*)(src+i*stride))[1]= dc2;
1790     }
1791 }
1792
1793 static void pred8x8_top_dc_c(uint8_t *src, int stride){
1794     int i;
1795     int dc0, dc1;
1796
1797     dc0=dc1=0;
1798     for(i=0;i<4; i++){
1799         dc0+= src[i-stride];
1800         dc1+= src[4+i-stride];
1801     }
1802     dc0= 0x01010101*((dc0 + 2)>>2);
1803     dc1= 0x01010101*((dc1 + 2)>>2);
1804
1805     for(i=0; i<4; i++){
1806         ((uint32_t*)(src+i*stride))[0]= dc0;
1807         ((uint32_t*)(src+i*stride))[1]= dc1;
1808     }
1809     for(i=4; i<8; i++){
1810         ((uint32_t*)(src+i*stride))[0]= dc0;
1811         ((uint32_t*)(src+i*stride))[1]= dc1;
1812     }
1813 }
1814
1815
1816 static void pred8x8_dc_c(uint8_t *src, int stride){
1817     int i;
1818     int dc0, dc1, dc2, dc3;
1819
1820     dc0=dc1=dc2=0;
1821     for(i=0;i<4; i++){
1822         dc0+= src[-1+i*stride] + src[i-stride];
1823         dc1+= src[4+i-stride];
1824         dc2+= src[-1+(i+4)*stride];
1825     }
1826     dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
1827     dc0= 0x01010101*((dc0 + 4)>>3);
1828     dc1= 0x01010101*((dc1 + 2)>>2);
1829     dc2= 0x01010101*((dc2 + 2)>>2);
1830
1831     for(i=0; i<4; i++){
1832         ((uint32_t*)(src+i*stride))[0]= dc0;
1833         ((uint32_t*)(src+i*stride))[1]= dc1;
1834     }
1835     for(i=4; i<8; i++){
1836         ((uint32_t*)(src+i*stride))[0]= dc2;
1837         ((uint32_t*)(src+i*stride))[1]= dc3;
1838     }
1839 }
1840
1841 static void pred8x8_plane_c(uint8_t *src, int stride){
1842   int j, k;
1843   int a;
1844   uint8_t *cm = cropTbl + MAX_NEG_CROP;
1845   const uint8_t * const src0 = src+3-stride;
1846   const uint8_t *src1 = src+4*stride-1;
1847   const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
1848   int H = src0[1] - src0[-1];
1849   int V = src1[0] - src2[ 0];
1850   for(k=2; k<=4; ++k) {
1851     src1 += stride; src2 -= stride;
1852     H += k*(src0[k] - src0[-k]);
1853     V += k*(src1[0] - src2[ 0]);
1854   }
1855   H = ( 17*H+16 ) >> 5;
1856   V = ( 17*V+16 ) >> 5;
1857
1858   a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
1859   for(j=8; j>0; --j) {
1860     int b = a;
1861     a += V;
1862     src[0] = cm[ (b    ) >> 5 ];
1863     src[1] = cm[ (b+  H) >> 5 ];
1864     src[2] = cm[ (b+2*H) >> 5 ];
1865     src[3] = cm[ (b+3*H) >> 5 ];
1866     src[4] = cm[ (b+4*H) >> 5 ];
1867     src[5] = cm[ (b+5*H) >> 5 ];
1868     src[6] = cm[ (b+6*H) >> 5 ];
1869     src[7] = cm[ (b+7*H) >> 5 ];
1870     src += stride;
1871   }
1872 }
1873
1874 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1875                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1876                            int src_x_offset, int src_y_offset,
1877                            qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1878     MpegEncContext * const s = &h->s;
1879     const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1880     const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1881     const int luma_xy= (mx&3) + ((my&3)<<2);
1882     uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
1883     uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
1884     uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
1885     int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
1886     int extra_height= extra_width;
1887     int emu=0;
1888     const int full_mx= mx>>2;
1889     const int full_my= my>>2;
1890     
1891     assert(pic->data[0]);
1892     
1893     if(mx&7) extra_width -= 3;
1894     if(my&7) extra_height -= 3;
1895     
1896     if(   full_mx < 0-extra_width 
1897        || full_my < 0-extra_height 
1898        || full_mx + 16/*FIXME*/ > s->width + extra_width 
1899        || full_my + 16/*FIXME*/ > s->height + extra_height){
1900         ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
1901             src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
1902         emu=1;
1903     }
1904     
1905     qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
1906     if(!square){
1907         qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
1908     }
1909     
1910     if(s->flags&CODEC_FLAG_GRAY) return;
1911     
1912     if(emu){
1913         ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1914             src_cb= s->edge_emu_buffer;
1915     }
1916     chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
1917
1918     if(emu){
1919         ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
1920             src_cr= s->edge_emu_buffer;
1921     }
1922     chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
1923 }
1924
1925 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1926                            uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1927                            int x_offset, int y_offset,
1928                            qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1929                            qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1930                            int list0, int list1){
1931     MpegEncContext * const s = &h->s;
1932     qpel_mc_func *qpix_op=  qpix_put;
1933     h264_chroma_mc_func chroma_op= chroma_put;
1934     
1935     dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
1936     dest_cb +=   x_offset +   y_offset*s->uvlinesize;
1937     dest_cr +=   x_offset +   y_offset*s->uvlinesize;
1938     x_offset += 8*s->mb_x;
1939     y_offset += 8*s->mb_y;
1940     
1941     if(list0){
1942         Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1943         mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1944                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1945                            qpix_op, chroma_op);
1946
1947         qpix_op=  qpix_avg;
1948         chroma_op= chroma_avg;
1949     }
1950
1951     if(list1){
1952         Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1953         mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1954                            dest_y, dest_cb, dest_cr, x_offset, y_offset,
1955                            qpix_op, chroma_op);
1956     }
1957 }
1958
1959 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1960                       qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1961                       qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
1962     MpegEncContext * const s = &h->s;
1963     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1964     const int mb_type= s->current_picture.mb_type[mb_xy];
1965     
1966     assert(IS_INTER(mb_type));
1967     
1968     if(IS_16X16(mb_type)){
1969         mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1970                 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1971                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1972     }else if(IS_16X8(mb_type)){
1973         mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1974                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1975                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1976         mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1977                 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1978                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1979     }else if(IS_8X16(mb_type)){
1980         mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
1981                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1982                 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1983         mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
1984                 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1985                 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1986     }else{
1987         int i;
1988         
1989         assert(IS_8X8(mb_type));
1990
1991         for(i=0; i<4; i++){
1992             const int sub_mb_type= h->sub_mb_type[i];
1993             const int n= 4*i;
1994             int x_offset= (i&1)<<2;
1995             int y_offset= (i&2)<<1;
1996
1997             if(IS_SUB_8X8(sub_mb_type)){
1998                 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1999                     qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2000                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2001             }else if(IS_SUB_8X4(sub_mb_type)){
2002                 mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2003                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2004                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2005                 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2006                     qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2007                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2008             }else if(IS_SUB_4X8(sub_mb_type)){
2009                 mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2010                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2011                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2012                 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2013                     qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2014                     IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2015             }else{
2016                 int j;
2017                 assert(IS_SUB_4X4(sub_mb_type));
2018                 for(j=0; j<4; j++){
2019                     int sub_x_offset= x_offset + 2*(j&1);
2020                     int sub_y_offset= y_offset +   (j&2);
2021                     mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2022                         qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2023                         IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2024                 }
2025             }
2026         }
2027     }
2028 }
2029
2030 static void decode_init_vlc(H264Context *h){
2031     static int done = 0;
2032
2033     if (!done) {
2034         int i;
2035         done = 1;
2036
2037         init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2038                  &chroma_dc_coeff_token_len [0], 1, 1,
2039                  &chroma_dc_coeff_token_bits[0], 1, 1);
2040
2041         for(i=0; i<4; i++){
2042             init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2043                      &coeff_token_len [i][0], 1, 1,
2044                      &coeff_token_bits[i][0], 1, 1);
2045         }
2046
2047         for(i=0; i<3; i++){
2048             init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2049                      &chroma_dc_total_zeros_len [i][0], 1, 1,
2050                      &chroma_dc_total_zeros_bits[i][0], 1, 1);
2051         }
2052         for(i=0; i<15; i++){
2053             init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2054                      &total_zeros_len [i][0], 1, 1,
2055                      &total_zeros_bits[i][0], 1, 1);
2056         }
2057
2058         for(i=0; i<6; i++){
2059             init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2060                      &run_len [i][0], 1, 1,
2061                      &run_bits[i][0], 1, 1);
2062         }
2063         init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2064                  &run_len [6][0], 1, 1,
2065                  &run_bits[6][0], 1, 1);
2066     }
2067 }
2068
2069 /**
2070  * Sets the intra prediction function pointers.
2071  */
2072 static void init_pred_ptrs(H264Context *h){
2073 //    MpegEncContext * const s = &h->s;
2074
2075     h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2076     h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2077     h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2078     h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2079     h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2080     h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2081     h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2082     h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2083     h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2084     h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2085     h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2086     h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2087
2088     h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2089     h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2090     h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2091     h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2092     h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2093     h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2094     h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2095
2096     h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2097     h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2098     h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2099     h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2100     h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2101     h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2102     h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2103 }
2104
2105 static void free_tables(H264Context *h){
2106     av_freep(&h->intra4x4_pred_mode);
2107     av_freep(&h->non_zero_count);
2108     av_freep(&h->slice_table_base);
2109     h->slice_table= NULL;
2110     
2111     av_freep(&h->mb2b_xy);
2112     av_freep(&h->mb2b8_xy);
2113 }
2114
2115 /**
2116  * allocates tables.
2117  * needs widzh/height
2118  */
2119 static int alloc_tables(H264Context *h){
2120     MpegEncContext * const s = &h->s;
2121     const int big_mb_num= s->mb_stride * (s->mb_height+1);
2122     int x,y;
2123
2124     CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2125     CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2126     CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2127
2128     memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2129     h->slice_table= h->slice_table_base + s->mb_stride + 1;
2130
2131     CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2132     CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2133     for(y=0; y<s->mb_height; y++){
2134         for(x=0; x<s->mb_width; x++){
2135             const int mb_xy= x + y*s->mb_stride;
2136             const int b_xy = 4*x + 4*y*h->b_stride;
2137             const int b8_xy= 2*x + 2*y*h->b8_stride;
2138         
2139             h->mb2b_xy [mb_xy]= b_xy;
2140             h->mb2b8_xy[mb_xy]= b8_xy;
2141         }
2142     }
2143     
2144     return 0;
2145 fail:
2146     free_tables(h);
2147     return -1;
2148 }
2149
2150 static void common_init(H264Context *h){
2151     MpegEncContext * const s = &h->s;
2152
2153     s->width = s->avctx->width;
2154     s->height = s->avctx->height;
2155     s->codec_id= s->avctx->codec->id;
2156     
2157     init_pred_ptrs(h);
2158
2159     s->decode=1; //FIXME
2160 }
2161
2162 static int decode_init(AVCodecContext *avctx){
2163     H264Context *h= avctx->priv_data;
2164     MpegEncContext * const s = &h->s;
2165
2166     s->avctx = avctx;
2167     common_init(h);
2168
2169     s->out_format = FMT_H264;
2170     s->workaround_bugs= avctx->workaround_bugs;
2171
2172     // set defaults
2173     s->progressive_sequence=1;
2174 //    s->decode_mb= ff_h263_decode_mb;
2175     s->low_delay= 1;
2176     avctx->pix_fmt= PIX_FMT_YUV420P;
2177
2178     decode_init_vlc(h);
2179     
2180     return 0;
2181 }
2182
2183 static void frame_start(H264Context *h){
2184     MpegEncContext * const s = &h->s;
2185     int i;
2186
2187     MPV_frame_start(s, s->avctx);
2188     ff_er_frame_start(s);
2189     h->mmco_index=0;
2190
2191     assert(s->linesize && s->uvlinesize);
2192
2193     for(i=0; i<16; i++){
2194         h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2195         h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2196     }
2197     for(i=0; i<4; i++){
2198         h->block_offset[16+i]=
2199         h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2200     }
2201
2202 //    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2203 }
2204
2205 static void hl_decode_mb(H264Context *h){
2206     MpegEncContext * const s = &h->s;
2207     const int mb_x= s->mb_x;
2208     const int mb_y= s->mb_y;
2209     const int mb_xy= mb_x + mb_y*s->mb_stride;
2210     const int mb_type= s->current_picture.mb_type[mb_xy];
2211     uint8_t  *dest_y, *dest_cb, *dest_cr;
2212     int linesize, uvlinesize /*dct_offset*/;
2213     int i;
2214
2215     if(!s->decode)
2216         return;
2217
2218     if(s->mb_skiped){
2219     }
2220
2221     dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2222     dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2223     dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2224
2225     if (h->mb_field_decoding_flag) {
2226         linesize = s->linesize * 2;
2227         uvlinesize = s->uvlinesize * 2;
2228         if(mb_y&1){ //FIXME move out of this func?
2229             dest_y -= s->linesize*15;
2230             dest_cb-= s->linesize*7;
2231             dest_cr-= s->linesize*7;
2232         }
2233     } else {
2234         linesize = s->linesize;
2235         uvlinesize = s->uvlinesize;
2236 //        dct_offset = s->linesize * 16;
2237     }
2238
2239     if(IS_INTRA(mb_type)){
2240         if(!(s->flags&CODEC_FLAG_GRAY)){
2241             h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2242             h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2243         }
2244
2245         if(IS_INTRA4x4(mb_type)){
2246             if(!s->encoding){
2247                 for(i=0; i<16; i++){
2248                     uint8_t * const ptr= dest_y + h->block_offset[i];
2249                     uint8_t *topright= ptr + 4 - linesize;
2250                     const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2251                     const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2252                     int tr;
2253
2254                     if(!topright_avail){
2255                         tr= ptr[3 - linesize]*0x01010101;
2256                         topright= (uint8_t*) &tr;
2257                     }
2258
2259                     h->pred4x4[ dir ](ptr, topright, linesize);
2260                     if(h->non_zero_count_cache[ scan8[i] ]){
2261                         if(s->codec_id == CODEC_ID_H264)
2262                             h264_add_idct_c(ptr, h->mb + i*16, linesize);
2263                         else
2264                             svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2265                     }
2266                 }
2267             }
2268         }else{
2269             h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2270             if(s->codec_id == CODEC_ID_H264)
2271                 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2272             else
2273                 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2274         }
2275     }else if(s->codec_id == CODEC_ID_H264){
2276         hl_motion(h, dest_y, dest_cb, dest_cr,
2277                   s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2278                   s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2279     }
2280
2281
2282     if(!IS_INTRA4x4(mb_type)){
2283         if(s->codec_id == CODEC_ID_H264){
2284             for(i=0; i<16; i++){
2285                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2286                     uint8_t * const ptr= dest_y + h->block_offset[i];
2287                     h264_add_idct_c(ptr, h->mb + i*16, linesize);
2288                 }
2289             }
2290         }else{
2291             for(i=0; i<16; i++){
2292                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2293                     uint8_t * const ptr= dest_y + h->block_offset[i];
2294                     svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2295                 }
2296             }
2297         }
2298     }
2299
2300     if(!(s->flags&CODEC_FLAG_GRAY)){
2301         chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2302         chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2303         if(s->codec_id == CODEC_ID_H264){
2304             for(i=16; i<16+4; i++){
2305                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2306                     uint8_t * const ptr= dest_cb + h->block_offset[i];
2307                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2308                 }
2309             }
2310             for(i=20; i<20+4; i++){
2311                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2312                     uint8_t * const ptr= dest_cr + h->block_offset[i];
2313                     h264_add_idct_c(ptr, h->mb + i*16, uvlinesize);
2314                 }
2315             }
2316         }else{
2317             for(i=16; i<16+4; i++){
2318                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2319                     uint8_t * const ptr= dest_cb + h->block_offset[i];
2320                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2321                 }
2322             }
2323             for(i=20; i<20+4; i++){
2324                 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2325                     uint8_t * const ptr= dest_cr + h->block_offset[i];
2326                     svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2327                 }
2328             }
2329         }
2330     }
2331 }
2332
2333 static void decode_mb_cabac(H264Context *h){
2334 //    MpegEncContext * const s = &h->s;
2335 }
2336
2337 /**
2338  * fills the default_ref_list.
2339  */
2340 static int fill_default_ref_list(H264Context *h){
2341     MpegEncContext * const s = &h->s;
2342     int i;
2343     Picture sorted_short_ref[16];
2344     
2345     if(h->slice_type==B_TYPE){
2346         int out_i;
2347         int limit= -1;
2348
2349         for(out_i=0; out_i<h->short_ref_count; out_i++){
2350             int best_i=-1;
2351             int best_poc=-1;
2352
2353             for(i=0; i<h->short_ref_count; i++){
2354                 const int poc= h->short_ref[i]->poc;
2355                 if(poc > limit && poc < best_poc){
2356                     best_poc= poc;
2357                     best_i= i;
2358                 }
2359             }
2360             
2361             assert(best_i != -1);
2362             
2363             limit= best_poc;
2364             sorted_short_ref[out_i]= *h->short_ref[best_i];
2365         }
2366     }
2367
2368     if(s->picture_structure == PICT_FRAME){
2369         if(h->slice_type==B_TYPE){
2370             const int current_poc= s->current_picture_ptr->poc;
2371             int list;
2372
2373             for(list=0; list<2; list++){
2374                 int index=0;
2375
2376                 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2377                     const int i2= list ? h->short_ref_count - i - 1 : i;
2378                     const int poc= sorted_short_ref[i2].poc;
2379                     
2380                     if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2381
2382                     if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2383                         h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2384                         h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2385                     }
2386                 }
2387
2388                 for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2389                     if(h->long_ref[i]->reference != 3) continue;
2390
2391                     h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2392                     h->default_ref_list[ list ][index++].pic_id= i;;
2393                 }
2394                 
2395                 if(h->long_ref_count > 1 && h->short_ref_count==0){
2396                     Picture temp= h->default_ref_list[1][0];
2397                     h->default_ref_list[1][0] = h->default_ref_list[1][1];
2398                     h->default_ref_list[1][0] = temp;
2399                 }
2400
2401                 if(index < h->ref_count[ list ])
2402                     memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2403             }
2404         }else{
2405             int index=0;
2406             for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2407                 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2408                 h->default_ref_list[0][index  ]= *h->short_ref[i];
2409                 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2410             }
2411             for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2412                 if(h->long_ref[i]->reference != 3) continue;
2413                 h->default_ref_list[0][index  ]= *h->long_ref[i];
2414                 h->default_ref_list[0][index++].pic_id= i;;
2415             }
2416             if(index < h->ref_count[0])
2417                 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2418         }
2419     }else{ //FIELD
2420         if(h->slice_type==B_TYPE){
2421         }else{
2422             //FIXME second field balh
2423         }
2424     }
2425     return 0;
2426 }
2427
2428 static int decode_ref_pic_list_reordering(H264Context *h){
2429     MpegEncContext * const s = &h->s;
2430     int list;
2431     
2432     if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2433     
2434     for(list=0; list<2; list++){
2435         memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2436
2437         if(get_bits1(&s->gb)){
2438             int pred= h->curr_pic_num;
2439             int index;
2440
2441             for(index=0; ; index++){
2442                 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2443                 int pic_id;
2444                 int i;
2445                 
2446                 
2447                 if(index >= h->ref_count[list]){
2448                     fprintf(stderr, "reference count overflow\n");
2449                     return -1;
2450                 }
2451                 
2452                 if(reordering_of_pic_nums_idc<3){
2453                     if(reordering_of_pic_nums_idc<2){
2454                         const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2455
2456                         if(abs_diff_pic_num >= h->max_pic_num){
2457                             fprintf(stderr, "abs_diff_pic_num overflow\n");
2458                             return -1;
2459                         }
2460
2461                         if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2462                         else                                pred+= abs_diff_pic_num;
2463                         pred &= h->max_pic_num - 1;
2464                     
2465                         for(i= h->ref_count[list]-1; i>=index; i--){
2466                             if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2467                                 break;
2468                         }
2469                     }else{
2470                         pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2471
2472                         for(i= h->ref_count[list]-1; i>=index; i--){
2473                             if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2474                                 break;
2475                         }
2476                     }
2477
2478                     if(i < index){
2479                         fprintf(stderr, "reference picture missing during reorder\n");
2480                         memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2481                     }else if(i > index){
2482                         Picture tmp= h->ref_list[list][i];
2483                         for(; i>index; i--){
2484                             h->ref_list[list][i]= h->ref_list[list][i-1];
2485                         }
2486                         h->ref_list[list][index]= tmp;
2487                     }
2488                 }else if(reordering_of_pic_nums_idc==3) 
2489                     break;
2490                 else{
2491                     fprintf(stderr, "illegal reordering_of_pic_nums_idc\n");
2492                     return -1;
2493                 }
2494             }
2495         }
2496
2497         if(h->slice_type!=B_TYPE) break;
2498     }
2499     return 0;    
2500 }
2501
2502 static int pred_weight_table(H264Context *h){
2503     MpegEncContext * const s = &h->s;
2504     int list, i;
2505     
2506     h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2507     h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2508
2509     for(list=0; list<2; list++){
2510         for(i=0; i<h->ref_count[list]; i++){
2511             int luma_weight_flag, chroma_weight_flag;
2512             
2513             luma_weight_flag= get_bits1(&s->gb);
2514             if(luma_weight_flag){
2515                 h->luma_weight[list][i]= get_se_golomb(&s->gb);
2516                 h->luma_offset[list][i]= get_se_golomb(&s->gb);
2517             }
2518
2519             chroma_weight_flag= get_bits1(&s->gb);
2520             if(chroma_weight_flag){
2521                 int j;
2522                 for(j=0; j<2; j++){
2523                     h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2524                     h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2525                 }
2526             }
2527         }
2528         if(h->slice_type != B_TYPE) break;
2529     }
2530     return 0;
2531 }
2532
2533 /**
2534  * instantaneos decoder refresh.
2535  */
2536 static void idr(H264Context *h){
2537     int i;
2538
2539     for(i=0; i<h->long_ref_count; i++){
2540         h->long_ref[i]->reference=0;
2541         h->long_ref[i]= NULL;
2542     }
2543     h->long_ref_count=0;
2544
2545     for(i=0; i<h->short_ref_count; i++){
2546         h->short_ref[i]->reference=0;
2547         h->short_ref[i]= NULL;
2548     }
2549     h->short_ref_count=0;
2550 }
2551
2552 /**
2553  *
2554  * @return the removed picture or NULL if an error occures
2555  */
2556 static Picture * remove_short(H264Context *h, int frame_num){
2557     MpegEncContext * const s = &h->s;
2558     int i;
2559     
2560     if(s->avctx->debug&FF_DEBUG_MMCO)
2561         printf("remove short %d count %d\n", frame_num, h->short_ref_count);
2562     
2563     for(i=0; i<h->short_ref_count; i++){
2564         Picture *pic= h->short_ref[i];
2565         if(s->avctx->debug&FF_DEBUG_MMCO)
2566             printf("%d %d %p\n", i, pic->frame_num, pic);
2567         if(pic->frame_num == frame_num){
2568             h->short_ref[i]= NULL;
2569             memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2570             h->short_ref_count--;
2571             return pic;
2572         }
2573     }
2574     return NULL;
2575 }
2576
2577 /**
2578  *
2579  * @return the removed picture or NULL if an error occures
2580  */
2581 static Picture * remove_long(H264Context *h, int i){
2582     Picture *pic;
2583
2584     if(i >= h->long_ref_count) return NULL;
2585     pic= h->long_ref[i];
2586     if(pic==NULL) return NULL;
2587     
2588     h->long_ref[i]= NULL;
2589     memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2590     h->long_ref_count--;
2591
2592     return pic;
2593 }
2594
2595 /**
2596  * Executes the reference picture marking (memory management control operations).
2597  */
2598 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
2599     MpegEncContext * const s = &h->s;
2600     int i;
2601     int current_is_long=0;
2602     Picture *pic;
2603     
2604     if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
2605         printf("no mmco here\n");
2606         
2607     for(i=0; i<mmco_count; i++){
2608         if(s->avctx->debug&FF_DEBUG_MMCO)
2609             printf("mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
2610
2611         switch(mmco[i].opcode){
2612         case MMCO_SHORT2UNUSED:
2613             pic= remove_short(h, mmco[i].short_frame_num);
2614             if(pic==NULL) return -1;
2615             pic->reference= 0;
2616             break;
2617         case MMCO_SHORT2LONG:
2618             pic= remove_long(h, mmco[i].long_index);
2619             if(pic) pic->reference=0;
2620             
2621             h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
2622             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2623             break;
2624         case MMCO_LONG2UNUSED:
2625             pic= remove_long(h, mmco[i].long_index);
2626             if(pic==NULL) return -1;
2627             pic->reference= 0;
2628             break;
2629         case MMCO_LONG:
2630             pic= remove_long(h, mmco[i].long_index);
2631             if(pic) pic->reference=0;
2632             
2633             h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
2634             h->long_ref[ mmco[i].long_index ]->long_ref=1;
2635             h->long_ref_count++;
2636             
2637             current_is_long=1;
2638             break;
2639         case MMCO_SET_MAX_LONG:
2640             assert(mmco[i].long_index <= 16);
2641             while(mmco[i].long_index < h->long_ref_count){
2642                 pic= remove_long(h, mmco[i].long_index);
2643                 pic->reference=0;
2644             }
2645             while(mmco[i].long_index > h->long_ref_count){
2646                 h->long_ref[ h->long_ref_count++ ]= NULL;
2647             }
2648             break;
2649         case MMCO_RESET:
2650             while(h->short_ref_count){
2651                 pic= remove_short(h, h->short_ref[0]->frame_num);
2652                 pic->reference=0;
2653             }
2654             while(h->long_ref_count){
2655                 pic= remove_long(h, h->long_ref_count-1);
2656                 pic->reference=0;
2657             }
2658             break;
2659         default: assert(0);
2660         }
2661     }
2662     
2663     if(!current_is_long){
2664         pic= remove_short(h, s->current_picture_ptr->frame_num);
2665         if(pic){
2666             pic->reference=0;
2667             fprintf(stderr, "illegal short term buffer state detected\n");
2668         }
2669         
2670         if(h->short_ref_count)
2671             memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
2672
2673         h->short_ref[0]= s->current_picture_ptr;
2674         h->short_ref[0]->long_ref=0;
2675         h->short_ref_count++;
2676     }
2677     
2678     return 0; 
2679 }
2680
2681 static int decode_ref_pic_marking(H264Context *h){
2682     MpegEncContext * const s = &h->s;
2683     int i;
2684     
2685     if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
2686         s->broken_link= get_bits1(&s->gb) -1;
2687         h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
2688         if(h->mmco[0].long_index == -1)
2689             h->mmco_index= 0;
2690         else{
2691             h->mmco[0].opcode= MMCO_LONG;
2692             h->mmco_index= 1;
2693         } 
2694     }else{
2695         if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
2696             for(i= h->mmco_index; i<MAX_MMCO_COUNT; i++) { 
2697                 MMCOOpcode opcode= get_ue_golomb(&s->gb);;
2698
2699                 h->mmco[i].opcode= opcode;
2700                 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
2701                     h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
2702 /*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
2703                         fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
2704                         return -1;
2705                     }*/
2706                 }
2707                 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
2708                     h->mmco[i].long_index= get_ue_golomb(&s->gb);
2709                     if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
2710                         fprintf(stderr, "illegal long ref in memory management control operation %d\n", opcode);
2711                         return -1;
2712                     }
2713                 }
2714                     
2715                 if(opcode > MMCO_LONG){
2716                     fprintf(stderr, "illegal memory management control operation %d\n", opcode);
2717                     return -1;
2718                 }
2719             }
2720             h->mmco_index= i;
2721         }else{
2722             assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
2723
2724             if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
2725                 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
2726                 h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
2727                 h->mmco_index= 1;
2728             }else
2729                 h->mmco_index= 0;
2730         }
2731     }
2732     
2733     return 0; 
2734 }
2735
2736 static int init_poc(H264Context *h){
2737     MpegEncContext * const s = &h->s;
2738     const int max_frame_num= 1<<h->sps.log2_max_frame_num;
2739     int field_poc[2];
2740
2741     if(h->nal_unit_type == NAL_IDR_SLICE){
2742         h->frame_num_offset= 0;
2743     }else{
2744         if(h->frame_num < h->prev_frame_num)
2745             h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
2746         else
2747             h->frame_num_offset= h->prev_frame_num_offset;
2748     }
2749
2750     if(h->sps.poc_type==0){
2751         const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
2752
2753         if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
2754             h->poc_msb = h->prev_poc_msb + max_poc_lsb;
2755         else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
2756             h->poc_msb = h->prev_poc_msb - max_poc_lsb;
2757         else
2758             h->poc_msb = h->prev_poc_msb;
2759 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
2760         field_poc[0] = 
2761         field_poc[1] = h->poc_msb + h->poc_lsb;
2762         if(s->picture_structure == PICT_FRAME) 
2763             field_poc[1] += h->delta_poc_bottom;
2764     }else if(h->sps.poc_type==1){
2765         int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
2766         int i;
2767
2768         if(h->sps.poc_cycle_length != 0)
2769             abs_frame_num = h->frame_num_offset + h->frame_num;
2770         else
2771             abs_frame_num = 0;
2772
2773         if(h->nal_ref_idc==0 && abs_frame_num > 0)
2774             abs_frame_num--;
2775             
2776         expected_delta_per_poc_cycle = 0;
2777         for(i=0; i < h->sps.poc_cycle_length; i++)
2778             expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
2779
2780         if(abs_frame_num > 0){
2781             int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
2782             int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
2783
2784             expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
2785             for(i = 0; i <= frame_num_in_poc_cycle; i++)
2786                 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
2787         } else
2788             expectedpoc = 0;
2789
2790         if(h->nal_ref_idc == 0) 
2791             expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
2792         
2793         field_poc[0] = expectedpoc + h->delta_poc[0];
2794         field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
2795
2796         if(s->picture_structure == PICT_FRAME)
2797             field_poc[1] += h->delta_poc[1];
2798     }else{
2799         int poc;
2800         if(h->nal_unit_type == NAL_IDR_SLICE){
2801             poc= 0;
2802         }else{
2803             if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
2804             else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
2805         }
2806         field_poc[0]= poc;
2807         field_poc[1]= poc;
2808     }
2809     
2810     if(s->picture_structure != PICT_BOTTOM_FIELD)
2811         s->current_picture_ptr->field_poc[0]= field_poc[0];
2812     if(s->picture_structure != PICT_TOP_FIELD)
2813         s->current_picture_ptr->field_poc[1]= field_poc[1];
2814     if(s->picture_structure == PICT_FRAME) // FIXME field pix?
2815         s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
2816
2817     return 0;
2818 }
2819
2820 /**
2821  * decodes a slice header.
2822  * this will allso call MPV_common_init() and frame_start() as needed
2823  */
2824 static int decode_slice_header(H264Context *h){
2825     MpegEncContext * const s = &h->s;
2826     int first_mb_in_slice, pps_id;
2827     int num_ref_idx_active_override_flag;
2828     static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
2829     float new_aspect;
2830
2831     s->current_picture.reference= h->nal_ref_idc != 0;
2832
2833     first_mb_in_slice= get_ue_golomb(&s->gb);
2834
2835     h->slice_type= get_ue_golomb(&s->gb);
2836     if(h->slice_type > 9){
2837         fprintf(stderr, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
2838     }
2839     if(h->slice_type > 4){
2840         h->slice_type -= 5;
2841         h->slice_type_fixed=1;
2842     }else
2843         h->slice_type_fixed=0;
2844     
2845     h->slice_type= slice_type_map[ h->slice_type ];
2846     
2847     s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
2848         
2849     pps_id= get_ue_golomb(&s->gb);
2850     if(pps_id>255){
2851         fprintf(stderr, "pps_id out of range\n");
2852         return -1;
2853     }
2854     h->pps= h->pps_buffer[pps_id];
2855     if(h->pps.slice_group_count == 0){
2856         fprintf(stderr, "non existing PPS referenced\n");
2857         return -1;
2858     }
2859
2860     h->sps= h->sps_buffer[ h->pps.sps_id ];
2861     if(h->sps.log2_max_frame_num == 0){
2862         fprintf(stderr, "non existing SPS referenced\n");
2863         return -1;
2864     }
2865     
2866     s->mb_width= h->sps.mb_width;
2867     s->mb_height= h->sps.mb_height;
2868     
2869     h->b_stride=  s->mb_width*4;
2870     h->b8_stride= s->mb_width*2;
2871
2872     s->mb_x = first_mb_in_slice % s->mb_width;
2873     s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
2874     
2875     s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
2876     if(h->sps.frame_mbs_only_flag)
2877         s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
2878     else
2879         s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
2880     
2881     if(s->aspected_height) //FIXME emms at end of slice ?
2882         new_aspect= h->sps.sar_width*s->width / (float)(s->height*h->sps.sar_height);
2883     else
2884         new_aspect=0;
2885
2886     if (s->context_initialized 
2887         && (   s->width != s->avctx->width || s->height != s->avctx->height 
2888             || ABS(new_aspect - s->avctx->aspect_ratio) > 0.001)) {
2889         free_tables(h);
2890         MPV_common_end(s);
2891     }
2892     if (!s->context_initialized) {
2893         if (MPV_common_init(s) < 0)
2894             return -1;
2895
2896         alloc_tables(h);
2897
2898         s->avctx->width = s->width;
2899         s->avctx->height = s->height;
2900         s->avctx->aspect_ratio= new_aspect;
2901     }
2902
2903     if(first_mb_in_slice == 0){
2904         frame_start(h);
2905     }
2906
2907     s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
2908     h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
2909
2910     if(h->sps.frame_mbs_only_flag){
2911         s->picture_structure= PICT_FRAME;
2912     }else{
2913         if(get_bits1(&s->gb)) //field_pic_flag
2914             s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
2915         else
2916             s->picture_structure= PICT_FRAME;
2917     }
2918
2919     if(s->picture_structure==PICT_FRAME){
2920         h->curr_pic_num=   h->frame_num;
2921         h->max_pic_num= 1<< h->sps.log2_max_frame_num;
2922     }else{
2923         h->curr_pic_num= 2*h->frame_num;
2924         h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
2925     }
2926         
2927     if(h->nal_unit_type == NAL_IDR_SLICE){
2928         int idr_pic_id= get_ue_golomb(&s->gb);
2929     }
2930    
2931     if(h->sps.poc_type==0){
2932         h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
2933         
2934         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
2935             h->delta_poc_bottom= get_se_golomb(&s->gb);
2936         }
2937     }
2938     
2939     if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
2940         h->delta_poc[0]= get_se_golomb(&s->gb);
2941         
2942         if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
2943             h->delta_poc[1]= get_se_golomb(&s->gb);
2944     }
2945     
2946     init_poc(h);
2947     
2948     if(h->pps.redundant_pic_cnt_present){
2949         h->redundant_pic_count= get_ue_golomb(&s->gb);
2950     }
2951
2952     //set defaults, might be overriden a few line later
2953     h->ref_count[0]= h->pps.ref_count[0];
2954     h->ref_count[1]= h->pps.ref_count[1];
2955
2956     if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
2957         if(h->slice_type == B_TYPE){
2958             h->direct_spatial_mv_pred= get_bits1(&s->gb);
2959         }
2960         num_ref_idx_active_override_flag= get_bits1(&s->gb);
2961     
2962         if(num_ref_idx_active_override_flag){
2963             h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
2964             if(h->slice_type==B_TYPE)
2965                 h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
2966
2967             if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
2968                 fprintf(stderr, "reference overflow\n");
2969                 return -1;
2970             }
2971         }
2972     }
2973
2974     if(first_mb_in_slice == 0){
2975         fill_default_ref_list(h);
2976     }
2977
2978     decode_ref_pic_list_reordering(h);
2979
2980     if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
2981        || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
2982         pred_weight_table(h);
2983     
2984     if(s->current_picture.reference)
2985         decode_ref_pic_marking(h);
2986     //FIXME CABAC stuff
2987
2988     s->qscale = h->pps.init_qp + get_se_golomb(&s->gb); //slice_qp_delta
2989     //FIXME qscale / qp ... stuff
2990     if(h->slice_type == SP_TYPE){
2991         int sp_for_switch_flag= get_bits1(&s->gb);
2992     }
2993     if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
2994         int slice_qs_delta= get_se_golomb(&s->gb);
2995     }
2996
2997     if( h->pps.deblocking_filter_parameters_present ) {
2998         h->disable_deblocking_filter_idc= get_ue_golomb(&s->gb);
2999         if( h->disable_deblocking_filter_idc  !=  1 ) {
3000             h->slice_alpha_c0_offset_div2= get_se_golomb(&s->gb);
3001             h->slice_beta_offset_div2= get_se_golomb(&s->gb);
3002         }
3003     }else
3004         h->disable_deblocking_filter_idc= 0;
3005
3006 #if 0 //FMO
3007     if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3008         slice_group_change_cycle= get_bits(&s->gb, ?);
3009 #endif
3010
3011     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3012         printf("mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", 
3013                first_mb_in_slice, 
3014                av_get_pict_type_char(h->slice_type),
3015                pps_id, h->frame_num,
3016                s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3017                h->ref_count[0], h->ref_count[1],
3018                s->qscale,
3019                h->disable_deblocking_filter_idc
3020                );
3021     }
3022
3023     return 0;
3024 }
3025
3026 /**
3027  *
3028  */
3029 static inline int get_level_prefix(GetBitContext *gb){
3030     unsigned int buf;
3031     int log;
3032     
3033     OPEN_READER(re, gb);
3034     UPDATE_CACHE(re, gb);
3035     buf=GET_CACHE(re, gb);
3036     
3037     log= 32 - av_log2(buf);
3038 #ifdef TRACE
3039     print_bin(buf>>(32-log), log);
3040     printf("%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3041 #endif
3042
3043     LAST_SKIP_BITS(re, gb, log);
3044     CLOSE_READER(re, gb);
3045
3046     return log-1;
3047 }
3048
3049 /**
3050  * decodes a residual block.
3051  * @param n block index
3052  * @param scantable scantable
3053  * @param max_coeff number of coefficients in the block
3054  * @return <0 if an error occured
3055  */
3056 static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3057     MpegEncContext * const s = &h->s;
3058     const uint16_t *qmul= dequant_coeff[qp];
3059     static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3060     int level[16], run[16];
3061     int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3062
3063     //FIXME put trailing_onex into the context
3064
3065     if(n == CHROMA_DC_BLOCK_INDEX){
3066         coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3067         total_coeff= coeff_token>>2;
3068     }else{    
3069         if(n == LUMA_DC_BLOCK_INDEX){
3070             total_coeff= pred_non_zero_count(h, 0);
3071             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3072             total_coeff= coeff_token>>2;
3073         }else{
3074             total_coeff= pred_non_zero_count(h, n);
3075             coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3076             total_coeff= coeff_token>>2;
3077             h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3078         }
3079     }
3080
3081     //FIXME set last_non_zero?
3082
3083     if(total_coeff==0)
3084         return 0;
3085         
3086     trailing_ones= coeff_token&3;
3087     tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3088     assert(total_coeff<=16);
3089     
3090     for(i=0; i<trailing_ones; i++){
3091         level[i]= 1 - 2*get_bits1(gb);
3092     }
3093
3094     suffix_length= total_coeff > 10 && trailing_ones < 3;
3095
3096     for(; i<total_coeff; i++){
3097         const int prefix= get_level_prefix(gb);
3098         int level_code, mask;
3099
3100         if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3101             if(suffix_length)
3102                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3103             else
3104                 level_code= (prefix<<suffix_length); //part
3105         }else if(prefix==14){
3106             if(suffix_length)
3107                 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3108             else
3109                 level_code= prefix + get_bits(gb, 4); //part
3110         }else if(prefix==15){
3111             level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3112             if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3113         }else{
3114             fprintf(stderr, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3115             return -1;
3116         }
3117
3118         if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3119
3120         mask= -(level_code&1);
3121         level[i]= (((2+level_code)>>1) ^ mask) - mask;
3122
3123         if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3124
3125 #if 1
3126         if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3127 #else        
3128         if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3129         ? == prefix > 2 or sth
3130 #endif
3131         tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3132     }
3133
3134     if(total_coeff == max_coeff)
3135         zeros_left=0;
3136     else{
3137         if(n == CHROMA_DC_BLOCK_INDEX)
3138             zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3139         else
3140             zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3141     }
3142     
3143     for(i=0; i<total_coeff-1; i++){
3144         if(zeros_left <=0)
3145             break;
3146         else if(zeros_left < 7){
3147             run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3148         }else{
3149             run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3150         }
3151         zeros_left -= run[i];
3152     }
3153
3154     if(zeros_left<0){
3155         fprintf(stderr, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3156         return -1;
3157     }
3158     
3159     for(; i<total_coeff-1; i++){
3160         run[i]= 0;
3161     }
3162
3163     run[i]= zeros_left;
3164
3165     coeff_num=-1;
3166     if(n > 24){
3167         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3168             int j;
3169
3170             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3171             j= scantable[ coeff_num ];
3172
3173             block[j]= level[i];
3174         }
3175     }else{
3176         for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3177             int j;
3178
3179             coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3180             j= scantable[ coeff_num ];
3181
3182             block[j]= level[i] * qmul[j];
3183 //            printf("%d %d  ", block[j], qmul[j]);
3184         }
3185     }
3186     return 0;
3187 }
3188
3189 /**
3190  * decodes a macroblock
3191  * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3192  */
3193 static int decode_mb(H264Context *h){
3194     MpegEncContext * const s = &h->s;
3195     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3196     int mb_type, partition_count, cbp;
3197
3198     s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3199
3200     tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3201
3202     if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3203         if(s->mb_skip_run==-1)
3204             s->mb_skip_run= get_ue_golomb(&s->gb);
3205         
3206         if (s->mb_skip_run--) {
3207             int mx, my;
3208             /* skip mb */
3209 //FIXME b frame
3210             mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0;
3211
3212             memset(h->non_zero_count[mb_xy], 0, 16);
3213             memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3214
3215             if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3216                 h->mb_field_decoding_flag= get_bits1(&s->gb);
3217             }
3218
3219             if(h->mb_field_decoding_flag)
3220                 mb_type|= MB_TYPE_INTERLACED;
3221             
3222             fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3223             pred_pskip_motion(h, &mx, &my);
3224             fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3225             fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3226             write_back_motion(h, mb_type);
3227
3228             s->current_picture.mb_type[mb_xy]= mb_type; //FIXME SKIP type
3229             h->slice_table[ mb_xy ]= h->slice_num;
3230
3231             h->prev_mb_skiped= 1;
3232             return 0;
3233         }
3234     }
3235     if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3236         if((s->mb_y&1)==0)
3237             h->mb_field_decoding_flag = get_bits1(&s->gb);
3238     }else
3239         h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3240     
3241     h->prev_mb_skiped= 0;
3242     
3243     mb_type= get_ue_golomb(&s->gb);
3244     if(h->slice_type == B_TYPE){
3245         if(mb_type < 23){
3246             partition_count= b_mb_type_info[mb_type].partition_count;
3247             mb_type=         b_mb_type_info[mb_type].type;
3248         }else{
3249             mb_type -= 23;
3250             goto decode_intra_mb;
3251         }
3252     }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3253         if(mb_type < 5){
3254             partition_count= p_mb_type_info[mb_type].partition_count;
3255             mb_type=         p_mb_type_info[mb_type].type;
3256         }else{
3257             mb_type -= 5;
3258             goto decode_intra_mb;
3259         }
3260     }else{
3261        assert(h->slice_type == I_TYPE);
3262 decode_intra_mb:
3263         if(mb_type > 25){
3264             fprintf(stderr, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3265             return -1;
3266         }
3267         partition_count=0;
3268         cbp= i_mb_type_info[mb_type].cbp;
3269         h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3270         mb_type= i_mb_type_info[mb_type].type;
3271     }
3272
3273     if(h->mb_field_decoding_flag)
3274         mb_type |= MB_TYPE_INTERLACED;
3275
3276     s->current_picture.mb_type[mb_xy]= mb_type;
3277     h->slice_table[ mb_xy ]= h->slice_num;
3278     
3279     if(IS_INTRA_PCM(mb_type)){
3280         const uint8_t *ptr;
3281         int x, y;
3282         
3283         // we assume these blocks are very rare so we dont optimize it
3284         align_get_bits(&s->gb);
3285         
3286         ptr= s->gb.buffer + get_bits_count(&s->gb);
3287     
3288         for(y=0; y<16; y++){
3289             const int index= 4*(y&3) + 64*(y>>2);
3290             for(x=0; x<16; x++){
3291                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3292             }
3293         }
3294         for(y=0; y<8; y++){
3295             const int index= 256 + 4*(y&3) + 32*(y>>2);
3296             for(x=0; x<8; x++){
3297                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3298             }
3299         }
3300         for(y=0; y<8; y++){
3301             const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3302             for(x=0; x<8; x++){
3303                 h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3304             }
3305         }
3306     
3307         skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3308         
3309         memset(h->non_zero_count[mb_xy], 16, 16);
3310         
3311         return 0;
3312     }
3313         
3314     fill_caches(h, mb_type);
3315
3316     //mb_pred
3317     if(IS_INTRA(mb_type)){
3318 //            init_top_left_availability(h);
3319             if(IS_INTRA4x4(mb_type)){
3320                 int i;
3321
3322 //                fill_intra4x4_pred_table(h);
3323                 for(i=0; i<16; i++){
3324                     const int mode_coded= !get_bits1(&s->gb);
3325                     const int predicted_mode=  pred_intra_mode(h, i);
3326                     int mode;
3327
3328                     if(mode_coded){
3329                         const int rem_mode= get_bits(&s->gb, 3);
3330                         if(rem_mode<predicted_mode)
3331                             mode= rem_mode;
3332                         else
3333                             mode= rem_mode + 1;
3334                     }else{
3335                         mode= predicted_mode;
3336                     }
3337                     
3338                     h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3339                 }
3340                 write_back_intra_pred_mode(h);
3341                 if( check_intra4x4_pred_mode(h) < 0)
3342                     return -1;
3343             }else{
3344                 h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3345                 if(h->intra16x16_pred_mode < 0)
3346                     return -1;
3347             }
3348             h->chroma_pred_mode= get_ue_golomb(&s->gb);
3349
3350             h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3351             if(h->chroma_pred_mode < 0)
3352                 return -1;
3353     }else if(partition_count==4){
3354         int i, j, sub_partition_count[4], list, ref[2][4];
3355         
3356         if(h->slice_type == B_TYPE){
3357             for(i=0; i<4; i++){
3358                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3359                 if(h->sub_mb_type[i] >=13){
3360                     fprintf(stderr, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3361                     return -1;
3362                 }
3363                 sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3364                 h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3365             }
3366         }else{
3367             assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3368             for(i=0; i<4; i++){
3369                 h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3370                 if(h->sub_mb_type[i] >=4){
3371                     fprintf(stderr, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3372                     return -1;
3373                 }
3374                 sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3375                 h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3376             }
3377         }
3378         
3379         for(list=0; list<2; list++){
3380             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3381             if(ref_count == 0) continue;
3382             for(i=0; i<4; i++){
3383                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3384                     ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
3385                 }else{
3386                  //FIXME
3387                     ref[list][i] = -1;
3388                 }
3389             }
3390         }
3391         
3392         for(list=0; list<2; list++){
3393             const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3394             if(ref_count == 0) continue;
3395
3396             for(i=0; i<4; i++){
3397                 h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
3398                 h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
3399
3400                 if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
3401                     const int sub_mb_type= h->sub_mb_type[i];
3402                     const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
3403                     for(j=0; j<sub_partition_count[i]; j++){
3404                         int mx, my;
3405                         const int index= 4*i + block_width*j;
3406                         int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
3407                         pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
3408                         mx += get_se_golomb(&s->gb);
3409                         my += get_se_golomb(&s->gb);
3410                         tprintf("final mv:%d %d\n", mx, my);
3411
3412                         if(IS_SUB_8X8(sub_mb_type)){
3413                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
3414                             mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
3415                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
3416                             mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
3417                         }else if(IS_SUB_8X4(sub_mb_type)){
3418                             mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
3419                             mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
3420                         }else if(IS_SUB_4X8(sub_mb_type)){
3421                             mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
3422                             mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
3423                         }else{
3424                             assert(IS_SUB_4X4(sub_mb_type));
3425                             mv_cache[ 0 ][0]= mx;
3426                             mv_cache[ 0 ][1]= my;
3427                         }
3428                     }
3429                 }else{
3430                     uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
3431                     p[0] = p[1]=
3432                     p[8] = p[9]= 0;
3433                 }
3434             }
3435         }
3436     }else if(!IS_DIRECT(mb_type)){
3437         int list, mx, my, i;
3438          //FIXME we should set ref_idx_l? to 0 if we use that later ...
3439         if(IS_16X16(mb_type)){
3440             for(list=0; list<2; list++){
3441                 if(h->ref_count[0]>0){
3442                     if(IS_DIR(mb_type, 0, list)){
3443                         const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3444                         fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
3445                     }
3446                 }
3447             }
3448             for(list=0; list<2; list++){
3449                 if(IS_DIR(mb_type, 0, list)){
3450                     pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
3451                     mx += get_se_golomb(&s->gb);
3452                     my += get_se_golomb(&s->gb);
3453                     tprintf("final mv:%d %d\n", mx, my);
3454
3455                     fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
3456                 }
3457             }
3458         }
3459         else if(IS_16X8(mb_type)){
3460             for(list=0; list<2; list++){
3461                 if(h->ref_count[list]>0){
3462                     for(i=0; i<2; i++){
3463                         if(IS_DIR(mb_type, i, list)){
3464                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3465                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
3466                         }
3467                     }
3468                 }
3469             }
3470             for(list=0; list<2; list++){
3471                 for(i=0; i<2; i++){
3472                     if(IS_DIR(mb_type, i, list)){
3473                         pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
3474                         mx += get_se_golomb(&s->gb);
3475                         my += get_se_golomb(&s->gb);
3476                         tprintf("final mv:%d %d\n", mx, my);
3477
3478                         fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
3479                     }
3480                 }
3481             }
3482         }else{
3483             assert(IS_8X16(mb_type));
3484             for(list=0; list<2; list++){
3485                 if(h->ref_count[list]>0){
3486                     for(i=0; i<2; i++){
3487                         if(IS_DIR(mb_type, i, list)){ //FIXME optimize
3488                             const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3489                             fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
3490                         }
3491                     }
3492                 }
3493             }
3494             for(list=0; list<2; list++){
3495                 for(i=0; i<2; i++){
3496                     if(IS_DIR(mb_type, i, list)){
3497                         pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
3498                         mx += get_se_golomb(&s->gb);
3499                         my += get_se_golomb(&s->gb);
3500                         tprintf("final mv:%d %d\n", mx, my);
3501
3502                         fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
3503                     }
3504                 }
3505             }
3506         }
3507     }
3508     
3509     if(IS_INTER(mb_type))
3510         write_back_motion(h, mb_type);
3511     
3512     if(!IS_INTRA16x16(mb_type)){
3513         cbp= get_ue_golomb(&s->gb);
3514         if(cbp > 47){
3515             fprintf(stderr, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
3516             return -1;
3517         }
3518         
3519         if(IS_INTRA4x4(mb_type))
3520             cbp= golomb_to_intra4x4_cbp[cbp];
3521         else
3522             cbp= golomb_to_inter_cbp[cbp];
3523     }
3524
3525     if(cbp || IS_INTRA16x16(mb_type)){
3526         int i8x8, i4x4, chroma_idx;
3527         int chroma_qp, dquant;
3528         GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
3529         const uint8_t *scan, *dc_scan;
3530         
3531 //        fill_non_zero_count_cache(h);
3532
3533         if(IS_INTERLACED(mb_type)){
3534             scan= field_scan;
3535             dc_scan= luma_dc_field_scan;
3536         }else{
3537             scan= zigzag_scan;
3538             dc_scan= luma_dc_zigzag_scan;
3539         }
3540
3541         dquant= get_se_golomb(&s->gb);
3542
3543         if( dquant > 25 || dquant < -26 ){
3544             fprintf(stderr, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
3545             return -1;
3546         }
3547         
3548         s->qscale += dquant;
3549         if(((unsigned)s->qscale) > 51){
3550             if(s->qscale<0) s->qscale+= 52;
3551             else            s->qscale-= 52;
3552         }
3553         
3554         h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
3555         if(IS_INTRA16x16(mb_type)){
3556             if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
3557                 return -1; //FIXME continue if partotioned and other retirn -1 too
3558             }
3559
3560             assert((cbp&15) == 0 || (cbp&15) == 15);
3561
3562             if(cbp&15){
3563                 for(i8x8=0; i8x8<4; i8x8++){
3564                     for(i4x4=0; i4x4<4; i4x4++){
3565                         const int index= i4x4 + 4*i8x8;
3566                         if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
3567                             return -1;
3568                         }
3569                     }
3570                 }
3571             }else{
3572                 memset(&h->non_zero_count_cache[8], 0, 8*4); //FIXME stupid & slow
3573             }
3574         }else{
3575             for(i8x8=0; i8x8<4; i8x8++){
3576                 if(cbp & (1<<i8x8)){
3577                     for(i4x4=0; i4x4<4; i4x4++){
3578                         const int index= i4x4 + 4*i8x8;
3579                         
3580                         if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
3581                             return -1;
3582                         }
3583                     }
3584                 }else{
3585                     uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
3586                     nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
3587                 }
3588             }
3589         }
3590         
3591         if(cbp&0x30){
3592             for(chroma_idx=0; chroma_idx<2; chroma_idx++)
3593                 if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
3594                     return -1;
3595                 }
3596         }
3597
3598         if(cbp&0x20){
3599             for(chroma_idx=0; chroma_idx<2; chroma_idx++){
3600                 for(i4x4=0; i4x4<4; i4x4++){
3601                     const int index= 16 + 4*chroma_idx + i4x4;
3602                     if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
3603                         return -1;
3604                     }
3605                 }
3606             }
3607         }else{
3608             uint8_t * const nnz= &h->non_zero_count_cache[0];
3609             nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
3610             nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
3611         }
3612     }else{
3613         memset(&h->non_zero_count_cache[8], 0, 8*5);
3614     }
3615     write_back_non_zero_count(h);
3616
3617     return 0;
3618 }
3619
3620 static int decode_slice(H264Context *h){
3621     MpegEncContext * const s = &h->s;
3622     const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
3623
3624     s->mb_skip_run= -1;
3625     
3626 #if 1
3627     for(;;){
3628         int ret= decode_mb(h);
3629             
3630         hl_decode_mb(h);
3631         
3632         if(ret>=0 && h->sps.mb_aff){ //FIXME optimal? or let mb_decode decode 16x32 ?
3633             s->mb_y++;
3634             ret= decode_mb(h);
3635             
3636             hl_decode_mb(h);
3637             s->mb_y--;
3638         }
3639
3640         if(ret<0){
3641             fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3642             ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3643
3644             return -1;
3645         }
3646         
3647         if(++s->mb_x >= s->mb_width){
3648             s->mb_x=0;
3649             ff_draw_horiz_band(s, 16*s->mb_y, 16);
3650             if(++s->mb_y >= s->mb_height){
3651                 tprintf("slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
3652
3653                 if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3654                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3655
3656                     return 0;
3657                 }else{
3658                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3659
3660                     return -1;
3661                 }
3662             }
3663         }
3664         
3665         if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
3666             if(get_bits_count(&s->gb) == s->gb.size_in_bits){
3667                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3668
3669                 return 0;
3670             }else{
3671                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3672
3673                 return -1;
3674             }
3675         }
3676     }
3677 #endif
3678 #if 0
3679     for(;s->mb_y < s->mb_height; s->mb_y++){
3680         for(;s->mb_x < s->mb_width; s->mb_x++){
3681             int ret= decode_mb(h);
3682             
3683             hl_decode_mb(h);
3684
3685             if(ret<0){
3686                 fprintf(stderr, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
3687                 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3688
3689                 return -1;
3690             }
3691         
3692             if(++s->mb_x >= s->mb_width){
3693                 s->mb_x=0;
3694                 if(++s->mb_y >= s->mb_height){
3695                     if(get_bits_count(s->gb) == s->gb.size_in_bits){
3696                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3697
3698                         return 0;
3699                     }else{
3700                         ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3701
3702                         return -1;
3703                     }
3704                 }
3705             }
3706         
3707             if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
3708                 if(get_bits_count(s->gb) == s->gb.size_in_bits){
3709                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
3710
3711                     return 0;
3712                 }else{
3713                     ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
3714
3715                     return -1;
3716                 }
3717             }
3718         }
3719         s->mb_x=0;
3720         ff_draw_horiz_band(s, 16*s->mb_y, 16);
3721     }
3722 #endif
3723     return -1; //not reached
3724 }
3725
3726 static inline int decode_vui_parameters(H264Context *h, SPS *sps){
3727     MpegEncContext * const s = &h->s;
3728     int aspect_ratio_info_present_flag, aspect_ratio_idc;
3729
3730     aspect_ratio_info_present_flag= get_bits1(&s->gb);
3731     
3732     if( aspect_ratio_info_present_flag ) {
3733         aspect_ratio_idc= get_bits(&s->gb, 8);
3734         if( aspect_ratio_idc == EXTENDED_SAR ) {
3735             sps->sar_width= get_bits(&s->gb, 16);
3736             sps->sar_height= get_bits(&s->gb, 16);
3737         }else if(aspect_ratio_idc < 16){
3738             sps->sar_width=  pixel_aspect[aspect_ratio_idc][0];
3739             sps->sar_height= pixel_aspect[aspect_ratio_idc][1];
3740         }else{
3741             fprintf(stderr, "illegal aspect ratio\n");
3742             return -1;
3743         }
3744     }else{
3745         sps->sar_width= 
3746         sps->sar_height= 0;
3747     }
3748 //            s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
3749 #if 0
3750 | overscan_info_present_flag                        |0  |u(1)    |
3751 | if( overscan_info_present_flag )                  |   |        |
3752 |  overscan_appropriate_flag                        |0  |u(1)    |
3753 | video_signal_type_present_flag                    |0  |u(1)    |
3754 | if( video_signal_type_present_flag ) {            |   |        |
3755 |  video_format                                     |0  |u(3)    |
3756 |  video_full_range_flag                            |0  |u(1)    |
3757 |  colour_description_present_flag                  |0  |u(1)    |
3758 |  if( colour_description_present_flag ) {          |   |        |
3759 |   colour_primaries                                |0  |u(8)    |
3760 |   transfer_characteristics                        |0  |u(8)    |
3761 |   matrix_coefficients                             |0  |u(8)    |
3762 |  }                                                |   |        |
3763 | }                                                 |   |        |
3764 | chroma_location_info_present_flag                 |0  |u(1)    |
3765 | if ( chroma_location_info_present_flag ) {        |   |        |
3766 |  chroma_sample_location_type_top_field            |0  |ue(v)   |
3767 |  chroma_sample_location_type_bottom_field         |0  |ue(v)   |
3768 | }                                                 |   |        |
3769 | timing_info_present_flag                          |0  |u(1)    |
3770 | if( timing_info_present_flag ) {                  |   |        |
3771 |  num_units_in_tick                                |0  |u(32)   |
3772 |  time_scale                                       |0  |u(32)   |
3773 |  fixed_frame_rate_flag                            |0  |u(1)    |
3774 | }                                                 |   |        |
3775 | nal_hrd_parameters_present_flag                   |0  |u(1)    |
3776 | if( nal_hrd_parameters_present_flag  = =  1)      |   |        |
3777 |  hrd_parameters( )                                |   |        |
3778 | vcl_hrd_parameters_present_flag                   |0  |u(1)    |
3779 | if( vcl_hrd_parameters_present_flag  = =  1)      |   |        |
3780 |  hrd_parameters( )                                |   |        |
3781 | if( ( nal_hrd_parameters_present_flag  = =  1  | ||   |        |
3782 |                                                   |   |        |
3783 |( vcl_hrd_parameters_present_flag  = =  1 ) )      |   |        |
3784 |  low_delay_hrd_flag                               |0  |u(1)    |
3785 | bitstream_restriction_flag                        |0  |u(1)    |
3786 | if( bitstream_restriction_flag ) {                |0  |u(1)    |
3787 |  motion_vectors_over_pic_boundaries_flag          |0  |u(1)    |
3788 |  max_bytes_per_pic_denom                          |0  |ue(v)   |
3789 |  max_bits_per_mb_denom                            |0  |ue(v)   |
3790 |  log2_max_mv_length_horizontal                    |0  |ue(v)   |
3791 |  log2_max_mv_length_vertical                      |0  |ue(v)   |
3792 |  num_reorder_frames                               |0  |ue(v)   |
3793 |  max_dec_frame_buffering                          |0  |ue(v)   |
3794 | }                                                 |   |        |
3795 |}                                                  |   |        |
3796 #endif
3797     return 0;
3798 }
3799
3800 static inline int decode_seq_parameter_set(H264Context *h){
3801     MpegEncContext * const s = &h->s;
3802     int profile_idc, level_idc;
3803     int sps_id, i;
3804     SPS *sps;
3805     
3806     profile_idc= get_bits(&s->gb, 8);
3807     get_bits1(&s->gb);   //constraint_set0_flag
3808     get_bits1(&s->gb);   //constraint_set1_flag
3809     get_bits1(&s->gb);   //constraint_set2_flag
3810     get_bits(&s->gb, 5); // reserved
3811     level_idc= get_bits(&s->gb, 8);
3812     sps_id= get_ue_golomb(&s->gb);
3813     
3814     sps= &h->sps_buffer[ sps_id ];
3815     sps->profile_idc= profile_idc;
3816     sps->level_idc= level_idc;
3817     
3818     sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
3819     sps->poc_type= get_ue_golomb(&s->gb);
3820     
3821     if(sps->poc_type == 0){ //FIXME #define
3822         sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
3823     } else if(sps->poc_type == 1){//FIXME #define
3824         sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
3825         sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
3826         sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
3827         sps->poc_cycle_length= get_ue_golomb(&s->gb);
3828         
3829         for(i=0; i<sps->poc_cycle_length; i++)
3830             sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
3831     }
3832     if(sps->poc_type > 2){
3833         fprintf(stderr, "illegal POC type %d\n", sps->poc_type);
3834         return -1;
3835     }
3836
3837     sps->ref_frame_count= get_ue_golomb(&s->gb);
3838     sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
3839     sps->mb_width= get_ue_golomb(&s->gb) + 1;
3840     sps->mb_height= get_ue_golomb(&s->gb) + 1;
3841     sps->frame_mbs_only_flag= get_bits1(&s->gb);
3842     if(!sps->frame_mbs_only_flag)
3843         sps->mb_aff= get_bits1(&s->gb);
3844     else
3845         sps->mb_aff= 0;
3846
3847     sps->direct_8x8_inference_flag= get_bits1(&s->gb);
3848
3849     sps->crop= get_bits1(&s->gb);
3850     if(sps->crop){
3851         sps->crop_left  = get_ue_golomb(&s->gb);
3852         sps->crop_right = get_ue_golomb(&s->gb);
3853         sps->crop_top   = get_ue_golomb(&s->gb);
3854         sps->crop_bottom= get_ue_golomb(&s->gb);
3855         if(sps->crop_left || sps->crop_top){
3856             fprintf(stderr, "insane croping not completly supported, this could look slightly wrong ...\n");
3857         }
3858     }else{
3859         sps->crop_left  = 
3860         sps->crop_right = 
3861         sps->crop_top   = 
3862         sps->crop_bottom= 0;
3863     }
3864
3865     sps->vui_parameters_present_flag= get_bits1(&s->gb);
3866     if( sps->vui_parameters_present_flag )
3867         decode_vui_parameters(h, sps);
3868     
3869     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3870         printf("sps:%d profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n", 
3871                sps_id, sps->profile_idc, sps->level_idc,
3872                sps->poc_type,
3873                sps->ref_frame_count,
3874                sps->mb_width, sps->mb_height,
3875                sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
3876                sps->direct_8x8_inference_flag ? "8B8" : "",
3877                sps->crop_left, sps->crop_right, 
3878                sps->crop_top, sps->crop_bottom, 
3879                sps->vui_parameters_present_flag ? "VUI" : ""
3880                );
3881     }
3882     return 0;
3883 }
3884
3885 static inline int decode_picture_parameter_set(H264Context *h){
3886     MpegEncContext * const s = &h->s;
3887     int pps_id= get_ue_golomb(&s->gb);
3888     PPS *pps= &h->pps_buffer[pps_id];
3889     
3890     pps->sps_id= get_ue_golomb(&s->gb);
3891     pps->cabac= get_bits1(&s->gb);
3892     pps->pic_order_present= get_bits1(&s->gb);
3893     pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
3894     if(pps->slice_group_count > 1 ){
3895         pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
3896 fprintf(stderr, "FMO not supported\n");
3897         switch(pps->mb_slice_group_map_type){
3898         case 0:
3899 #if 0
3900 |   for( i = 0; i <= num_slice_groups_minus1; i++ ) |   |        |
3901 |    run_length[ i ]                                |1  |ue(v)   |
3902 #endif
3903             break;
3904         case 2:
3905 #if 0
3906 |   for( i = 0; i < num_slice_groups_minus1; i++ )  |   |        |
3907 |{                                                  |   |        |
3908 |    top_left_mb[ i ]                               |1  |ue(v)   |
3909 |    bottom_right_mb[ i ]                           |1  |ue(v)   |
3910 |   }                                               |   |        |
3911 #endif
3912             break;
3913         case 3:
3914         case 4:
3915         case 5:
3916 #if 0
3917 |   slice_group_change_direction_flag               |1  |u(1)    |
3918 |   slice_group_change_rate_minus1                  |1  |ue(v)   |
3919 #endif
3920             break;
3921         case 6:
3922 #if 0
3923 |   slice_group_id_cnt_minus1                       |1  |ue(v)   |
3924 |   for( i = 0; i <= slice_group_id_cnt_minus1; i++ |   |        |
3925 |)                                                  |   |        |
3926 |    slice_group_id[ i ]                            |1  |u(v)    |
3927 #endif
3928             break;
3929         }
3930     }
3931     pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3932     pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3933     if(pps->ref_count[0] > 32 || pps->ref_count[1] > 32){
3934         fprintf(stderr, "reference overflow (pps)\n");
3935         return -1;
3936     }
3937     
3938     pps->weighted_pred= get_bits1(&s->gb);
3939     pps->weighted_bipred_idc= get_bits(&s->gb, 2);
3940     pps->init_qp= get_se_golomb(&s->gb) + 26;
3941     pps->init_qs= get_se_golomb(&s->gb) + 26;
3942     pps->chroma_qp_index_offset= get_se_golomb(&s->gb);
3943     pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
3944     pps->constrained_intra_pred= get_bits1(&s->gb);
3945     pps->redundant_pic_cnt_present = get_bits1(&s->gb);
3946     
3947     if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3948         printf("pps:%d sps:%d %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d %s %s %s\n", 
3949                pps_id, pps->sps_id,
3950                pps->cabac ? "CABAC" : "CAVLC",
3951                pps->slice_group_count,
3952                pps->ref_count[0], pps->ref_count[1],
3953                pps->weighted_pred ? "weighted" : "",
3954                pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset,
3955                pps->deblocking_filter_parameters_present ? "LPAR" : "",
3956                pps->constrained_intra_pred ? "CONSTR" : "",
3957                pps->redundant_pic_cnt_present ? "REDU" : ""
3958                );
3959     }
3960     
3961     return 0;
3962 }
3963
3964 /**
3965  * finds the end of the current frame in the bitstream.
3966  * @return the position of the first byte of the next frame, or -1
3967  */
3968 static int find_frame_end(MpegEncContext *s, uint8_t *buf, int buf_size){
3969     ParseContext *pc= &s->parse_context;
3970     int i;
3971     uint32_t state;
3972 //printf("first %02X%02X%02X%02X\n", buf[0], buf[1],buf[2],buf[3]);
3973 //    mb_addr= pc->mb_addr - 1;
3974     state= pc->state;
3975     //FIXME this will fail with slices
3976     for(i=0; i<buf_size; i++){
3977         state= (state<<8) | buf[i];
3978         if((state&0xFFFFFF1F) == 0x101 || (state&0xFFFFFF1F) == 0x102 || (state&0xFFFFFF1F) == 0x105){
3979             if(pc->frame_start_found){
3980                 pc->state=-1; 
3981                 pc->frame_start_found= 0;
3982                 return i-3;
3983             }
3984             pc->frame_start_found= 1;
3985         }
3986     }
3987     
3988     pc->state= state;
3989     return END_NOT_FOUND;
3990 }
3991
3992 static int decode_nal_units(H264Context *h, uint8_t *buf, int buf_size){
3993     MpegEncContext * const s = &h->s;
3994     AVCodecContext * const avctx= s->avctx;
3995     int buf_index=0;
3996 #if 0
3997     int i;
3998     for(i=0; i<32; i++){
3999         printf("%X ", buf[i]);
4000     }
4001 #endif
4002     for(;;){
4003         int consumed;
4004         int dst_length;
4005         int bit_length;
4006         uint8_t *ptr;
4007         
4008         // start code prefix search
4009         for(; buf_index + 3 < buf_size; buf_index++){
4010             // this should allways succeed in the first iteration
4011             if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
4012                 break;
4013         }
4014         
4015         if(buf_index+3 >= buf_size) break;
4016         
4017         buf_index+=3;
4018         
4019         ptr= decode_nal(h, buf + buf_index, &dst_length, &consumed, buf_size - buf_index);
4020         if(ptr[dst_length - 1] == 0) dst_length--;
4021         bit_length= 8*dst_length - decode_rbsp_trailing(ptr + dst_length - 1);
4022
4023         if(s->avctx->debug&FF_DEBUG_STARTCODE){
4024             printf("NAL %d at %d length %d\n", h->nal_unit_type, buf_index, dst_length);
4025         }
4026         
4027         buf_index += consumed;
4028
4029         if(h->nal_ref_idc < s->hurry_up)
4030             continue;
4031         
4032         switch(h->nal_unit_type){
4033         case NAL_IDR_SLICE:
4034             idr(h); //FIXME ensure we dont loose some frames if there is reordering
4035         case NAL_SLICE:
4036             init_get_bits(&s->gb, ptr, bit_length);
4037             h->intra_gb_ptr=
4038             h->inter_gb_ptr= &s->gb;
4039             s->data_partitioning = 0;
4040             
4041             if(decode_slice_header(h) < 0) return -1;
4042             if(h->redundant_pic_count==0)
4043                 decode_slice(h);
4044             break;
4045         case NAL_DPA:
4046             init_get_bits(&s->gb, ptr, bit_length);
4047             h->intra_gb_ptr=
4048             h->inter_gb_ptr= NULL;
4049             s->data_partitioning = 1;
4050             
4051             if(decode_slice_header(h) < 0) return -1;
4052             break;
4053         case NAL_DPB:
4054             init_get_bits(&h->intra_gb, ptr, bit_length);
4055             h->intra_gb_ptr= &h->intra_gb;
4056             break;
4057         case NAL_DPC:
4058             init_get_bits(&h->inter_gb, ptr, bit_length);
4059             h->inter_gb_ptr= &h->inter_gb;
4060
4061             if(h->redundant_pic_count==0 && h->intra_gb_ptr && s->data_partitioning)
4062                 decode_slice(h);
4063             break;
4064         case NAL_SEI:
4065             break;
4066         case NAL_SPS:
4067             init_get_bits(&s->gb, ptr, bit_length);
4068             decode_seq_parameter_set(h);
4069             
4070             if(s->flags& CODEC_FLAG_LOW_DELAY)
4071                 s->low_delay=1;
4072       
4073             avctx->has_b_frames= !s->low_delay;
4074             break;
4075         case NAL_PPS:
4076             init_get_bits(&s->gb, ptr, bit_length);
4077             
4078             decode_picture_parameter_set(h);
4079
4080             break;
4081         case NAL_PICTURE_DELIMITER:
4082             break;
4083         case NAL_FILTER_DATA:
4084             break;
4085         }        
4086
4087         //FIXME move after where irt is set
4088         s->current_picture.pict_type= s->pict_type;
4089         s->current_picture.key_frame= s->pict_type == I_TYPE;
4090     }
4091     
4092     if(!s->current_picture_ptr) return buf_index; //no frame
4093     
4094     h->prev_frame_num_offset= h->frame_num_offset;
4095     h->prev_frame_num= h->frame_num;
4096     if(s->current_picture_ptr->reference){
4097         h->prev_poc_msb= h->poc_msb;
4098         h->prev_poc_lsb= h->poc_lsb;
4099     }
4100     if(s->current_picture_ptr->reference)
4101         execute_ref_pic_marking(h, h->mmco, h->mmco_index);
4102     else
4103         assert(h->mmco_index==0);
4104
4105     ff_er_frame_end(s);
4106     MPV_frame_end(s);
4107
4108     return buf_index;
4109 }
4110
4111 /**
4112  * retunrs the number of bytes consumed for building the current frame
4113  */
4114 static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
4115     if(s->flags&CODEC_FLAG_TRUNCATED){
4116         pos -= s->parse_context.last_index;
4117         if(pos<0) pos=0; // FIXME remove (uneeded?)
4118         
4119         return pos;
4120     }else{
4121         if(pos==0) pos=1; //avoid infinite loops (i doubt thats needed but ...)
4122         if(pos+10>buf_size) pos=buf_size; // oops ;)
4123
4124         return pos;
4125     }
4126 }
4127
4128 static int decode_frame(AVCodecContext *avctx, 
4129                              void *data, int *data_size,
4130                              uint8_t *buf, int buf_size)
4131 {
4132     H264Context *h = avctx->priv_data;
4133     MpegEncContext *s = &h->s;
4134     AVFrame *pict = data; 
4135     int buf_index;
4136     
4137     s->flags= avctx->flags;
4138
4139     *data_size = 0;
4140    
4141    /* no supplementary picture */
4142     if (buf_size == 0) {
4143         return 0;
4144     }
4145     
4146     if(s->flags&CODEC_FLAG_TRUNCATED){
4147         int next= find_frame_end(s, buf, buf_size);
4148         
4149         if( ff_combine_frame(s, next, &buf, &buf_size) < 0 )
4150             return buf_size;
4151 //printf("next:%d buf_size:%d last_index:%d\n", next, buf_size, s->parse_context.last_index);
4152     }
4153
4154     if(s->avctx->extradata_size && s->picture_number==0){
4155         if(0 < decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) ) 
4156             return -1;
4157     }
4158
4159     buf_index=decode_nal_units(h, buf, buf_size);
4160     if(buf_index < 0) 
4161         return -1;
4162
4163     //FIXME do something with unavailable reference frames    
4164  
4165 //    if(ret==FRAME_SKIPED) return get_consumed_bytes(s, buf_index, buf_size);
4166 #if 0
4167     if(s->pict_type==B_TYPE || s->low_delay){
4168         *pict= *(AVFrame*)&s->current_picture;
4169     } else {
4170         *pict= *(AVFrame*)&s->last_picture;
4171     }
4172 #endif
4173     if(!s->current_picture_ptr){
4174         fprintf(stderr, "error, NO frame\n");
4175         return -1;
4176     }
4177
4178     *pict= *(AVFrame*)&s->current_picture; //FIXME 
4179     ff_print_debug_info(s, s->current_picture_ptr);
4180     assert(pict->data[0]);
4181 //printf("out %d\n", (int)pict->data[0]);
4182 #if 0 //?
4183
4184     /* Return the Picture timestamp as the frame number */
4185     /* we substract 1 because it is added on utils.c    */
4186     avctx->frame_number = s->picture_number - 1;
4187 #endif
4188 #if 0
4189     /* dont output the last pic after seeking */
4190     if(s->last_picture_ptr || s->low_delay)
4191     //Note this isnt a issue as a IDR pic should flush teh buffers
4192 #endif
4193         *data_size = sizeof(AVFrame);
4194     return get_consumed_bytes(s, buf_index, buf_size);
4195 }
4196 #if 0
4197 static inline void fill_mb_avail(H264Context *h){
4198     MpegEncContext * const s = &h->s;
4199     const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4200
4201     if(s->mb_y){
4202         h->mb_avail[0]= s->mb_x                 && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
4203         h->mb_avail[1]=                            h->slice_table[mb_xy - s->mb_stride    ] == h->slice_num;
4204         h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
4205     }else{
4206         h->mb_avail[0]=
4207         h->mb_avail[1]=
4208         h->mb_avail[2]= 0;
4209     }
4210     h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
4211     h->mb_avail[4]= 1; //FIXME move out
4212     h->mb_avail[5]= 0; //FIXME move out
4213 }
4214 #endif
4215
4216 #if 0 //selftest
4217 #define COUNT 8000
4218 #define SIZE (COUNT*40)
4219 int main(){
4220     int i;
4221     uint8_t temp[SIZE];
4222     PutBitContext pb;
4223     GetBitContext gb;
4224 //    int int_temp[10000];
4225     DSPContext dsp;
4226     AVCodecContext avctx;
4227     
4228     dsputil_init(&dsp, &avctx);
4229
4230     init_put_bits(&pb, temp, SIZE, NULL, NULL);
4231     printf("testing unsigned exp golomb\n");
4232     for(i=0; i<COUNT; i++){
4233         START_TIMER
4234         set_ue_golomb(&pb, i);
4235         STOP_TIMER("set_ue_golomb");
4236     }
4237     flush_put_bits(&pb);
4238     
4239     init_get_bits(&gb, temp, 8*SIZE);
4240     for(i=0; i<COUNT; i++){
4241         int j, s;
4242         
4243         s= show_bits(&gb, 24);
4244         
4245         START_TIMER
4246         j= get_ue_golomb(&gb);
4247         if(j != i){
4248             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4249 //            return -1;
4250         }
4251         STOP_TIMER("get_ue_golomb");
4252     }
4253     
4254     
4255     init_put_bits(&pb, temp, SIZE, NULL, NULL);
4256     printf("testing signed exp golomb\n");
4257     for(i=0; i<COUNT; i++){
4258         START_TIMER
4259         set_se_golomb(&pb, i - COUNT/2);
4260         STOP_TIMER("set_se_golomb");
4261     }
4262     flush_put_bits(&pb);
4263     
4264     init_get_bits(&gb, temp, 8*SIZE);
4265     for(i=0; i<COUNT; i++){
4266         int j, s;
4267         
4268         s= show_bits(&gb, 24);
4269         
4270         START_TIMER
4271         j= get_se_golomb(&gb);
4272         if(j != i - COUNT/2){
4273             printf("missmatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
4274 //            return -1;
4275         }
4276         STOP_TIMER("get_se_golomb");
4277     }
4278
4279     printf("testing 4x4 (I)DCT\n");
4280     
4281     DCTELEM block[16];
4282     uint8_t src[16], ref[16];
4283     uint64_t error= 0, max_error=0;
4284
4285     for(i=0; i<COUNT; i++){
4286         int j;
4287 //        printf("%d %d %d\n", r1, r2, (r2-r1)*16);
4288         for(j=0; j<16; j++){
4289             ref[j]= random()%255;
4290             src[j]= random()%255;
4291         }
4292
4293         h264_diff_dct_c(block, src, ref, 4);
4294         
4295         //normalize
4296         for(j=0; j<16; j++){
4297 //            printf("%d ", block[j]);
4298             block[j]= block[j]*4;
4299             if(j&1) block[j]= (block[j]*4 + 2)/5;
4300             if(j&4) block[j]= (block[j]*4 + 2)/5;
4301         }
4302 //        printf("\n");
4303         
4304         h264_add_idct_c(ref, block, 4);
4305 /*        for(j=0; j<16; j++){
4306             printf("%d ", ref[j]);
4307         }
4308         printf("\n");*/
4309             
4310         for(j=0; j<16; j++){
4311             int diff= ABS(src[j] - ref[j]);
4312             
4313             error+= diff*diff;
4314             max_error= FFMAX(max_error, diff);
4315         }
4316     }
4317     printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
4318 #if 0
4319     printf("testing quantizer\n");
4320     for(qp=0; qp<52; qp++){
4321         for(i=0; i<16; i++)
4322             src1_block[i]= src2_block[i]= random()%255;
4323         
4324     }
4325 #endif
4326     printf("Testing NAL layer\n");
4327     
4328     uint8_t bitstream[COUNT];
4329     uint8_t nal[COUNT*2];
4330     H264Context h;
4331     memset(&h, 0, sizeof(H264Context));
4332     
4333     for(i=0; i<COUNT; i++){
4334         int zeros= i;
4335         int nal_length;
4336         int consumed;
4337         int out_length;
4338         uint8_t *out;
4339         int j;
4340         
4341         for(j=0; j<COUNT; j++){
4342             bitstream[j]= (random() % 255) + 1;
4343         }
4344         
4345         for(j=0; j<zeros; j++){
4346             int pos= random() % COUNT;
4347             while(bitstream[pos] == 0){
4348                 pos++;
4349                 pos %= COUNT;
4350             }
4351             bitstream[pos]=0;
4352         }
4353         
4354         START_TIMER
4355         
4356         nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
4357         if(nal_length<0){
4358             printf("encoding failed\n");
4359             return -1;
4360         }
4361         
4362         out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
4363
4364         STOP_TIMER("NAL")
4365         
4366         if(out_length != COUNT){
4367             printf("incorrect length %d %d\n", out_length, COUNT);
4368             return -1;
4369         }
4370         
4371         if(consumed != nal_length){
4372             printf("incorrect consumed length %d %d\n", nal_length, consumed);
4373             return -1;
4374         }
4375         
4376         if(memcmp(bitstream, out, COUNT)){
4377             printf("missmatch\n");
4378             return -1;
4379         }
4380     }
4381     
4382     printf("Testing RBSP\n");
4383     
4384     
4385     return 0;
4386 }
4387 #endif
4388
4389
4390 static int decode_end(AVCodecContext *avctx)
4391 {
4392     H264Context *h = avctx->priv_data;
4393     MpegEncContext *s = &h->s;
4394     
4395     free_tables(h); //FIXME cleanup init stuff perhaps
4396     MPV_common_end(s);
4397
4398 //    memset(h, 0, sizeof(H264Context));
4399         
4400     return 0;
4401 }
4402
4403
4404 AVCodec h264_decoder = {
4405     "h264",
4406     CODEC_TYPE_VIDEO,
4407     CODEC_ID_H264,
4408     sizeof(H264Context),
4409     decode_init,
4410     NULL,
4411     decode_end,
4412     decode_frame,
4413     /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_TRUNCATED,
4414 };
4415
4416 #include "svq3.c"