2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
31 #include "libavutil/intreadwrite.h"
33 #include "error_resilience.h"
35 #include "h264chroma.h"
39 #include "internal.h" // for avpriv_find_start_code()
40 #include "mpegutils.h"
43 #include "rectangle.h"
46 #define H264_MAX_PICTURE_COUNT 36
47 #define H264_MAX_THREADS 32
49 #define MAX_SPS_COUNT 32
50 #define MAX_PPS_COUNT 256
52 #define MAX_MMCO_COUNT 66
54 #define MAX_DELAYED_PIC_COUNT 16
56 #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
58 /* Compiling in interlaced support reduces the speed
59 * of progressive decoding by about 2%. */
60 #define ALLOW_INTERLACE
65 * The maximum number of slices supported by the decoder.
66 * must be a power of 2
70 #ifdef ALLOW_INTERLACE
71 #define MB_MBAFF(h) (h)->mb_mbaff
72 #define MB_FIELD(h) (h)->mb_field_decoding_flag
73 #define FRAME_MBAFF(h) (h)->mb_aff_frame
74 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
82 #define FRAME_MBAFF(h) 0
83 #define FIELD_PICTURE(h) 0
85 #define IS_INTERLACED(mb_type) 0
91 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
94 #define CABAC(h) (h)->pps.cabac
97 #define CHROMA(h) ((h)->sps.chroma_format_idc)
98 #define CHROMA422(h) ((h)->sps.chroma_format_idc == 2)
99 #define CHROMA444(h) ((h)->sps.chroma_format_idc == 3)
101 #define EXTENDED_SAR 255
103 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
104 #define MB_TYPE_8x8DCT 0x01000000
105 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
106 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
108 #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
121 NAL_END_SEQUENCE = 10,
123 NAL_FILLER_DATA = 12,
125 NAL_AUXILIARY_SLICE = 19,
126 NAL_FF_IGNORE = 0xff0f001,
133 SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
134 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
135 SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
136 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
137 SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
138 SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
139 SEI_TYPE_DISPLAY_ORIENTATION = 47, ///< display orientation
143 * pic_struct in picture timing SEI message
146 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
147 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
148 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
149 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
150 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
151 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
152 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
153 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
154 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
158 * frame_packing_arrangement types
161 SEI_FPA_TYPE_CHECKERBOARD = 0,
162 SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1,
163 SEI_FPA_TYPE_INTERLEAVE_ROW = 2,
164 SEI_FPA_TYPE_SIDE_BY_SIDE = 3,
165 SEI_FPA_TYPE_TOP_BOTTOM = 4,
166 SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
171 * Sequence parameter set
177 int chroma_format_idc;
178 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
179 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
180 int poc_type; ///< pic_order_cnt_type
181 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
182 int delta_pic_order_always_zero_flag;
183 int offset_for_non_ref_pic;
184 int offset_for_top_to_bottom_field;
185 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
186 int ref_frame_count; ///< num_ref_frames
187 int gaps_in_frame_num_allowed_flag;
188 int mb_width; ///< pic_width_in_mbs_minus1 + 1
189 int mb_height; ///< pic_height_in_map_units_minus1 + 1
190 int frame_mbs_only_flag;
191 int mb_aff; ///< mb_adaptive_frame_field_flag
192 int direct_8x8_inference_flag;
193 int crop; ///< frame_cropping_flag
195 /* those 4 are already in luma samples */
196 unsigned int crop_left; ///< frame_cropping_rect_left_offset
197 unsigned int crop_right; ///< frame_cropping_rect_right_offset
198 unsigned int crop_top; ///< frame_cropping_rect_top_offset
199 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
200 int vui_parameters_present_flag;
202 int video_signal_type_present_flag;
204 int colour_description_present_flag;
205 enum AVColorPrimaries color_primaries;
206 enum AVColorTransferCharacteristic color_trc;
207 enum AVColorSpace colorspace;
208 int timing_info_present_flag;
209 uint32_t num_units_in_tick;
211 int fixed_frame_rate_flag;
212 short offset_for_ref_frame[256]; // FIXME dyn aloc?
213 int bitstream_restriction_flag;
214 int num_reorder_frames;
215 int scaling_matrix_present;
216 uint8_t scaling_matrix4[6][16];
217 uint8_t scaling_matrix8[6][64];
218 int nal_hrd_parameters_present_flag;
219 int vcl_hrd_parameters_present_flag;
220 int pic_struct_present_flag;
221 int time_offset_length;
222 int cpb_cnt; ///< See H.264 E.1.2
223 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
224 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
225 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
226 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
227 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
228 int residual_color_transform_flag; ///< residual_colour_transform_flag
229 int constraint_set_flags; ///< constraint_set[0-3]_flag
230 int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
234 * Picture parameter set
238 int cabac; ///< entropy_coding_mode_flag
239 int pic_order_present; ///< pic_order_present_flag
240 int slice_group_count; ///< num_slice_groups_minus1 + 1
241 int mb_slice_group_map_type;
242 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
243 int weighted_pred; ///< weighted_pred_flag
244 int weighted_bipred_idc;
245 int init_qp; ///< pic_init_qp_minus26 + 26
246 int init_qs; ///< pic_init_qs_minus26 + 26
247 int chroma_qp_index_offset[2];
248 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
249 int constrained_intra_pred; ///< constrained_intra_pred_flag
250 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
251 int transform_8x8_mode; ///< transform_8x8_mode_flag
252 uint8_t scaling_matrix4[6][16];
253 uint8_t scaling_matrix8[6][64];
254 uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
259 * Frame Packing Arrangement Type
262 int frame_packing_arrangement_id;
263 int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
264 SEI_FpaType frame_packing_arrangement_type;
265 int frame_packing_arrangement_repetition_period;
266 int content_interpretation_type;
267 int quincunx_sampling_flag;
271 * Memory management control operation opcode.
273 typedef enum MMCOOpcode {
284 * Memory management control operation.
286 typedef struct MMCO {
288 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
289 int long_arg; ///< index, pic_num, or num long refs depending on opcode
292 typedef struct H264Picture {
294 uint8_t avframe_padding[1024]; // hack to allow linking to a avutil with larger AVFrame
297 AVBufferRef *qscale_table_buf;
298 int8_t *qscale_table;
300 AVBufferRef *motion_val_buf[2];
301 int16_t (*motion_val[2])[2];
303 AVBufferRef *mb_type_buf;
306 AVBufferRef *hwaccel_priv_buf;
307 void *hwaccel_picture_private; ///< hardware accelerator private data
309 AVBufferRef *ref_index_buf[2];
310 int8_t *ref_index[2];
312 int field_poc[2]; ///< top/bottom POC
313 int poc; ///< frame POC
314 int frame_num; ///< frame_num (raw frame_num from slice header)
315 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
316 not mix pictures before and after MMCO_RESET. */
317 int pic_id; /**< pic_num (short -> no wrap version of pic_num,
318 pic_num & max_pic_num; long -> long_pic_num) */
319 int long_ref; ///< 1->long term reference 0->short term reference
320 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
321 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
322 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
323 int field_picture; ///< whether or not picture was encoded in separate fields
325 int needs_realloc; ///< picture needs to be reallocated (eg due to a frame size change)
327 int recovered; ///< picture at IDR or recovery point + recovery count
329 int sei_recovery_frame_cnt;
339 typedef struct H264Context {
341 AVCodecContext *avctx;
342 VideoDSPContext vdsp;
343 H264DSPContext h264dsp;
344 H264ChromaContext h264chroma;
345 H264QpelContext h264qpel;
350 H264Picture *cur_pic_ptr;
352 H264Picture last_pic_for_ec;
354 int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
355 int chroma_qp[2]; // QPc
357 int qp_thresh; ///< QP threshold to skip loopfilter
359 /* coded dimensions -- 16 * mb w/h */
361 ptrdiff_t linesize, uvlinesize;
362 int chroma_x_shift, chroma_y_shift;
366 int coded_picture_number;
369 int context_initialized;
377 int chroma_pred_mode;
378 int intra16x16_pred_mode;
383 int left_mb_xy[LEFT_MBS];
388 int left_type[LEFT_MBS];
390 const uint8_t *left_block;
391 int topleft_partition;
393 int8_t intra4x4_pred_mode_cache[5 * 8];
394 int8_t(*intra4x4_pred_mode);
396 unsigned int topleft_samples_available;
397 unsigned int top_samples_available;
398 unsigned int topright_samples_available;
399 unsigned int left_samples_available;
400 uint8_t (*top_borders[2])[(16 * 3) * 2];
403 * non zero coeff count cache.
404 * is 64 if not available.
406 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
408 uint8_t (*non_zero_count)[48];
411 * Motion vector cache.
413 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
414 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
415 #define LIST_NOT_USED -1 // FIXME rename?
416 #define PART_NOT_AVAILABLE -2
419 * number of neighbors (top and/or left) that used 8x8 dct
421 int neighbor_transform_size;
424 * block_offset[ 0..23] for frame macroblocks
425 * block_offset[24..47] for field macroblocks
427 int block_offset[2 * (16 * 3)];
429 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
431 int b_stride; // FIXME use s->b4_stride
433 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
434 ptrdiff_t mb_uvlinesize;
436 unsigned current_sps_id; ///< id of the current SPS
437 SPS sps; ///< current sps
438 PPS pps; ///< current pps
440 int au_pps_id; ///< pps_id of current access unit
442 uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
443 uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
444 uint32_t(*dequant4_coeff[6])[16];
445 uint32_t(*dequant8_coeff[6])[64];
448 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
450 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
451 int slice_type_fixed;
453 // interlacing specific flags
455 int mb_field_decoding_flag;
456 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
457 int picture_structure;
460 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
462 // Weighted pred stuff
464 int use_weight_chroma;
465 int luma_log2_weight_denom;
466 int chroma_log2_weight_denom;
467 // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
468 int luma_weight[48][2][2];
469 int chroma_weight[48][2][2][2];
470 int implicit_weight[48][48][2];
472 int direct_spatial_mv_pred;
475 int dist_scale_factor[32];
476 int dist_scale_factor_field[2][32];
477 int map_col_to_list0[2][16 + 32];
478 int map_col_to_list0_field[2][2][16 + 32];
481 * num_ref_idx_l0/1_active_minus1 + 1
483 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
484 unsigned int list_count;
485 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
486 H264Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
487 * Reordered version of default_ref_list
488 * according to picture reordering in slice header */
489 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
492 GetBitContext intra_gb;
493 GetBitContext inter_gb;
494 GetBitContext *intra_gb_ptr;
495 GetBitContext *inter_gb_ptr;
497 const uint8_t *intra_pcm_ptr;
498 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coefficient is int32_t in high depth, we need to reserve twice the space.
499 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
500 int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
506 uint8_t cabac_state[1024];
508 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
513 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
514 uint8_t *chroma_pred_mode_table;
515 int last_qscale_diff;
516 uint8_t (*mvd_table[2])[2];
517 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
518 uint8_t *direct_table;
519 uint8_t direct_cache[5 * 8];
521 uint8_t zigzag_scan[16];
522 uint8_t zigzag_scan8x8[64];
523 uint8_t zigzag_scan8x8_cavlc[64];
524 uint8_t field_scan[16];
525 uint8_t field_scan8x8[64];
526 uint8_t field_scan8x8_cavlc[64];
527 uint8_t zigzag_scan_q0[16];
528 uint8_t zigzag_scan8x8_q0[64];
529 uint8_t zigzag_scan8x8_cavlc_q0[64];
530 uint8_t field_scan_q0[16];
531 uint8_t field_scan8x8_q0[64];
532 uint8_t field_scan8x8_cavlc_q0[64];
540 int mb_height, mb_width;
548 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
549 int slice_alpha_c0_offset;
550 int slice_beta_offset;
552 // =============================================================
553 // Things below are not used in the MB or more inner code
557 uint8_t *rbsp_buffer[2];
558 unsigned int rbsp_buffer_size[2];
561 * Used to parse AVC variant of h264
563 int is_avc; ///< this flag is != 0 if codec is avc1
564 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
566 int bit_depth_luma; ///< luma bit depth from sps to detect changes
567 int chroma_format_idc; ///< chroma format from sps to detect changes
569 SPS *sps_buffers[MAX_SPS_COUNT];
570 PPS *pps_buffers[MAX_PPS_COUNT];
572 int dequant_coeff_pps; ///< reinit tables when pps changes
574 uint16_t *slice_table_base;
579 int delta_poc_bottom;
582 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
583 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
584 int frame_num_offset; ///< for POC type 2
585 int prev_frame_num_offset; ///< for POC type 2
586 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
589 * frame_num for frames or 2 * frame_num + 1 for field pics.
594 * max_frame_num or 2 * max_frame_num for field pics.
598 int redundant_pic_count;
600 H264Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
601 H264Picture *short_ref[32];
602 H264Picture *long_ref[32];
603 H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
604 int last_pocs[MAX_DELAYED_PIC_COUNT];
605 H264Picture *next_output_pic;
607 int next_outputed_poc;
610 * memory management control operations buffer.
612 MMCO mmco[MAX_MMCO_COUNT];
616 int long_ref_count; ///< number of actual long term references
617 int short_ref_count; ///< number of actual short term references
622 * @name Members for slice based multithreading
625 struct H264Context *thread_context[H264_MAX_THREADS];
628 * current slice number, used to initialize slice_num of each thread/context
633 * Max number of threads / contexts.
634 * This is equal to AVCodecContext.thread_count unless
635 * multithreaded decoding is impossible, in which case it is
640 int slice_context_count;
643 * 1 if the single thread fallback warning has already been
644 * displayed, 0 otherwise.
646 int single_decode_warning;
648 enum AVPictureType pict_type;
651 unsigned int last_ref_count[2];
655 * pic_struct in picture timing SEI message
657 SEI_PicStructType sei_pic_struct;
660 * Complement sei_pic_struct
661 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
662 * However, soft telecined frames may have these values.
663 * This is used in an attempt to flag soft telecine progressive.
665 int prev_interlaced_frame;
668 * frame_packing_arrangment SEI message
670 int sei_frame_packing_present;
671 int frame_packing_arrangement_type;
672 int content_interpretation_type;
673 int quincunx_subsampling;
676 * display orientation SEI message
678 int sei_display_orientation_present;
679 int sei_anticlockwise_rotation;
680 int sei_hflip, sei_vflip;
683 * Bit set of clock types for fields/frames in picture timing SEI message.
684 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
690 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
692 int sei_dpb_output_delay;
695 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
697 int sei_cpb_removal_delay;
700 * recovery_frame_cnt from SEI message
702 * Set to -1 if no recovery point SEI message found or to number of frames
703 * before playback synchronizes. Frames having recovery point are key
706 int sei_recovery_frame_cnt;
709 * Are the SEI recovery points looking valid.
711 int valid_recovery_point;
716 * recovery_frame is the frame_num at which the next frame should
717 * be fully constructed.
719 * Set to -1 when not expecting a recovery point.
724 * We have seen an IDR, so all the following frames in coded order are correctly
727 #define FRAME_RECOVERED_IDR (1 << 0)
729 * Sufficient number of frames have been decoded since a SEI recovery point,
730 * so all the following frames in presentation order are correct.
732 #define FRAME_RECOVERED_SEI (1 << 1)
734 int frame_recovered; ///< Initial frame has been completely recovered
736 int has_recovery_point;
740 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
741 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
744 int sei_buffering_period_present; ///< Buffering period SEI flag
745 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
747 int cur_chroma_format_idc;
748 uint8_t *bipred_scratchpad;
750 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
752 uint8_t parse_history[6];
753 int parse_history_count;
755 uint8_t *edge_emu_buffer;
756 int16_t *dc_val_base;
758 AVBufferPool *qscale_table_pool;
759 AVBufferPool *mb_type_pool;
760 AVBufferPool *motion_val_pool;
761 AVBufferPool *ref_index_pool;
763 /* Motion Estimation */
764 qpel_mc_func (*qpel_put)[16];
765 qpel_mc_func (*qpel_avg)[16];
768 extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
769 extern const uint16_t ff_h264_mb_sizes[4];
774 int ff_h264_decode_sei(H264Context *h);
779 int ff_h264_decode_seq_parameter_set(H264Context *h);
782 * compute profile from sps
784 int ff_h264_get_profile(SPS *sps);
789 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
792 * Decode a network abstraction layer unit.
793 * @param consumed is the number of bytes used as input
794 * @param length is the length of the array
795 * @param dst_length is the number of decoded bytes FIXME here
796 * or a decode rbsp tailing?
797 * @return decoded bytes, might be src+1 if no escapes
799 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
800 int *dst_length, int *consumed, int length);
803 * Free any data that may have been allocated in the H264 context
806 void ff_h264_free_context(H264Context *h);
809 * Reconstruct bitstream slice_type.
811 int ff_h264_get_slice_type(const H264Context *h);
817 int ff_h264_alloc_tables(H264Context *h);
820 * Fill the default_ref_list.
822 int ff_h264_fill_default_ref_list(H264Context *h);
824 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
825 void ff_h264_fill_mbaff_ref_list(H264Context *h);
826 void ff_h264_remove_all_refs(H264Context *h);
829 * Execute the reference picture marking (memory management control operations).
831 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
833 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
836 int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
839 * Check if the top & left blocks are available if needed & change the
840 * dc mode so it only uses the available blocks.
842 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
845 * Check if the top & left blocks are available if needed & change the
846 * dc mode so it only uses the available blocks.
848 int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
850 void ff_h264_hl_decode_mb(H264Context *h);
851 int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
852 int ff_h264_decode_init(AVCodecContext *avctx);
853 void ff_h264_decode_init_vlc(void);
856 * Decode a macroblock
857 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
859 int ff_h264_decode_mb_cavlc(H264Context *h);
862 * Decode a CABAC coded macroblock
863 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
865 int ff_h264_decode_mb_cabac(H264Context *h);
867 void ff_h264_init_cabac_states(H264Context *h);
869 void ff_h264_init_dequant_tables(H264Context *h);
871 void ff_h264_direct_dist_scale_factor(H264Context *const h);
872 void ff_h264_direct_ref_list_init(H264Context *const h);
873 void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
875 void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
876 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
877 unsigned int linesize, unsigned int uvlinesize);
878 void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
879 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
880 unsigned int linesize, unsigned int uvlinesize);
883 * Reset SEI values at the beginning of the frame.
885 * @param h H.264 context.
887 void ff_h264_reset_sei(H264Context *h);
890 * Get stereo_mode string from the h264 frame_packing_arrangement
891 * @param h H.264 context.
893 const char* ff_h264_sei_stereo_mode(H264Context *h);
895 #define COPY_PICTURE(dst, src) \
898 (dst)->f.extended_data = (dst)->f.data;\
899 (dst)->tf.f = &(dst)->f;\
912 /* Scan8 organization:
929 * DY/DU/DV are for luma/chroma DC.
932 #define LUMA_DC_BLOCK_INDEX 48
933 #define CHROMA_DC_BLOCK_INDEX 49
935 // This table must be here because scan8[constant] must be known at compiletime
936 static const uint8_t scan8[16 * 3 + 3] = {
937 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
938 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
939 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
940 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
941 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
942 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
943 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
944 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
945 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
946 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
947 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
948 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
949 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
952 static av_always_inline uint32_t pack16to32(int a, int b)
955 return (b & 0xFFFF) + (a << 16);
957 return (a & 0xFFFF) + (b << 16);
961 static av_always_inline uint16_t pack8to16(int a, int b)
964 return (b & 0xFF) + (a << 8);
966 return (a & 0xFF) + (b << 8);
973 static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
975 return h->pps.chroma_qp_table[t][qscale];
979 * Get the predicted intra4x4 prediction mode.
981 static av_always_inline int pred_intra_mode(H264Context *h, int n)
983 const int index8 = scan8[n];
984 const int left = h->intra4x4_pred_mode_cache[index8 - 1];
985 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
986 const int min = FFMIN(left, top);
988 tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
996 static av_always_inline void write_back_intra_pred_mode(H264Context *h)
998 int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
999 int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
1001 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
1002 i4x4[4] = i4x4_cache[7 + 8 * 3];
1003 i4x4[5] = i4x4_cache[7 + 8 * 2];
1004 i4x4[6] = i4x4_cache[7 + 8 * 1];
1007 static av_always_inline void write_back_non_zero_count(H264Context *h)
1009 const int mb_xy = h->mb_xy;
1010 uint8_t *nnz = h->non_zero_count[mb_xy];
1011 uint8_t *nnz_cache = h->non_zero_count_cache;
1013 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
1014 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
1015 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
1016 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
1017 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
1018 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
1019 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
1020 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
1022 if (!h->chroma_y_shift) {
1023 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
1024 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
1025 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
1026 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
1030 static av_always_inline void write_back_motion_list(H264Context *h,
1032 int b_xy, int b8_xy,
1033 int mb_type, int list)
1035 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
1036 int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
1037 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
1038 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
1039 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
1040 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
1042 uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
1043 : h->mb2br_xy[h->mb_xy]];
1044 uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1045 if (IS_SKIP(mb_type)) {
1046 AV_ZERO128(mvd_dst);
1048 AV_COPY64(mvd_dst, mvd_src + 8 * 3);
1049 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
1050 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
1051 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
1056 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
1057 int8_t *ref_cache = h->ref_cache[list];
1058 ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
1059 ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
1060 ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
1061 ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
1065 static av_always_inline void write_back_motion(H264Context *h, int mb_type)
1067 const int b_stride = h->b_stride;
1068 const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
1069 const int b8_xy = 4 * h->mb_xy;
1071 if (USES_LIST(mb_type, 0)) {
1072 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
1074 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
1075 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
1077 if (USES_LIST(mb_type, 1))
1078 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
1080 if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
1081 if (IS_8X8(mb_type)) {
1082 uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
1083 direct_table[1] = h->sub_mb_type[1] >> 1;
1084 direct_table[2] = h->sub_mb_type[2] >> 1;
1085 direct_table[3] = h->sub_mb_type[3] >> 1;
1090 static av_always_inline int get_dct8x8_allowed(H264Context *h)
1092 if (h->sps.direct_8x8_inference_flag)
1093 return !(AV_RN64A(h->sub_mb_type) &
1094 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
1095 0x0001000100010001ULL));
1097 return !(AV_RN64A(h->sub_mb_type) &
1098 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
1099 0x0001000100010001ULL));
1102 static inline int find_start_code(const uint8_t *buf, int buf_size,
1103 int buf_index, int next_avc)
1105 uint32_t state = -1;
1107 buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
1109 return FFMIN(buf_index, buf_size);
1112 static inline int get_avc_nalsize(H264Context *h, const uint8_t *buf,
1113 int buf_size, int *buf_index)
1117 if (*buf_index >= buf_size - h->nal_length_size)
1120 for (i = 0; i < h->nal_length_size; i++)
1121 nalsize = ((unsigned)nalsize << 8) | buf[(*buf_index)++];
1122 if (nalsize <= 0 || nalsize > buf_size - *buf_index) {
1123 av_log(h->avctx, AV_LOG_ERROR,
1124 "AVC: nal size %d\n", nalsize);
1130 int ff_h264_field_end(H264Context *h, int in_setup);
1132 int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
1133 void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
1135 int ff_h264_context_init(H264Context *h);
1136 int ff_h264_set_parameter_from_sps(H264Context *h);
1138 void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
1139 int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
1140 int ff_pred_weight_table(H264Context *h);
1141 int ff_set_ref_count(H264Context *h);
1143 int ff_h264_decode_slice_header(H264Context *h, H264Context *h0);
1144 #define SLICE_SINGLETHREAD 1
1145 #define SLICE_SKIPED 2
1147 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
1148 int ff_h264_update_thread_context(AVCodecContext *dst,
1149 const AVCodecContext *src);
1151 void ff_h264_flush_change(H264Context *h);
1153 void ff_h264_free_tables(H264Context *h, int free_rbsp);
1155 void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
1157 #endif /* AVCODEC_H264_H */