2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG-4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
31 #include "libavutil/buffer.h"
32 #include "libavutil/intreadwrite.h"
33 #include "libavutil/thread.h"
36 #include "error_resilience.h"
37 #include "h264_parse.h"
40 #include "h2645_parse.h"
41 #include "h264chroma.h"
46 #include "mpegutils.h"
49 #include "rectangle.h"
52 #define H264_MAX_PICTURE_COUNT 36
54 #define MAX_MMCO_COUNT 66
56 #define MAX_DELAYED_PIC_COUNT 16
58 /* Compiling in interlaced support reduces the speed
59 * of progressive decoding by about 2%. */
60 #define ALLOW_INTERLACE
65 * The maximum number of slices supported by the decoder.
66 * must be a power of 2
70 #ifdef ALLOW_INTERLACE
71 #define MB_MBAFF(h) (h)->mb_mbaff
72 #define MB_FIELD(sl) (sl)->mb_field_decoding_flag
73 #define FRAME_MBAFF(h) (h)->mb_aff_frame
74 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
81 #define MB_FIELD(sl) 0
82 #define FRAME_MBAFF(h) 0
83 #define FIELD_PICTURE(h) 0
85 #define IS_INTERLACED(mb_type) 0
91 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
94 #define CABAC(h) (h)->ps.pps->cabac
97 #define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
98 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
99 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
101 #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
102 #define MB_TYPE_8x8DCT 0x01000000
103 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
104 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
107 * Memory management control operation opcode.
109 typedef enum MMCOOpcode {
120 * Memory management control operation.
122 typedef struct MMCO {
124 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
125 int long_arg; ///< index, pic_num, or num long refs depending on opcode
128 typedef struct H264Picture {
132 AVBufferRef *qscale_table_buf;
133 int8_t *qscale_table;
135 AVBufferRef *motion_val_buf[2];
136 int16_t (*motion_val[2])[2];
138 AVBufferRef *mb_type_buf;
141 AVBufferRef *hwaccel_priv_buf;
142 void *hwaccel_picture_private; ///< hardware accelerator private data
144 AVBufferRef *ref_index_buf[2];
145 int8_t *ref_index[2];
147 int field_poc[2]; ///< top/bottom POC
148 int poc; ///< frame POC
149 int frame_num; ///< frame_num (raw frame_num from slice header)
150 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
151 not mix pictures before and after MMCO_RESET. */
152 int pic_id; /**< pic_num (short -> no wrap version of pic_num,
153 pic_num & max_pic_num; long -> long_pic_num) */
154 int long_ref; ///< 1->long term reference 0->short term reference
155 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
156 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
157 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
158 int field_picture; ///< whether or not picture was encoded in separate fields
161 int recovered; ///< picture at IDR or recovery point + recovery count
163 int sei_recovery_frame_cnt;
170 typedef struct H264Ref {
181 typedef struct H264SliceContext {
182 struct H264Context *h264;
188 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
189 int slice_type_fixed;
192 int chroma_qp[2]; // QPc
193 int qp_thresh; ///< QP threshold to skip loopfilter
194 int last_qscale_diff;
197 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
198 int slice_alpha_c0_offset;
199 int slice_beta_offset;
201 H264PredWeightTable pwt;
206 int chroma_pred_mode;
207 int intra16x16_pred_mode;
209 int8_t intra4x4_pred_mode_cache[5 * 8];
210 int8_t(*intra4x4_pred_mode);
215 int left_mb_xy[LEFT_MBS];
220 int left_type[LEFT_MBS];
222 const uint8_t *left_block;
223 int topleft_partition;
225 unsigned int topleft_samples_available;
226 unsigned int top_samples_available;
227 unsigned int topright_samples_available;
228 unsigned int left_samples_available;
230 ptrdiff_t linesize, uvlinesize;
231 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
232 ptrdiff_t mb_uvlinesize;
238 unsigned int first_mb_addr;
239 // index of the first MB of the next slice
244 int picture_structure;
245 int mb_field_decoding_flag;
246 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
248 int redundant_pic_count;
251 * number of neighbors (top and/or left) that used 8x8 dct
253 int neighbor_transform_size;
255 int direct_spatial_mv_pred;
263 int dist_scale_factor[32];
264 int dist_scale_factor_field[2][32];
265 int map_col_to_list0[2][16 + 32];
266 int map_col_to_list0_field[2][2][16 + 32];
269 * num_ref_idx_l0/1_active_minus1 + 1
271 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
272 unsigned int list_count;
273 H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
274 * Reordered version of default_ref_list
275 * according to picture reordering in slice header */
279 } ref_modifications[2][32];
280 int nb_ref_modifications[2];
284 const uint8_t *intra_pcm_ptr;
285 int16_t *dc_val_base;
287 uint8_t *bipred_scratchpad;
288 uint8_t *edge_emu_buffer;
289 uint8_t (*top_borders[2])[(16 * 3) * 2];
290 int bipred_scratchpad_allocated;
291 int edge_emu_buffer_allocated;
292 int top_borders_allocated[2];
295 * non zero coeff count cache.
296 * is 64 if not available.
298 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
301 * Motion vector cache.
303 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
304 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
305 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
306 uint8_t direct_cache[5 * 8];
308 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
310 ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
311 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
312 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
313 ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
314 ///< check that i is not too large or ensure that there is some unused stuff after mb
315 int16_t mb_padding[256 * 2];
317 uint8_t (*mvd_table[2])[2];
323 uint8_t cabac_state[1024];
326 MMCO mmco[MAX_MMCO_COUNT];
328 int explicit_ref_marking;
332 int delta_poc_bottom;
341 typedef struct H264Context {
342 const AVClass *class;
343 AVCodecContext *avctx;
344 VideoDSPContext vdsp;
345 H264DSPContext h264dsp;
346 H264ChromaContext h264chroma;
347 H264QpelContext h264qpel;
349 H264Picture DPB[H264_MAX_PICTURE_COUNT];
350 H264Picture *cur_pic_ptr;
352 H264Picture last_pic_for_ec;
354 H264SliceContext *slice_ctx;
356 int nb_slice_ctx_queued;
360 int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
362 /* coded dimensions -- 16 * mb w/h */
364 int chroma_x_shift, chroma_y_shift;
367 * Backup frame properties: needed, because they can be different
368 * between returned frame and last decoded frame.
372 enum AVPixelFormat backup_pix_fmt;
375 int coded_picture_number;
377 int context_initialized;
380 /* Set when slice threading is used and at least one slice uses deblocking
381 * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
382 * during normal MB decoding and execute it serially at the end.
387 * Set to 1 when the current picture is IDR, 0 otherwise.
391 int8_t(*intra4x4_pred_mode);
394 uint8_t (*non_zero_count)[48];
396 #define LIST_NOT_USED -1 // FIXME rename?
397 #define PART_NOT_AVAILABLE -2
400 * block_offset[ 0..23] for frame macroblocks
401 * block_offset[24..47] for field macroblocks
403 int block_offset[2 * (16 * 3)];
405 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
407 int b_stride; // FIXME use s->b4_stride
409 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
411 // interlacing specific flags
413 int picture_structure;
416 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
418 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
421 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
422 uint8_t *chroma_pred_mode_table;
423 uint8_t (*mvd_table[2])[2];
424 uint8_t *direct_table;
426 uint8_t zigzag_scan[16];
427 uint8_t zigzag_scan8x8[64];
428 uint8_t zigzag_scan8x8_cavlc[64];
429 uint8_t field_scan[16];
430 uint8_t field_scan8x8[64];
431 uint8_t field_scan8x8_cavlc[64];
432 uint8_t zigzag_scan_q0[16];
433 uint8_t zigzag_scan8x8_q0[64];
434 uint8_t zigzag_scan8x8_cavlc_q0[64];
435 uint8_t field_scan_q0[16];
436 uint8_t field_scan8x8_q0[64];
437 uint8_t field_scan8x8_cavlc_q0[64];
440 int mb_height, mb_width;
444 // =============================================================
445 // Things below are not used in the MB or more inner code
450 int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
453 * Used to parse AVC variant of H.264
455 int is_avc; ///< this flag is != 0 if codec is avc1
456 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
458 int bit_depth_luma; ///< luma bit depth from sps to detect changes
459 int chroma_format_idc; ///< chroma format from sps to detect changes
463 uint16_t *slice_table_base;
467 H264Ref default_ref[2];
468 H264Picture *short_ref[32];
469 H264Picture *long_ref[32];
470 H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
471 int last_pocs[MAX_DELAYED_PIC_COUNT];
472 H264Picture *next_output_pic;
473 int next_outputed_poc;
476 * memory management control operations buffer.
478 MMCO mmco[MAX_MMCO_COUNT];
481 int explicit_ref_marking;
483 int long_ref_count; ///< number of actual long term references
484 int short_ref_count; ///< number of actual short term references
487 * @name Members for slice based multithreading
491 * current slice number, used to initialize slice_num of each thread/context
498 * Complement sei_pic_struct
499 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
500 * However, soft telecined frames may have these values.
501 * This is used in an attempt to flag soft telecine progressive.
503 int prev_interlaced_frame;
506 * Are the SEI recovery points looking valid.
508 int valid_recovery_point;
511 * recovery_frame is the frame_num at which the next frame should
512 * be fully constructed.
514 * Set to -1 when not expecting a recovery point.
519 * We have seen an IDR, so all the following frames in coded order are correctly
522 #define FRAME_RECOVERED_IDR (1 << 0)
524 * Sufficient number of frames have been decoded since a SEI recovery point,
525 * so all the following frames in presentation order are correct.
527 #define FRAME_RECOVERED_SEI (1 << 1)
529 int frame_recovered; ///< Initial frame has been completely recovered
531 int has_recovery_point;
535 /* for frame threading, this is set to 1
536 * after finish_setup() has been called, so we cannot modify
537 * some context properties (which are supposed to stay constant between
541 int cur_chroma_format_idc;
542 int cur_bit_depth_luma;
543 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
549 AVBufferPool *qscale_table_pool;
550 AVBufferPool *mb_type_pool;
551 AVBufferPool *motion_val_pool;
552 AVBufferPool *ref_index_pool;
553 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
556 extern const uint16_t ff_h264_mb_sizes[4];
559 * Reconstruct bitstream slice_type.
561 int ff_h264_get_slice_type(const H264SliceContext *sl);
567 int ff_h264_alloc_tables(H264Context *h);
569 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
570 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
571 void ff_h264_remove_all_refs(H264Context *h);
574 * Execute the reference picture marking (memory management control operations).
576 int ff_h264_execute_ref_pic_marking(H264Context *h);
578 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
579 const H2645NAL *nal, void *logctx);
581 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
582 int ff_h264_decode_init(AVCodecContext *avctx);
583 void ff_h264_decode_init_vlc(void);
586 * Decode a macroblock
587 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
589 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
592 * Decode a CABAC coded macroblock
593 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
595 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
597 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
599 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
600 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
601 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
604 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
605 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
606 unsigned int linesize, unsigned int uvlinesize);
607 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
608 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
609 unsigned int linesize, unsigned int uvlinesize);
621 /* Scan8 organization:
638 * DY/DU/DV are for luma/chroma DC.
641 #define LUMA_DC_BLOCK_INDEX 48
642 #define CHROMA_DC_BLOCK_INDEX 49
644 // This table must be here because scan8[constant] must be known at compiletime
645 static const uint8_t scan8[16 * 3 + 3] = {
646 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
647 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
648 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
649 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
650 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
651 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
652 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
653 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
654 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
655 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
656 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
657 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
658 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
661 static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
664 return (b & 0xFFFF) + (a << 16);
666 return (a & 0xFFFF) + (b << 16);
670 static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
673 return (b & 0xFF) + (a << 8);
675 return (a & 0xFF) + (b << 8);
682 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
684 return pps->chroma_qp_table[t][qscale];
688 * Get the predicted intra4x4 prediction mode.
690 static av_always_inline int pred_intra_mode(const H264Context *h,
691 H264SliceContext *sl, int n)
693 const int index8 = scan8[n];
694 const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
695 const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
696 const int min = FFMIN(left, top);
698 ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
706 static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
707 H264SliceContext *sl)
709 int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
710 int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
712 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
713 i4x4[4] = i4x4_cache[7 + 8 * 3];
714 i4x4[5] = i4x4_cache[7 + 8 * 2];
715 i4x4[6] = i4x4_cache[7 + 8 * 1];
718 static av_always_inline void write_back_non_zero_count(const H264Context *h,
719 H264SliceContext *sl)
721 const int mb_xy = sl->mb_xy;
722 uint8_t *nnz = h->non_zero_count[mb_xy];
723 uint8_t *nnz_cache = sl->non_zero_count_cache;
725 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
726 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
727 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
728 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
729 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
730 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
731 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
732 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
734 if (!h->chroma_y_shift) {
735 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
736 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
737 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
738 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
742 static av_always_inline void write_back_motion_list(const H264Context *h,
743 H264SliceContext *sl,
746 int mb_type, int list)
748 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
749 int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
750 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
751 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
752 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
753 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
755 uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
756 : h->mb2br_xy[sl->mb_xy]];
757 uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
758 if (IS_SKIP(mb_type)) {
761 AV_COPY64(mvd_dst, mvd_src + 8 * 3);
762 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
763 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
764 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
769 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
770 int8_t *ref_cache = sl->ref_cache[list];
771 ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
772 ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
773 ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
774 ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
778 static av_always_inline void write_back_motion(const H264Context *h,
779 H264SliceContext *sl,
782 const int b_stride = h->b_stride;
783 const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
784 const int b8_xy = 4 * sl->mb_xy;
786 if (USES_LIST(mb_type, 0)) {
787 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
789 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
790 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
792 if (USES_LIST(mb_type, 1))
793 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
795 if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
796 if (IS_8X8(mb_type)) {
797 uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
798 direct_table[1] = sl->sub_mb_type[1] >> 1;
799 direct_table[2] = sl->sub_mb_type[2] >> 1;
800 direct_table[3] = sl->sub_mb_type[3] >> 1;
805 static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
807 if (h->ps.sps->direct_8x8_inference_flag)
808 return !(AV_RN64A(sl->sub_mb_type) &
809 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
810 0x0001000100010001ULL));
812 return !(AV_RN64A(sl->sub_mb_type) &
813 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
814 0x0001000100010001ULL));
817 static inline int find_start_code(const uint8_t *buf, int buf_size,
818 int buf_index, int next_avc)
822 buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
824 return FFMIN(buf_index, buf_size);
827 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
829 int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
830 void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
832 int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
834 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
836 int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl,
837 const H2645NAL *nal);
839 * Submit a slice for decoding.
841 * Parse the slice header, starting a new field/frame if necessary. If any
842 * slices are queued for the previous field, they are decoded.
844 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
845 int ff_h264_execute_decode_slices(H264Context *h);
846 int ff_h264_update_thread_context(AVCodecContext *dst,
847 const AVCodecContext *src);
849 void ff_h264_flush_change(H264Context *h);
851 void ff_h264_free_tables(H264Context *h);
853 void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
855 #endif /* AVCODEC_H264DEC_H */