2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
31 #include "libavutil/intreadwrite.h"
34 #include "mpegvideo.h"
37 #include "rectangle.h"
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_is_not_initialized_see_mb_type
42 #define LUMA_DC_BLOCK_INDEX 24
43 #define CHROMA_DC_BLOCK_INDEX 25
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
55 #define MAX_MMCO_COUNT 66
57 #define MAX_DELAYED_PIC_COUNT 16
59 /* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
63 #define ALLOW_NOCHROMA
68 * The maximum number of slices supported by the decoder.
69 * must be a power of 2
73 #ifdef ALLOW_INTERLACE
74 #define MB_MBAFF h->mb_mbaff
75 #define MB_FIELD h->mb_field_decoding_flag
76 #define FRAME_MBAFF h->mb_aff_frame
77 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
82 #define FIELD_PICTURE 0
84 #define IS_INTERLACED(mb_type) 0
86 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
89 #define CHROMA h->sps.chroma_format_idc
95 #define CABAC h->pps.cabac
98 #define EXTENDED_SAR 255
100 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
101 #define MB_TYPE_8x8DCT 0x01000000
102 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
103 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
106 * Value of Picture.reference when Picture is not a reference picture, but
107 * is held for delayed output.
109 #define DELAYED_PIC_REF 4
127 NAL_AUXILIARY_SLICE=19
134 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
135 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
136 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
137 SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
141 * pic_struct in picture timing SEI message
144 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
145 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
146 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
147 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
148 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
149 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
150 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
151 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
152 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
156 * Sequence parameter set
162 int chroma_format_idc;
163 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
164 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
165 int poc_type; ///< pic_order_cnt_type
166 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
167 int delta_pic_order_always_zero_flag;
168 int offset_for_non_ref_pic;
169 int offset_for_top_to_bottom_field;
170 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
171 int ref_frame_count; ///< num_ref_frames
172 int gaps_in_frame_num_allowed_flag;
173 int mb_width; ///< pic_width_in_mbs_minus1 + 1
174 int mb_height; ///< pic_height_in_map_units_minus1 + 1
175 int frame_mbs_only_flag;
176 int mb_aff; ///<mb_adaptive_frame_field_flag
177 int direct_8x8_inference_flag;
178 int crop; ///< frame_cropping_flag
179 unsigned int crop_left; ///< frame_cropping_rect_left_offset
180 unsigned int crop_right; ///< frame_cropping_rect_right_offset
181 unsigned int crop_top; ///< frame_cropping_rect_top_offset
182 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
183 int vui_parameters_present_flag;
185 int video_signal_type_present_flag;
187 int colour_description_present_flag;
188 enum AVColorPrimaries color_primaries;
189 enum AVColorTransferCharacteristic color_trc;
190 enum AVColorSpace colorspace;
191 int timing_info_present_flag;
192 uint32_t num_units_in_tick;
194 int fixed_frame_rate_flag;
195 short offset_for_ref_frame[256]; //FIXME dyn aloc?
196 int bitstream_restriction_flag;
197 int num_reorder_frames;
198 int scaling_matrix_present;
199 uint8_t scaling_matrix4[6][16];
200 uint8_t scaling_matrix8[2][64];
201 int nal_hrd_parameters_present_flag;
202 int vcl_hrd_parameters_present_flag;
203 int pic_struct_present_flag;
204 int time_offset_length;
205 int cpb_cnt; ///< See H.264 E.1.2
206 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
207 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
208 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
209 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
210 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
211 int residual_color_transform_flag; ///< residual_colour_transform_flag
215 * Picture parameter set
219 int cabac; ///< entropy_coding_mode_flag
220 int pic_order_present; ///< pic_order_present_flag
221 int slice_group_count; ///< num_slice_groups_minus1 + 1
222 int mb_slice_group_map_type;
223 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
224 int weighted_pred; ///< weighted_pred_flag
225 int weighted_bipred_idc;
226 int init_qp; ///< pic_init_qp_minus26 + 26
227 int init_qs; ///< pic_init_qs_minus26 + 26
228 int chroma_qp_index_offset[2];
229 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
230 int constrained_intra_pred; ///< constrained_intra_pred_flag
231 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
232 int transform_8x8_mode; ///< transform_8x8_mode_flag
233 uint8_t scaling_matrix4[6][16];
234 uint8_t scaling_matrix8[2][64];
235 uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
240 * Memory management control operation opcode.
242 typedef enum MMCOOpcode{
253 * Memory management control operation.
257 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
258 int long_arg; ///< index, pic_num, or num long refs depending on opcode
264 typedef struct H264Context{
266 H264DSPContext h264dsp;
267 int chroma_qp[2]; //QPc
269 int qp_thresh; ///< QP threshold to skip loopfilter
275 int chroma_pred_mode;
276 int intra16x16_pred_mode;
288 const uint8_t * left_block;
289 int topleft_partition;
291 int8_t intra4x4_pred_mode_cache[5*8];
292 int8_t (*intra4x4_pred_mode);
294 unsigned int topleft_samples_available;
295 unsigned int top_samples_available;
296 unsigned int topright_samples_available;
297 unsigned int left_samples_available;
298 uint8_t (*top_borders[2])[16+2*8];
301 * non zero coeff count cache.
302 * is 64 if not available.
304 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
312 uint8_t (*non_zero_count)[32];
315 * Motion vector cache.
317 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
318 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
319 #define LIST_NOT_USED -1 //FIXME rename?
320 #define PART_NOT_AVAILABLE -2
323 * is 1 if the specific list MV&references are set to 0,0,-2.
325 int mv_cache_clean[2];
328 * number of neighbors (top and/or left) that used 8x8 dct
330 int neighbor_transform_size;
333 * block_offset[ 0..23] for frame macroblocks
334 * block_offset[24..47] for field macroblocks
336 int block_offset[2*(16+8)];
338 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
340 int b_stride; //FIXME use s->b4_stride
342 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
348 SPS sps; ///< current sps
353 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
355 uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
356 uint32_t dequant8_buffer[2][52][64];
357 uint32_t (*dequant4_coeff[6])[16];
358 uint32_t (*dequant8_coeff[2])[64];
361 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
363 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
364 int slice_type_fixed;
366 //interlacing specific flags
368 int mb_field_decoding_flag;
369 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
371 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
373 //Weighted pred stuff
375 int use_weight_chroma;
376 int luma_log2_weight_denom;
377 int chroma_log2_weight_denom;
378 //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
379 int luma_weight[48][2][2];
380 int chroma_weight[48][2][2][2];
381 int implicit_weight[48][48][2];
383 int direct_spatial_mv_pred;
386 int dist_scale_factor[16];
387 int dist_scale_factor_field[2][32];
388 int map_col_to_list0[2][16+32];
389 int map_col_to_list0_field[2][2][16+32];
392 * num_ref_idx_l0/1_active_minus1 + 1
394 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
395 unsigned int list_count;
396 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
397 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
398 Reordered version of default_ref_list
399 according to picture reordering in slice header */
400 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
403 GetBitContext intra_gb;
404 GetBitContext inter_gb;
405 GetBitContext *intra_gb_ptr;
406 GetBitContext *inter_gb_ptr;
408 DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
409 DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16];
410 DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
416 uint8_t cabac_state[460];
418 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
423 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
424 uint8_t *chroma_pred_mode_table;
425 int last_qscale_diff;
426 uint8_t (*mvd_table[2])[2];
427 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
428 uint8_t *direct_table;
429 uint8_t direct_cache[5*8];
431 uint8_t zigzag_scan[16];
432 uint8_t zigzag_scan8x8[64];
433 uint8_t zigzag_scan8x8_cavlc[64];
434 uint8_t field_scan[16];
435 uint8_t field_scan8x8[64];
436 uint8_t field_scan8x8_cavlc[64];
437 const uint8_t *zigzag_scan_q0;
438 const uint8_t *zigzag_scan8x8_q0;
439 const uint8_t *zigzag_scan8x8_cavlc_q0;
440 const uint8_t *field_scan_q0;
441 const uint8_t *field_scan8x8_q0;
442 const uint8_t *field_scan8x8_cavlc_q0;
451 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
452 int slice_alpha_c0_offset;
453 int slice_beta_offset;
455 //=============================================================
456 //Things below are not used in the MB or more inner code
460 uint8_t *rbsp_buffer[2];
461 unsigned int rbsp_buffer_size[2];
464 * Used to parse AVC variant of h264
466 int is_avc; ///< this flag is != 0 if codec is avc1
467 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
468 int got_first; ///< this flag is != 0 if we've parsed a frame
470 SPS *sps_buffers[MAX_SPS_COUNT];
471 PPS *pps_buffers[MAX_PPS_COUNT];
473 int dequant_coeff_pps; ///< reinit tables when pps changes
475 uint16_t *slice_table_base;
481 int delta_poc_bottom;
484 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
485 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
486 int frame_num_offset; ///< for POC type 2
487 int prev_frame_num_offset; ///< for POC type 2
488 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
491 * frame_num for frames or 2*frame_num+1 for field pics.
496 * max_frame_num or 2*max_frame_num for field pics.
500 int redundant_pic_count;
502 Picture *short_ref[32];
503 Picture *long_ref[32];
504 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
505 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
509 * memory management control operations buffer.
511 MMCO mmco[MAX_MMCO_COUNT];
514 int long_ref_count; ///< number of actual long term references
515 int short_ref_count; ///< number of actual short term references
520 * @defgroup multithreading Members for slice based multithreading
523 struct H264Context *thread_context[MAX_THREADS];
526 * current slice number, used to initalize slice_num of each thread/context
531 * Max number of threads / contexts.
532 * This is equal to AVCodecContext.thread_count unless
533 * multithreaded decoding is impossible, in which case it is
539 * 1 if the single thread fallback warning has already been
540 * displayed, 0 otherwise.
542 int single_decode_warning;
548 * pic_struct in picture timing SEI message
550 SEI_PicStructType sei_pic_struct;
553 * Complement sei_pic_struct
554 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
555 * However, soft telecined frames may have these values.
556 * This is used in an attempt to flag soft telecine progressive.
558 int prev_interlaced_frame;
561 * Bit set of clock types for fields/frames in picture timing SEI message.
562 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
568 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
570 int sei_dpb_output_delay;
573 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
575 int sei_cpb_removal_delay;
578 * recovery_frame_cnt from SEI message
580 * Set to -1 if no recovery point SEI message found or to number of frames
581 * before playback synchronizes. Frames having recovery point are key
584 int sei_recovery_frame_cnt;
586 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
587 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
590 int sei_buffering_period_present; ///< Buffering period SEI flag
591 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
593 //SVQ3 specific fields
596 int unknown_svq3_flag;
597 int next_slice_index;
598 uint32_t svq3_watermark_key;
602 extern const uint8_t ff_h264_chroma_qp[52];
607 int ff_h264_decode_sei(H264Context *h);
612 int ff_h264_decode_seq_parameter_set(H264Context *h);
617 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
620 * Decode a network abstraction layer unit.
621 * @param consumed is the number of bytes used as input
622 * @param length is the length of the array
623 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
624 * @return decoded bytes, might be src+1 if no escapes
626 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
629 * Identify the exact end of the bitstream
630 * @return the length of the trailing, or 0 if damaged
632 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
635 * Free any data that may have been allocated in the H264 context like SPS, PPS etc.
637 av_cold void ff_h264_free_context(H264Context *h);
640 * Reconstruct bitstream slice_type.
642 int ff_h264_get_slice_type(const H264Context *h);
648 int ff_h264_alloc_tables(H264Context *h);
651 * Fill the default_ref_list.
653 int ff_h264_fill_default_ref_list(H264Context *h);
655 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
656 void ff_h264_fill_mbaff_ref_list(H264Context *h);
657 void ff_h264_remove_all_refs(H264Context *h);
660 * Execute the reference picture marking (memory management control operations).
662 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
664 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
666 void ff_generate_sliding_window_mmcos(H264Context *h);
670 * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
672 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
675 * Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
677 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
679 void ff_h264_write_back_intra_pred_mode(H264Context *h);
680 void ff_h264_hl_decode_mb(H264Context *h);
681 int ff_h264_frame_start(H264Context *h);
682 int ff_h264_decode_extradata(H264Context *h);
683 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
684 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
685 av_cold void ff_h264_decode_init_vlc(void);
688 * Decode a macroblock
689 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
691 int ff_h264_decode_mb_cavlc(H264Context *h);
694 * Decode a CABAC coded macroblock
695 * @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
697 int ff_h264_decode_mb_cabac(H264Context *h);
699 void ff_h264_init_cabac_states(H264Context *h);
701 void ff_h264_direct_dist_scale_factor(H264Context * const h);
702 void ff_h264_direct_ref_list_init(H264Context * const h);
703 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
705 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
706 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
709 * Reset SEI values at the beginning of the frame.
711 * @param h H.264 context.
713 void ff_h264_reset_sei(H264Context *h);
726 /* Scan8 organization:
734 * DY/DU/DV are for luma/chroma DC.
737 //This table must be here because scan8[constant] must be known at compiletime
738 static const uint8_t scan8[16 + 2*4 + 3]={
739 4+1*8, 5+1*8, 4+2*8, 5+2*8,
740 6+1*8, 7+1*8, 6+2*8, 7+2*8,
741 4+3*8, 5+3*8, 4+4*8, 5+4*8,
742 6+3*8, 7+3*8, 6+4*8, 7+4*8,
750 static av_always_inline uint32_t pack16to32(int a, int b){
752 return (b&0xFFFF) + (a<<16);
754 return (a&0xFFFF) + (b<<16);
758 static av_always_inline uint16_t pack8to16(int a, int b){
760 return (b&0xFF) + (a<<8);
762 return (a&0xFF) + (b<<8);
767 * gets the chroma qp.
769 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
770 return h->pps.chroma_qp_table[t][qscale];
773 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
775 static void fill_decode_neighbors(H264Context *h, int mb_type){
776 MpegEncContext * const s = &h->s;
777 const int mb_xy= h->mb_xy;
778 int topleft_xy, top_xy, topright_xy, left_xy[2];
779 static const uint8_t left_block_options[4][16]={
780 {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
781 {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
782 {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
783 {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
786 h->topleft_partition= -1;
788 top_xy = mb_xy - (s->mb_stride << MB_FIELD);
790 /* Wow, what a mess, why didn't they simplify the interlacing & intra
791 * stuff, I can't imagine that these complex rules are worth it. */
793 topleft_xy = top_xy - 1;
794 topright_xy= top_xy + 1;
795 left_xy[1] = left_xy[0] = mb_xy-1;
796 h->left_block = left_block_options[0];
798 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
799 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
801 if (left_mb_field_flag != curr_mb_field_flag) {
802 left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
803 if (curr_mb_field_flag) {
804 left_xy[1] += s->mb_stride;
805 h->left_block = left_block_options[3];
807 topleft_xy += s->mb_stride;
808 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
809 h->topleft_partition = 0;
810 h->left_block = left_block_options[1];
814 if(curr_mb_field_flag){
815 topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
816 topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
817 top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
819 if (left_mb_field_flag != curr_mb_field_flag) {
820 if (curr_mb_field_flag) {
821 left_xy[1] += s->mb_stride;
822 h->left_block = left_block_options[3];
824 h->left_block = left_block_options[2];
830 h->topleft_mb_xy = topleft_xy;
831 h->top_mb_xy = top_xy;
832 h->topright_mb_xy= topright_xy;
833 h->left_mb_xy[0] = left_xy[0];
834 h->left_mb_xy[1] = left_xy[1];
835 //FIXME do we need all in the context?
837 h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
838 h->top_type = s->current_picture.mb_type[top_xy] ;
839 h->topright_type= s->current_picture.mb_type[topright_xy];
840 h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
841 h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
844 if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
845 if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
846 if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
848 if(h->slice_table[topleft_xy ] != h->slice_num){
850 if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
851 if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
854 if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
857 static void fill_decode_caches(H264Context *h, int mb_type){
858 MpegEncContext * const s = &h->s;
859 int topleft_xy, top_xy, topright_xy, left_xy[2];
860 int topleft_type, top_type, topright_type, left_type[2];
861 const uint8_t * left_block= h->left_block;
864 topleft_xy = h->topleft_mb_xy ;
865 top_xy = h->top_mb_xy ;
866 topright_xy = h->topright_mb_xy;
867 left_xy[0] = h->left_mb_xy[0] ;
868 left_xy[1] = h->left_mb_xy[1] ;
869 topleft_type = h->topleft_type ;
870 top_type = h->top_type ;
871 topright_type= h->topright_type ;
872 left_type[0] = h->left_type[0] ;
873 left_type[1] = h->left_type[1] ;
875 if(!IS_SKIP(mb_type)){
876 if(IS_INTRA(mb_type)){
877 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
878 h->topleft_samples_available=
879 h->top_samples_available=
880 h->left_samples_available= 0xFFFF;
881 h->topright_samples_available= 0xEEEA;
883 if(!(top_type & type_mask)){
884 h->topleft_samples_available= 0xB3FF;
885 h->top_samples_available= 0x33FF;
886 h->topright_samples_available= 0x26EA;
888 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
889 if(IS_INTERLACED(mb_type)){
890 if(!(left_type[0] & type_mask)){
891 h->topleft_samples_available&= 0xDFFF;
892 h->left_samples_available&= 0x5FFF;
894 if(!(left_type[1] & type_mask)){
895 h->topleft_samples_available&= 0xFF5F;
896 h->left_samples_available&= 0xFF5F;
899 int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
901 assert(left_xy[0] == left_xy[1]);
902 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
903 h->topleft_samples_available&= 0xDF5F;
904 h->left_samples_available&= 0x5F5F;
908 if(!(left_type[0] & type_mask)){
909 h->topleft_samples_available&= 0xDF5F;
910 h->left_samples_available&= 0x5F5F;
914 if(!(topleft_type & type_mask))
915 h->topleft_samples_available&= 0x7FFF;
917 if(!(topright_type & type_mask))
918 h->topright_samples_available&= 0xFBFF;
920 if(IS_INTRA4x4(mb_type)){
921 if(IS_INTRA4x4(top_type)){
922 AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
924 h->intra4x4_pred_mode_cache[4+8*0]=
925 h->intra4x4_pred_mode_cache[5+8*0]=
926 h->intra4x4_pred_mode_cache[6+8*0]=
927 h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
930 if(IS_INTRA4x4(left_type[i])){
931 int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
932 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
933 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
935 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
936 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
951 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
953 AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
954 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
955 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
957 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
958 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
960 h->non_zero_count_cache[1+8*0]=
961 h->non_zero_count_cache[2+8*0]=
963 h->non_zero_count_cache[1+8*3]=
964 h->non_zero_count_cache[2+8*3]=
965 AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
968 for (i=0; i<2; i++) {
970 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
971 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
972 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
973 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
975 h->non_zero_count_cache[3+8*1 + 2*8*i]=
976 h->non_zero_count_cache[3+8*2 + 2*8*i]=
977 h->non_zero_count_cache[0+8*1 + 8*i]=
978 h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
985 h->top_cbp = h->cbp_table[top_xy];
987 h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
991 h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
992 | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
993 | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
995 h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
1001 if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
1003 for(list=0; list<h->list_count; list++){
1004 if(!USES_LIST(mb_type, list)){
1005 /*if(!h->mv_cache_clean[list]){
1006 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1007 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1008 h->mv_cache_clean[list]= 1;
1012 assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
1014 h->mv_cache_clean[list]= 0;
1016 if(USES_LIST(top_type, list)){
1017 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1018 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1019 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1020 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
1021 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1022 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
1024 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1025 AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
1028 if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
1030 int cache_idx = scan8[0] - 1 + i*2*8;
1031 if(USES_LIST(left_type[i], list)){
1032 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1033 const int b8_xy= 4*left_xy[i] + 1;
1034 AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
1035 AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
1036 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
1037 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
1039 AV_ZERO32(h->mv_cache [list][cache_idx ]);
1040 AV_ZERO32(h->mv_cache [list][cache_idx+8]);
1041 h->ref_cache[list][cache_idx ]=
1042 h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1046 if(USES_LIST(left_type[0], list)){
1047 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1048 const int b8_xy= 4*left_xy[0] + 1;
1049 AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
1050 h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
1052 AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
1053 h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1057 if(USES_LIST(topright_type, list)){
1058 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1059 AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
1060 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
1062 AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
1063 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1065 if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
1066 if(USES_LIST(topleft_type, list)){
1067 const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1068 const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
1069 AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
1070 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1072 AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
1073 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1077 if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1080 if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1081 h->ref_cache[list][scan8[4 ]] =
1082 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1083 AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
1084 AV_ZERO32(h->mv_cache [list][scan8[12]]);
1087 /* XXX beurk, Load mvd */
1088 if(USES_LIST(top_type, list)){
1089 const int b_xy= h->mb2br_xy[top_xy];
1090 AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1092 AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1094 if(USES_LIST(left_type[0], list)){
1095 const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
1096 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
1097 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
1099 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
1100 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
1102 if(USES_LIST(left_type[1], list)){
1103 const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
1104 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
1105 AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
1107 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
1108 AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
1110 AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
1111 AV_ZERO16(h->mvd_cache [list][scan8[12]]);
1112 if(h->slice_type_nos == FF_B_TYPE){
1113 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1115 if(IS_DIRECT(top_type)){
1116 AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1));
1117 }else if(IS_8X8(top_type)){
1118 int b8_xy = 4*top_xy;
1119 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
1120 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
1122 AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
1125 if(IS_DIRECT(left_type[0]))
1126 h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1127 else if(IS_8X8(left_type[0]))
1128 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
1130 h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1132 if(IS_DIRECT(left_type[1]))
1133 h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1134 else if(IS_8X8(left_type[1]))
1135 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
1137 h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1143 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1144 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1145 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1146 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1147 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1148 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1149 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1150 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1151 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1152 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1154 #define MAP_F2F(idx, mb_type)\
1155 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1156 h->ref_cache[list][idx] <<= 1;\
1157 h->mv_cache[list][idx][1] /= 2;\
1158 h->mvd_cache[list][idx][1] >>=1;\
1163 #define MAP_F2F(idx, mb_type)\
1164 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1165 h->ref_cache[list][idx] >>= 1;\
1166 h->mv_cache[list][idx][1] <<= 1;\
1167 h->mvd_cache[list][idx][1] <<= 1;\
1177 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1181 * gets the predicted intra4x4 prediction mode.
1183 static inline int pred_intra_mode(H264Context *h, int n){
1184 const int index8= scan8[n];
1185 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1186 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1187 const int min= FFMIN(left, top);
1189 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1191 if(min<0) return DC_PRED;
1195 static inline void write_back_non_zero_count(H264Context *h){
1196 const int mb_xy= h->mb_xy;
1198 AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1199 AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1200 AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
1201 AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
1202 AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1205 static inline void write_back_motion(H264Context *h, int mb_type){
1206 MpegEncContext * const s = &h->s;
1207 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
1208 const int b8_xy= 4*h->mb_xy;
1211 if(!USES_LIST(mb_type, 0))
1212 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1214 for(list=0; list<h->list_count; list++){
1216 int16_t (*mv_dst)[2];
1217 int16_t (*mv_src)[2];
1219 if(!USES_LIST(mb_type, list))
1222 b_stride = h->b_stride;
1223 mv_dst = &s->current_picture.motion_val[list][b_xy];
1224 mv_src = &h->mv_cache[list][scan8[0]];
1226 AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1229 uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
1230 uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1231 if(IS_SKIP(mb_type))
1232 AV_ZERO128(mvd_dst);
1234 AV_COPY64(mvd_dst, mvd_src + 8*3);
1235 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
1236 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
1237 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
1242 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1243 ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
1244 ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
1245 ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
1246 ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
1250 if(h->slice_type_nos == FF_B_TYPE && CABAC){
1251 if(IS_8X8(mb_type)){
1252 uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
1253 direct_table[1] = h->sub_mb_type[1]>>1;
1254 direct_table[2] = h->sub_mb_type[2]>>1;
1255 direct_table[3] = h->sub_mb_type[3]>>1;
1260 static inline int get_dct8x8_allowed(H264Context *h){
1261 if(h->sps.direct_8x8_inference_flag)
1262 return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
1264 return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1268 * decodes a P_SKIP or B_SKIP macroblock
1270 static void av_unused decode_mb_skip(H264Context *h){
1271 MpegEncContext * const s = &h->s;
1272 const int mb_xy= h->mb_xy;
1275 memset(h->non_zero_count[mb_xy], 0, 32);
1276 memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1279 mb_type|= MB_TYPE_INTERLACED;
1281 if( h->slice_type_nos == FF_B_TYPE )
1283 // just for fill_caches. pred_direct_motion will set the real mb_type
1284 mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1285 if(h->direct_spatial_mv_pred){
1286 fill_decode_neighbors(h, mb_type);
1287 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1289 ff_h264_pred_direct_motion(h, &mb_type);
1290 mb_type|= MB_TYPE_SKIP;
1295 mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1297 fill_decode_neighbors(h, mb_type);
1298 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1299 pred_pskip_motion(h, &mx, &my);
1300 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1301 fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1304 write_back_motion(h, mb_type);
1305 s->current_picture.mb_type[mb_xy]= mb_type;
1306 s->current_picture.qscale_table[mb_xy]= s->qscale;
1307 h->slice_table[ mb_xy ]= h->slice_num;
1308 h->prev_mb_skipped= 1;
1311 #include "h264_mvpred.h" //For pred_pskip_motion()
1313 #endif /* AVCODEC_H264_H */