2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @file libavcodec/h264.h
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
33 #include "mpegvideo.h"
35 #include "rectangle.h"
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_is_not_initialized_see_mb_type
40 #define LUMA_DC_BLOCK_INDEX 25
41 #define CHROMA_DC_BLOCK_INDEX 26
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS 8
45 #define TOTAL_ZEROS_VLC_BITS 9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS 3
48 #define RUN7_VLC_BITS 6
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
53 #define MAX_MMCO_COUNT 66
55 #define MAX_DELAYED_PIC_COUNT 16
57 /* Compiling in interlaced support reduces the speed
58 * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
61 #define ALLOW_NOCHROMA
64 * The maximum number of slices supported by the decoder.
65 * must be a power of 2
69 #ifdef ALLOW_INTERLACE
70 #define MB_MBAFF h->mb_mbaff
71 #define MB_FIELD h->mb_field_decoding_flag
72 #define FRAME_MBAFF h->mb_aff_frame
73 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
78 #define FIELD_PICTURE 0
80 #define IS_INTERLACED(mb_type) 0
82 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
85 #define CHROMA h->sps.chroma_format_idc
91 #define CABAC h->pps.cabac
94 #define EXTENDED_SAR 255
96 #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
97 #define MB_TYPE_8x8DCT 0x01000000
98 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
99 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
102 * Value of Picture.reference when Picture is not a reference picture, but
103 * is held for delayed output.
105 #define DELAYED_PIC_REF 4
123 NAL_AUXILIARY_SLICE=19
130 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
131 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
132 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
133 SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
137 * pic_struct in picture timing SEI message
140 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
141 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
142 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
143 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
144 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
145 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
146 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
147 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
148 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
152 * Sequence parameter set
158 int chroma_format_idc;
159 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
160 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
161 int poc_type; ///< pic_order_cnt_type
162 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
163 int delta_pic_order_always_zero_flag;
164 int offset_for_non_ref_pic;
165 int offset_for_top_to_bottom_field;
166 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
167 int ref_frame_count; ///< num_ref_frames
168 int gaps_in_frame_num_allowed_flag;
169 int mb_width; ///< pic_width_in_mbs_minus1 + 1
170 int mb_height; ///< pic_height_in_map_units_minus1 + 1
171 int frame_mbs_only_flag;
172 int mb_aff; ///<mb_adaptive_frame_field_flag
173 int direct_8x8_inference_flag;
174 int crop; ///< frame_cropping_flag
175 unsigned int crop_left; ///< frame_cropping_rect_left_offset
176 unsigned int crop_right; ///< frame_cropping_rect_right_offset
177 unsigned int crop_top; ///< frame_cropping_rect_top_offset
178 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
179 int vui_parameters_present_flag;
181 int video_signal_type_present_flag;
183 int colour_description_present_flag;
184 enum AVColorPrimaries color_primaries;
185 enum AVColorTransferCharacteristic color_trc;
186 enum AVColorSpace colorspace;
187 int timing_info_present_flag;
188 uint32_t num_units_in_tick;
190 int fixed_frame_rate_flag;
191 short offset_for_ref_frame[256]; //FIXME dyn aloc?
192 int bitstream_restriction_flag;
193 int num_reorder_frames;
194 int scaling_matrix_present;
195 uint8_t scaling_matrix4[6][16];
196 uint8_t scaling_matrix8[2][64];
197 int nal_hrd_parameters_present_flag;
198 int vcl_hrd_parameters_present_flag;
199 int pic_struct_present_flag;
200 int time_offset_length;
201 int cpb_cnt; ///< See H.264 E.1.2
202 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
204 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
205 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
206 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
207 int residual_color_transform_flag; ///< residual_colour_transform_flag
211 * Picture parameter set
215 int cabac; ///< entropy_coding_mode_flag
216 int pic_order_present; ///< pic_order_present_flag
217 int slice_group_count; ///< num_slice_groups_minus1 + 1
218 int mb_slice_group_map_type;
219 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
220 int weighted_pred; ///< weighted_pred_flag
221 int weighted_bipred_idc;
222 int init_qp; ///< pic_init_qp_minus26 + 26
223 int init_qs; ///< pic_init_qs_minus26 + 26
224 int chroma_qp_index_offset[2];
225 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226 int constrained_intra_pred; ///< constrained_intra_pred_flag
227 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228 int transform_8x8_mode; ///< transform_8x8_mode_flag
229 uint8_t scaling_matrix4[6][16];
230 uint8_t scaling_matrix8[2][64];
231 uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
236 * Memory management control operation opcode.
238 typedef enum MMCOOpcode{
249 * Memory management control operation.
253 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
254 int long_arg; ///< index, pic_num, or num long refs depending on opcode
260 typedef struct H264Context{
264 uint8_t *rbsp_buffer[2];
265 unsigned int rbsp_buffer_size[2];
268 * Used to parse AVC variant of h264
270 int is_avc; ///< this flag is != 0 if codec is avc1
271 int got_avcC; ///< flag used to parse avcC data only once
272 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
274 int chroma_qp[2]; //QPc
276 int qp_thresh; ///< QP threshold to skip loopfilter
282 int chroma_pred_mode;
283 int intra16x16_pred_mode;
288 int8_t intra4x4_pred_mode_cache[5*8];
289 int8_t (*intra4x4_pred_mode)[8];
291 unsigned int topleft_samples_available;
292 unsigned int top_samples_available;
293 unsigned int topright_samples_available;
294 unsigned int left_samples_available;
295 uint8_t (*top_borders[2])[16+2*8];
296 uint8_t left_border[2*(17+2*9)];
299 * non zero coeff count cache.
300 * is 64 if not available.
302 DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
310 uint8_t (*non_zero_count)[32];
313 * Motion vector cache.
315 DECLARE_ALIGNED_8(int16_t, mv_cache)[2][5*8][2];
316 DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
317 #define LIST_NOT_USED -1 //FIXME rename?
318 #define PART_NOT_AVAILABLE -2
321 * is 1 if the specific list MV&references are set to 0,0,-2.
323 int mv_cache_clean[2];
326 * number of neighbors (top and/or left) that used 8x8 dct
328 int neighbor_transform_size;
331 * block_offset[ 0..23] for frame macroblocks
332 * block_offset[24..47] for field macroblocks
334 int block_offset[2*(16+8)];
336 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
338 int b_stride; //FIXME use s->b4_stride
341 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
350 int unknown_svq3_flag;
351 int next_slice_index;
353 SPS *sps_buffers[MAX_SPS_COUNT];
354 SPS sps; ///< current sps
356 PPS *pps_buffers[MAX_PPS_COUNT];
360 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
362 uint32_t dequant4_buffer[6][52][16];
363 uint32_t dequant8_buffer[2][52][64];
364 uint32_t (*dequant4_coeff[6])[16];
365 uint32_t (*dequant8_coeff[2])[64];
366 int dequant_coeff_pps; ///< reinit tables when pps changes
369 uint16_t *slice_table_base;
370 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
372 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
373 int slice_type_fixed;
375 //interlacing specific flags
377 int mb_field_decoding_flag;
378 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
380 DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
385 int delta_poc_bottom;
388 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
389 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
390 int frame_num_offset; ///< for POC type 2
391 int prev_frame_num_offset; ///< for POC type 2
392 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
395 * frame_num for frames or 2*frame_num+1 for field pics.
400 * max_frame_num or 2*max_frame_num for field pics.
404 //Weighted pred stuff
406 int use_weight_chroma;
407 int luma_log2_weight_denom;
408 int chroma_log2_weight_denom;
409 int luma_weight[2][48];
410 int luma_offset[2][48];
411 int chroma_weight[2][48][2];
412 int chroma_offset[2][48][2];
413 int implicit_weight[48][48];
416 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
417 int slice_alpha_c0_offset;
418 int slice_beta_offset;
420 int redundant_pic_count;
422 int direct_spatial_mv_pred;
423 int dist_scale_factor[16];
424 int dist_scale_factor_field[2][32];
425 int map_col_to_list0[2][16+32];
426 int map_col_to_list0_field[2][2][16+32];
429 * num_ref_idx_l0/1_active_minus1 + 1
431 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
432 unsigned int list_count;
433 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
434 Picture *short_ref[32];
435 Picture *long_ref[32];
436 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
437 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
438 Reordered version of default_ref_list
439 according to picture reordering in slice header */
440 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
445 * memory management control operations buffer.
447 MMCO mmco[MAX_MMCO_COUNT];
450 int long_ref_count; ///< number of actual long term references
451 int short_ref_count; ///< number of actual short term references
454 GetBitContext intra_gb;
455 GetBitContext inter_gb;
456 GetBitContext *intra_gb_ptr;
457 GetBitContext *inter_gb_ptr;
459 DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
460 DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
466 uint8_t cabac_state[460];
469 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
474 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
475 uint8_t *chroma_pred_mode_table;
476 int last_qscale_diff;
477 int16_t (*mvd_table[2])[2];
478 DECLARE_ALIGNED_8(int16_t, mvd_cache)[2][5*8][2];
479 uint8_t *direct_table;
480 uint8_t direct_cache[5*8];
482 uint8_t zigzag_scan[16];
483 uint8_t zigzag_scan8x8[64];
484 uint8_t zigzag_scan8x8_cavlc[64];
485 uint8_t field_scan[16];
486 uint8_t field_scan8x8[64];
487 uint8_t field_scan8x8_cavlc[64];
488 const uint8_t *zigzag_scan_q0;
489 const uint8_t *zigzag_scan8x8_q0;
490 const uint8_t *zigzag_scan8x8_cavlc_q0;
491 const uint8_t *field_scan_q0;
492 const uint8_t *field_scan8x8_q0;
493 const uint8_t *field_scan8x8_cavlc_q0;
498 * @defgroup multithreading Members for slice based multithreading
501 struct H264Context *thread_context[MAX_THREADS];
504 * current slice number, used to initalize slice_num of each thread/context
509 * Max number of threads / contexts.
510 * This is equal to AVCodecContext.thread_count unless
511 * multithreaded decoding is impossible, in which case it is
517 * 1 if the single thread fallback warning has already been
518 * displayed, 0 otherwise.
520 int single_decode_warning;
527 uint32_t svq3_watermark_key;
530 * pic_struct in picture timing SEI message
532 SEI_PicStructType sei_pic_struct;
535 * Complement sei_pic_struct
536 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
537 * However, soft telecined frames may have these values.
538 * This is used in an attempt to flag soft telecine progressive.
540 int prev_interlaced_frame;
543 * Bit set of clock types for fields/frames in picture timing SEI message.
544 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
550 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
552 int sei_dpb_output_delay;
555 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
557 int sei_cpb_removal_delay;
560 * recovery_frame_cnt from SEI message
562 * Set to -1 if no recovery point SEI message found or to number of frames
563 * before playback synchronizes. Frames having recovery point are key
566 int sei_recovery_frame_cnt;
570 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
571 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
574 int sei_buffering_period_present; ///< Buffering period SEI flag
575 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
579 extern const uint8_t ff_h264_chroma_qp[52];
585 int ff_h264_decode_sei(H264Context *h);
590 int ff_h264_decode_seq_parameter_set(H264Context *h);
595 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
598 * Decodes a network abstraction layer unit.
599 * @param consumed is the number of bytes used as input
600 * @param length is the length of the array
601 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
602 * @returns decoded bytes, might be src+1 if no escapes
604 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
607 * identifies the exact end of the bitstream
608 * @return the length of the trailing, or 0 if damaged
610 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
613 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
615 av_cold void ff_h264_free_context(H264Context *h);
618 * reconstructs bitstream slice_type.
620 int ff_h264_get_slice_type(H264Context *h);
626 int ff_h264_alloc_tables(H264Context *h);
629 * fills the default_ref_list.
631 int ff_h264_fill_default_ref_list(H264Context *h);
633 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
634 void ff_h264_fill_mbaff_ref_list(H264Context *h);
635 void ff_h264_remove_all_refs(H264Context *h);
638 * Executes the reference picture marking (memory management control operations).
640 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
642 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
646 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
648 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
651 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
653 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
655 void ff_h264_write_back_intra_pred_mode(H264Context *h);
656 void ff_h264_hl_decode_mb(H264Context *h);
657 int ff_h264_frame_start(H264Context *h);
658 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
659 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
660 av_cold void ff_h264_decode_init_vlc(void);
663 * decodes a macroblock
664 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
666 int ff_h264_decode_mb_cavlc(H264Context *h);
669 * decodes a CABAC coded macroblock
670 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
672 int ff_h264_decode_mb_cabac(H264Context *h);
674 void ff_h264_init_cabac_states(H264Context *h);
676 void ff_h264_direct_dist_scale_factor(H264Context * const h);
677 void ff_h264_direct_ref_list_init(H264Context * const h);
678 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
680 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
681 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
684 * Reset SEI values at the beginning of the frame.
686 * @param h H.264 context.
688 void ff_h264_reset_sei(H264Context *h);
700 //This table must be here because scan8[constant] must be known at compiletime
701 static const uint8_t scan8[16 + 2*4]={
702 4+1*8, 5+1*8, 4+2*8, 5+2*8,
703 6+1*8, 7+1*8, 6+2*8, 7+2*8,
704 4+3*8, 5+3*8, 4+4*8, 5+4*8,
705 6+3*8, 7+3*8, 6+4*8, 7+4*8,
712 static av_always_inline uint32_t pack16to32(int a, int b){
714 return (b&0xFFFF) + (a<<16);
716 return (a&0xFFFF) + (b<<16);
721 * gets the chroma qp.
723 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
724 return h->pps.chroma_qp_table[t][qscale];
727 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
729 static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
730 MpegEncContext * const s = &h->s;
731 const int mb_xy= h->mb_xy;
732 int topleft_xy, top_xy, topright_xy, left_xy[2];
733 int topleft_type, top_type, topright_type, left_type[2];
734 const uint8_t * left_block;
735 int topleft_partition= -1;
737 static const uint8_t left_block_options[4][16]={
738 {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
739 {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
740 {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
741 {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
744 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
746 //FIXME deblocking could skip the intra and nnz parts.
747 // if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
750 /* Wow, what a mess, why didn't they simplify the interlacing & intra
751 * stuff, I can't imagine that these complex rules are worth it. */
753 topleft_xy = top_xy - 1;
754 topright_xy= top_xy + 1;
755 left_xy[1] = left_xy[0] = mb_xy-1;
756 left_block = left_block_options[0];
758 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
759 const int top_pair_xy = pair_xy - s->mb_stride;
760 const int topleft_pair_xy = top_pair_xy - 1;
761 const int topright_pair_xy = top_pair_xy + 1;
762 const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
763 const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
764 const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
765 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
766 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
767 const int bottom = (s->mb_y & 1);
768 tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
770 if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
771 top_xy -= s->mb_stride;
773 if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
774 topleft_xy -= s->mb_stride;
775 } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
776 topleft_xy += s->mb_stride;
777 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
778 topleft_partition = 0;
780 if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
781 topright_xy -= s->mb_stride;
783 if (left_mb_field_flag != curr_mb_field_flag) {
784 left_xy[1] = left_xy[0] = pair_xy - 1;
785 if (curr_mb_field_flag) {
786 left_xy[1] += s->mb_stride;
787 left_block = left_block_options[3];
789 left_block= left_block_options[2 - bottom];
794 h->top_mb_xy = top_xy;
795 h->left_mb_xy[0] = left_xy[0];
796 h->left_mb_xy[1] = left_xy[1];
799 //for sufficiently low qp, filtering wouldn't do anything
800 //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
801 int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
802 int qp = s->current_picture.qscale_table[mb_xy];
804 && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
805 && (left_xy[1]<0 || ((qp + s->current_picture.qscale_table[left_xy[1]] + 1)>>1) <= qp_thresh)
806 && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
809 if(IS_INTRA(mb_type))
812 *((uint64_t*)&h->non_zero_count_cache[0+8*1])= *((uint64_t*)&h->non_zero_count[mb_xy][ 0]);
813 *((uint64_t*)&h->non_zero_count_cache[0+8*2])= *((uint64_t*)&h->non_zero_count[mb_xy][ 8]);
814 *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
815 *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
816 *((uint64_t*)&h->non_zero_count_cache[0+8*4])= *((uint64_t*)&h->non_zero_count[mb_xy][24]);
818 h->cbp= h->cbp_table[mb_xy];
820 top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
821 left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
822 left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
826 for(list=0; list<h->list_count; list++){
829 if(!USES_LIST(mb_type, list)){
830 fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
831 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
832 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
833 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
834 *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
838 ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
840 int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
841 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
842 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
844 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
845 *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
848 b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
850 *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
851 *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
857 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
858 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
859 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
860 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
861 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
863 if(IS_INTRA(mb_type)){
864 int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
865 h->topleft_samples_available=
866 h->top_samples_available=
867 h->left_samples_available= 0xFFFF;
868 h->topright_samples_available= 0xEEEA;
870 if(!(top_type & type_mask)){
871 h->topleft_samples_available= 0xB3FF;
872 h->top_samples_available= 0x33FF;
873 h->topright_samples_available= 0x26EA;
875 if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
876 if(IS_INTERLACED(mb_type)){
877 if(!(left_type[0] & type_mask)){
878 h->topleft_samples_available&= 0xDFFF;
879 h->left_samples_available&= 0x5FFF;
881 if(!(left_type[1] & type_mask)){
882 h->topleft_samples_available&= 0xFF5F;
883 h->left_samples_available&= 0xFF5F;
886 int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
887 ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
888 assert(left_xy[0] == left_xy[1]);
889 if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
890 h->topleft_samples_available&= 0xDF5F;
891 h->left_samples_available&= 0x5F5F;
895 if(!(left_type[0] & type_mask)){
896 h->topleft_samples_available&= 0xDF5F;
897 h->left_samples_available&= 0x5F5F;
901 if(!(topleft_type & type_mask))
902 h->topleft_samples_available&= 0x7FFF;
904 if(!(topright_type & type_mask))
905 h->topright_samples_available&= 0xFBFF;
907 if(IS_INTRA4x4(mb_type)){
908 if(IS_INTRA4x4(top_type)){
909 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
910 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
911 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
912 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
915 if(!(top_type & type_mask))
920 h->intra4x4_pred_mode_cache[4+8*0]=
921 h->intra4x4_pred_mode_cache[5+8*0]=
922 h->intra4x4_pred_mode_cache[6+8*0]=
923 h->intra4x4_pred_mode_cache[7+8*0]= pred;
926 if(IS_INTRA4x4(left_type[i])){
927 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
928 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
931 if(!(left_type[i] & type_mask))
936 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
937 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
953 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
955 *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
957 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
958 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
960 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
961 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
963 }else if(!for_deblock){
964 h->non_zero_count_cache[1+8*0]=
965 h->non_zero_count_cache[2+8*0]=
967 h->non_zero_count_cache[1+8*3]=
968 h->non_zero_count_cache[2+8*3]=
969 *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
972 for (i=0; i<2; i++) {
974 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
975 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
977 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
978 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
980 }else if(!for_deblock){
981 h->non_zero_count_cache[3+8*1 + 2*8*i]=
982 h->non_zero_count_cache[3+8*2 + 2*8*i]=
983 h->non_zero_count_cache[0+8*1 + 8*i]=
984 h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
988 // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
989 if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
990 if(IS_8x8DCT(top_type)){
991 h->non_zero_count_cache[4+8*0]=
992 h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
993 h->non_zero_count_cache[6+8*0]=
994 h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
996 if(IS_8x8DCT(left_type[0])){
997 h->non_zero_count_cache[3+8*1]=
998 h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1000 if(IS_8x8DCT(left_type[1])){
1001 h->non_zero_count_cache[3+8*3]=
1002 h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1005 if(IS_8x8DCT(mb_type)){
1006 h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
1007 h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
1009 h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1010 h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1012 h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1013 h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1015 h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1016 h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1020 if( CABAC && !for_deblock) {
1023 h->top_cbp = h->cbp_table[top_xy];
1024 } else if(IS_INTRA(mb_type)) {
1031 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
1032 } else if(IS_INTRA(mb_type)) {
1033 h->left_cbp = 0x1C0;
1038 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
1041 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
1046 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1048 for(list=0; list<h->list_count; list++){
1049 if(!for_deblock && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
1050 /*if(!h->mv_cache_clean[list]){
1051 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1052 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1053 h->mv_cache_clean[list]= 1;
1057 h->mv_cache_clean[list]= 0;
1059 if(USES_LIST(top_type, list)){
1060 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1061 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1062 *(uint64_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0];
1063 *(uint64_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2];
1065 int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1066 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1067 h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1068 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1069 h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1071 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1072 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1073 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1074 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1077 *(uint64_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
1078 *(uint64_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 0;
1079 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1083 int cache_idx = scan8[0] - 1 + i*2*8;
1084 if(USES_LIST(left_type[i], list)){
1085 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1086 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1087 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1088 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1090 int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1091 h->ref_cache[list][cache_idx ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
1092 h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
1094 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1095 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1098 *(uint32_t*)h->mv_cache [list][cache_idx ]=
1099 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1100 h->ref_cache[list][cache_idx ]=
1101 h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1105 if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1108 if(USES_LIST(topleft_type, list)){
1109 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1110 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1111 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1112 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1114 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1115 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1118 if(USES_LIST(topright_type, list)){
1119 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1120 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1121 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1122 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1124 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1125 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1128 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1131 h->ref_cache[list][scan8[5 ]+1] =
1132 h->ref_cache[list][scan8[7 ]+1] =
1133 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
1134 h->ref_cache[list][scan8[4 ]] =
1135 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1136 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1137 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1138 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1139 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1140 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1143 /* XXX beurk, Load mvd */
1144 if(USES_LIST(top_type, list)){
1145 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1146 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
1147 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
1148 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
1149 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
1151 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
1152 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
1153 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
1154 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
1156 if(USES_LIST(left_type[0], list)){
1157 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1158 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1159 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1161 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1162 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1164 if(USES_LIST(left_type[1], list)){
1165 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1166 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1167 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1169 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1170 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1172 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1173 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1174 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1175 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1176 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1178 if(h->slice_type_nos == FF_B_TYPE){
1179 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1181 if(IS_DIRECT(top_type)){
1182 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1183 }else if(IS_8X8(top_type)){
1184 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1185 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1186 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1188 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1191 if(IS_DIRECT(left_type[0]))
1192 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1193 else if(IS_8X8(left_type[0]))
1194 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1196 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1198 if(IS_DIRECT(left_type[1]))
1199 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1200 else if(IS_8X8(left_type[1]))
1201 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1203 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1209 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1210 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1211 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1212 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1213 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1214 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1215 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1216 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1217 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1218 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1220 #define MAP_F2F(idx, mb_type)\
1221 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1222 h->ref_cache[list][idx] <<= 1;\
1223 h->mv_cache[list][idx][1] /= 2;\
1224 h->mvd_cache[list][idx][1] /= 2;\
1229 #define MAP_F2F(idx, mb_type)\
1230 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1231 h->ref_cache[list][idx] >>= 1;\
1232 h->mv_cache[list][idx][1] <<= 1;\
1233 h->mvd_cache[list][idx][1] <<= 1;\
1244 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1248 static void fill_decode_caches(H264Context *h, int mb_type){
1249 fill_caches(h, mb_type, 0);
1254 * @returns non zero if the loop filter can be skiped
1256 static int fill_filter_caches(H264Context *h, int mb_type){
1257 return fill_caches(h, mb_type, 1);
1261 * gets the predicted intra4x4 prediction mode.
1263 static inline int pred_intra_mode(H264Context *h, int n){
1264 const int index8= scan8[n];
1265 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1266 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1267 const int min= FFMIN(left, top);
1269 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1271 if(min<0) return DC_PRED;
1275 static inline void write_back_non_zero_count(H264Context *h){
1276 const int mb_xy= h->mb_xy;
1278 *((uint64_t*)&h->non_zero_count[mb_xy][ 0]) = *((uint64_t*)&h->non_zero_count_cache[0+8*1]);
1279 *((uint64_t*)&h->non_zero_count[mb_xy][ 8]) = *((uint64_t*)&h->non_zero_count_cache[0+8*2]);
1280 *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1281 *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1282 *((uint64_t*)&h->non_zero_count[mb_xy][24]) = *((uint64_t*)&h->non_zero_count_cache[0+8*4]);
1285 static inline void write_back_motion(H264Context *h, int mb_type){
1286 MpegEncContext * const s = &h->s;
1287 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1288 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1291 if(!USES_LIST(mb_type, 0))
1292 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1294 for(list=0; list<h->list_count; list++){
1296 if(!USES_LIST(mb_type, list))
1300 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1301 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1304 if(IS_SKIP(mb_type))
1305 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1308 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1309 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1314 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1315 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1316 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1317 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1318 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1322 if(h->slice_type_nos == FF_B_TYPE && CABAC){
1323 if(IS_8X8(mb_type)){
1324 uint8_t *direct_table = &h->direct_table[b8_xy];
1325 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1326 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1327 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1332 static inline int get_dct8x8_allowed(H264Context *h){
1333 if(h->sps.direct_8x8_inference_flag)
1334 return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
1336 return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1339 static void predict_field_decoding_flag(H264Context *h){
1340 MpegEncContext * const s = &h->s;
1341 const int mb_xy= h->mb_xy;
1342 int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1343 ? s->current_picture.mb_type[mb_xy-1]
1344 : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1345 ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1347 h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1351 * decodes a P_SKIP or B_SKIP macroblock
1353 static void decode_mb_skip(H264Context *h){
1354 MpegEncContext * const s = &h->s;
1355 const int mb_xy= h->mb_xy;
1358 memset(h->non_zero_count[mb_xy], 0, 32);
1359 memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1362 mb_type|= MB_TYPE_INTERLACED;
1364 if( h->slice_type_nos == FF_B_TYPE )
1366 // just for fill_caches. pred_direct_motion will set the real mb_type
1367 mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1369 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1370 ff_h264_pred_direct_motion(h, &mb_type);
1371 mb_type|= MB_TYPE_SKIP;
1376 mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1378 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1379 pred_pskip_motion(h, &mx, &my);
1380 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1381 fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1384 write_back_motion(h, mb_type);
1385 s->current_picture.mb_type[mb_xy]= mb_type;
1386 s->current_picture.qscale_table[mb_xy]= s->qscale;
1387 h->slice_table[ mb_xy ]= h->slice_num;
1388 h->prev_mb_skipped= 1;
1391 #include "h264_mvpred.h" //For pred_pskip_motion()
1393 #endif /* AVCODEC_H264_H */