]> git.sesse.net Git - ffmpeg/blob - libavcodec/hevc.c
2cbb35f07f2317acd6f213d266fc7ad18f63b9b2
[ffmpeg] / libavcodec / hevc.c
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/common.h"
28 #include "libavutil/display.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bswapdsp.h"
36 #include "bytestream.h"
37 #include "cabac_functions.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 static const uint8_t scan_1x1[1] = { 0 };
46
47 static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
48
49 static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
50
51 static const uint8_t horiz_scan4x4_x[16] = {
52     0, 1, 2, 3,
53     0, 1, 2, 3,
54     0, 1, 2, 3,
55     0, 1, 2, 3,
56 };
57
58 static const uint8_t horiz_scan4x4_y[16] = {
59     0, 0, 0, 0,
60     1, 1, 1, 1,
61     2, 2, 2, 2,
62     3, 3, 3, 3,
63 };
64
65 static const uint8_t horiz_scan8x8_inv[8][8] = {
66     {  0,  1,  2,  3, 16, 17, 18, 19, },
67     {  4,  5,  6,  7, 20, 21, 22, 23, },
68     {  8,  9, 10, 11, 24, 25, 26, 27, },
69     { 12, 13, 14, 15, 28, 29, 30, 31, },
70     { 32, 33, 34, 35, 48, 49, 50, 51, },
71     { 36, 37, 38, 39, 52, 53, 54, 55, },
72     { 40, 41, 42, 43, 56, 57, 58, 59, },
73     { 44, 45, 46, 47, 60, 61, 62, 63, },
74 };
75
76 static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
77
78 static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
79
80 static const uint8_t diag_scan2x2_inv[2][2] = {
81     { 0, 2, },
82     { 1, 3, },
83 };
84
85 const uint8_t ff_hevc_diag_scan4x4_x[16] = {
86     0, 0, 1, 0,
87     1, 2, 0, 1,
88     2, 3, 1, 2,
89     3, 2, 3, 3,
90 };
91
92 const uint8_t ff_hevc_diag_scan4x4_y[16] = {
93     0, 1, 0, 2,
94     1, 0, 3, 2,
95     1, 0, 3, 2,
96     1, 3, 2, 3,
97 };
98
99 static const uint8_t diag_scan4x4_inv[4][4] = {
100     { 0,  2,  5,  9, },
101     { 1,  4,  8, 12, },
102     { 3,  7, 11, 14, },
103     { 6, 10, 13, 15, },
104 };
105
106 const uint8_t ff_hevc_diag_scan8x8_x[64] = {
107     0, 0, 1, 0,
108     1, 2, 0, 1,
109     2, 3, 0, 1,
110     2, 3, 4, 0,
111     1, 2, 3, 4,
112     5, 0, 1, 2,
113     3, 4, 5, 6,
114     0, 1, 2, 3,
115     4, 5, 6, 7,
116     1, 2, 3, 4,
117     5, 6, 7, 2,
118     3, 4, 5, 6,
119     7, 3, 4, 5,
120     6, 7, 4, 5,
121     6, 7, 5, 6,
122     7, 6, 7, 7,
123 };
124
125 const uint8_t ff_hevc_diag_scan8x8_y[64] = {
126     0, 1, 0, 2,
127     1, 0, 3, 2,
128     1, 0, 4, 3,
129     2, 1, 0, 5,
130     4, 3, 2, 1,
131     0, 6, 5, 4,
132     3, 2, 1, 0,
133     7, 6, 5, 4,
134     3, 2, 1, 0,
135     7, 6, 5, 4,
136     3, 2, 1, 7,
137     6, 5, 4, 3,
138     2, 7, 6, 5,
139     4, 3, 7, 6,
140     5, 4, 7, 6,
141     5, 7, 6, 7,
142 };
143
144 static const uint8_t diag_scan8x8_inv[8][8] = {
145     {  0,  2,  5,  9, 14, 20, 27, 35, },
146     {  1,  4,  8, 13, 19, 26, 34, 42, },
147     {  3,  7, 12, 18, 25, 33, 41, 48, },
148     {  6, 11, 17, 24, 32, 40, 47, 53, },
149     { 10, 16, 23, 31, 39, 46, 52, 57, },
150     { 15, 22, 30, 38, 45, 51, 56, 60, },
151     { 21, 29, 37, 44, 50, 55, 59, 62, },
152     { 28, 36, 43, 49, 54, 58, 61, 63, },
153 };
154
155 /**
156  * NOTE: Each function hls_foo correspond to the function foo in the
157  * specification (HLS stands for High Level Syntax).
158  */
159
160 /**
161  * Section 5.7
162  */
163
164 /* free everything allocated  by pic_arrays_init() */
165 static void pic_arrays_free(HEVCContext *s)
166 {
167     av_freep(&s->sao);
168     av_freep(&s->deblock);
169
170     av_freep(&s->skip_flag);
171     av_freep(&s->tab_ct_depth);
172
173     av_freep(&s->tab_ipm);
174     av_freep(&s->cbf_luma);
175     av_freep(&s->is_pcm);
176
177     av_freep(&s->qp_y_tab);
178     av_freep(&s->tab_slice_address);
179     av_freep(&s->filter_slice_edges);
180
181     av_freep(&s->horizontal_bs);
182     av_freep(&s->vertical_bs);
183
184     av_buffer_pool_uninit(&s->tab_mvf_pool);
185     av_buffer_pool_uninit(&s->rpl_tab_pool);
186 }
187
188 /* allocate arrays that depend on frame dimensions */
189 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
190 {
191     int log2_min_cb_size = sps->log2_min_cb_size;
192     int width            = sps->width;
193     int height           = sps->height;
194     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
195                            ((height >> log2_min_cb_size) + 1);
196     int ctb_count        = sps->ctb_width * sps->ctb_height;
197     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
198
199     s->bs_width  = width  >> 3;
200     s->bs_height = height >> 3;
201
202     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
203     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
204     if (!s->sao || !s->deblock)
205         goto fail;
206
207     s->skip_flag    = av_malloc(pic_size_in_ctb);
208     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
209     if (!s->skip_flag || !s->tab_ct_depth)
210         goto fail;
211
212     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
213     s->tab_ipm  = av_mallocz(min_pu_size);
214     s->is_pcm   = av_malloc(min_pu_size);
215     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
216         goto fail;
217
218     s->filter_slice_edges = av_malloc(ctb_count);
219     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
220                                       sizeof(*s->tab_slice_address));
221     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
222                                       sizeof(*s->qp_y_tab));
223     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
224         goto fail;
225
226     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
227     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
228     if (!s->horizontal_bs || !s->vertical_bs)
229         goto fail;
230
231     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
232                                           av_buffer_alloc);
233     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
234                                           av_buffer_allocz);
235     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
236         goto fail;
237
238     return 0;
239
240 fail:
241     pic_arrays_free(s);
242     return AVERROR(ENOMEM);
243 }
244
245 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
246 {
247     int i = 0;
248     int j = 0;
249     uint8_t luma_weight_l0_flag[16];
250     uint8_t chroma_weight_l0_flag[16];
251     uint8_t luma_weight_l1_flag[16];
252     uint8_t chroma_weight_l1_flag[16];
253
254     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
255     if (s->sps->chroma_format_idc != 0) {
256         int delta = get_se_golomb(gb);
257         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
258     }
259
260     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
261         luma_weight_l0_flag[i] = get_bits1(gb);
262         if (!luma_weight_l0_flag[i]) {
263             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
264             s->sh.luma_offset_l0[i] = 0;
265         }
266     }
267     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
268         for (i = 0; i < s->sh.nb_refs[L0]; i++)
269             chroma_weight_l0_flag[i] = get_bits1(gb);
270     } else {
271         for (i = 0; i < s->sh.nb_refs[L0]; i++)
272             chroma_weight_l0_flag[i] = 0;
273     }
274     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
275         if (luma_weight_l0_flag[i]) {
276             int delta_luma_weight_l0 = get_se_golomb(gb);
277             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
278             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
279         }
280         if (chroma_weight_l0_flag[i]) {
281             for (j = 0; j < 2; j++) {
282                 int delta_chroma_weight_l0 = get_se_golomb(gb);
283                 int delta_chroma_offset_l0 = get_se_golomb(gb);
284                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
285                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
286                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
287             }
288         } else {
289             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
290             s->sh.chroma_offset_l0[i][0] = 0;
291             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
292             s->sh.chroma_offset_l0[i][1] = 0;
293         }
294     }
295     if (s->sh.slice_type == B_SLICE) {
296         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
297             luma_weight_l1_flag[i] = get_bits1(gb);
298             if (!luma_weight_l1_flag[i]) {
299                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
300                 s->sh.luma_offset_l1[i] = 0;
301             }
302         }
303         if (s->sps->chroma_format_idc != 0) {
304             for (i = 0; i < s->sh.nb_refs[L1]; i++)
305                 chroma_weight_l1_flag[i] = get_bits1(gb);
306         } else {
307             for (i = 0; i < s->sh.nb_refs[L1]; i++)
308                 chroma_weight_l1_flag[i] = 0;
309         }
310         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
311             if (luma_weight_l1_flag[i]) {
312                 int delta_luma_weight_l1 = get_se_golomb(gb);
313                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
314                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
315             }
316             if (chroma_weight_l1_flag[i]) {
317                 for (j = 0; j < 2; j++) {
318                     int delta_chroma_weight_l1 = get_se_golomb(gb);
319                     int delta_chroma_offset_l1 = get_se_golomb(gb);
320                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
321                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
322                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
323                 }
324             } else {
325                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
326                 s->sh.chroma_offset_l1[i][0] = 0;
327                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
328                 s->sh.chroma_offset_l1[i][1] = 0;
329             }
330         }
331     }
332 }
333
334 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
335 {
336     const HEVCSPS *sps = s->sps;
337     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
338     int prev_delta_msb = 0;
339     unsigned int nb_sps = 0, nb_sh;
340     int i;
341
342     rps->nb_refs = 0;
343     if (!sps->long_term_ref_pics_present_flag)
344         return 0;
345
346     if (sps->num_long_term_ref_pics_sps > 0)
347         nb_sps = get_ue_golomb_long(gb);
348     nb_sh = get_ue_golomb_long(gb);
349
350     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
351         return AVERROR_INVALIDDATA;
352
353     rps->nb_refs = nb_sh + nb_sps;
354
355     for (i = 0; i < rps->nb_refs; i++) {
356         uint8_t delta_poc_msb_present;
357
358         if (i < nb_sps) {
359             uint8_t lt_idx_sps = 0;
360
361             if (sps->num_long_term_ref_pics_sps > 1)
362                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
363
364             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
365             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
366         } else {
367             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
368             rps->used[i] = get_bits1(gb);
369         }
370
371         delta_poc_msb_present = get_bits1(gb);
372         if (delta_poc_msb_present) {
373             int delta = get_ue_golomb_long(gb);
374
375             if (i && i != nb_sps)
376                 delta += prev_delta_msb;
377
378             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
379             prev_delta_msb = delta;
380         }
381     }
382
383     return 0;
384 }
385
386 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
387 {
388     int ret;
389     unsigned int num = 0, den = 0;
390
391     pic_arrays_free(s);
392     ret = pic_arrays_init(s, sps);
393     if (ret < 0)
394         goto fail;
395
396     s->avctx->coded_width         = sps->width;
397     s->avctx->coded_height        = sps->height;
398     s->avctx->width               = sps->output_width;
399     s->avctx->height              = sps->output_height;
400     s->avctx->pix_fmt             = sps->pix_fmt;
401     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
402
403     ff_set_sar(s->avctx, sps->vui.sar);
404
405     if (sps->vui.video_signal_type_present_flag)
406         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
407                                                                : AVCOL_RANGE_MPEG;
408     else
409         s->avctx->color_range = AVCOL_RANGE_MPEG;
410
411     if (sps->vui.colour_description_present_flag) {
412         s->avctx->color_primaries = sps->vui.colour_primaries;
413         s->avctx->color_trc       = sps->vui.transfer_characteristic;
414         s->avctx->colorspace      = sps->vui.matrix_coeffs;
415     } else {
416         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
417         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
418         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
419     }
420
421     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
422     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
423     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
424
425     if (sps->sao_enabled) {
426         av_frame_unref(s->tmp_frame);
427         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
428         if (ret < 0)
429             goto fail;
430         s->frame = s->tmp_frame;
431     }
432
433     s->sps = sps;
434     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
435
436     if (s->vps->vps_timing_info_present_flag) {
437         num = s->vps->vps_num_units_in_tick;
438         den = s->vps->vps_time_scale;
439     } else if (sps->vui.vui_timing_info_present_flag) {
440         num = sps->vui.vui_num_units_in_tick;
441         den = sps->vui.vui_time_scale;
442     }
443
444     if (num != 0 && den != 0)
445         av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
446                   num, den, 1 << 30);
447
448     return 0;
449
450 fail:
451     pic_arrays_free(s);
452     s->sps = NULL;
453     return ret;
454 }
455
456 static int hls_slice_header(HEVCContext *s)
457 {
458     GetBitContext *gb = &s->HEVClc.gb;
459     SliceHeader *sh   = &s->sh;
460     int i, ret;
461
462     // Coded parameters
463     sh->first_slice_in_pic_flag = get_bits1(gb);
464     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
465         s->seq_decode = (s->seq_decode + 1) & 0xff;
466         s->max_ra     = INT_MAX;
467         if (IS_IDR(s))
468             ff_hevc_clear_refs(s);
469     }
470     if (IS_IRAP(s))
471         sh->no_output_of_prior_pics_flag = get_bits1(gb);
472
473     sh->pps_id = get_ue_golomb_long(gb);
474     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
475         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
476         return AVERROR_INVALIDDATA;
477     }
478     if (!sh->first_slice_in_pic_flag &&
479         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
480         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
481         return AVERROR_INVALIDDATA;
482     }
483     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
484
485     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
486         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
487
488         ff_hevc_clear_refs(s);
489         ret = set_sps(s, s->sps);
490         if (ret < 0)
491             return ret;
492
493         s->seq_decode = (s->seq_decode + 1) & 0xff;
494         s->max_ra     = INT_MAX;
495     }
496
497     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
498     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
499
500     sh->dependent_slice_segment_flag = 0;
501     if (!sh->first_slice_in_pic_flag) {
502         int slice_address_length;
503
504         if (s->pps->dependent_slice_segments_enabled_flag)
505             sh->dependent_slice_segment_flag = get_bits1(gb);
506
507         slice_address_length = av_ceil_log2(s->sps->ctb_width *
508                                             s->sps->ctb_height);
509         sh->slice_segment_addr = get_bits(gb, slice_address_length);
510         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
511             av_log(s->avctx, AV_LOG_ERROR,
512                    "Invalid slice segment address: %u.\n",
513                    sh->slice_segment_addr);
514             return AVERROR_INVALIDDATA;
515         }
516
517         if (!sh->dependent_slice_segment_flag) {
518             sh->slice_addr = sh->slice_segment_addr;
519             s->slice_idx++;
520         }
521     } else {
522         sh->slice_segment_addr = sh->slice_addr = 0;
523         s->slice_idx           = 0;
524         s->slice_initialized   = 0;
525     }
526
527     if (!sh->dependent_slice_segment_flag) {
528         s->slice_initialized = 0;
529
530         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
531             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
532
533         sh->slice_type = get_ue_golomb_long(gb);
534         if (!(sh->slice_type == I_SLICE ||
535               sh->slice_type == P_SLICE ||
536               sh->slice_type == B_SLICE)) {
537             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
538                    sh->slice_type);
539             return AVERROR_INVALIDDATA;
540         }
541         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
542             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
543             return AVERROR_INVALIDDATA;
544         }
545
546         // when flag is not present, picture is inferred to be output
547         sh->pic_output_flag = 1;
548         if (s->pps->output_flag_present_flag)
549             sh->pic_output_flag = get_bits1(gb);
550
551         if (s->sps->separate_colour_plane_flag)
552             sh->colour_plane_id = get_bits(gb, 2);
553
554         if (!IS_IDR(s)) {
555             int short_term_ref_pic_set_sps_flag, poc;
556
557             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
558             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
559             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
560                 av_log(s->avctx, AV_LOG_WARNING,
561                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
562                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
563                     return AVERROR_INVALIDDATA;
564                 poc = s->poc;
565             }
566             s->poc = poc;
567
568             short_term_ref_pic_set_sps_flag = get_bits1(gb);
569             if (!short_term_ref_pic_set_sps_flag) {
570                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
571                 if (ret < 0)
572                     return ret;
573
574                 sh->short_term_rps = &sh->slice_rps;
575             } else {
576                 int numbits, rps_idx;
577
578                 if (!s->sps->nb_st_rps) {
579                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
580                     return AVERROR_INVALIDDATA;
581                 }
582
583                 numbits = av_ceil_log2(s->sps->nb_st_rps);
584                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
585                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
586             }
587
588             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
589             if (ret < 0) {
590                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
591                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
592                     return AVERROR_INVALIDDATA;
593             }
594
595             if (s->sps->sps_temporal_mvp_enabled_flag)
596                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
597             else
598                 sh->slice_temporal_mvp_enabled_flag = 0;
599         } else {
600             s->sh.short_term_rps = NULL;
601             s->poc               = 0;
602         }
603
604         /* 8.3.1 */
605         if (s->temporal_id == 0 &&
606             s->nal_unit_type != NAL_TRAIL_N &&
607             s->nal_unit_type != NAL_TSA_N   &&
608             s->nal_unit_type != NAL_STSA_N  &&
609             s->nal_unit_type != NAL_RADL_N  &&
610             s->nal_unit_type != NAL_RADL_R  &&
611             s->nal_unit_type != NAL_RASL_N  &&
612             s->nal_unit_type != NAL_RASL_R)
613             s->pocTid0 = s->poc;
614
615         if (s->sps->sao_enabled) {
616             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
617             sh->slice_sample_adaptive_offset_flag[1] =
618             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
619         } else {
620             sh->slice_sample_adaptive_offset_flag[0] = 0;
621             sh->slice_sample_adaptive_offset_flag[1] = 0;
622             sh->slice_sample_adaptive_offset_flag[2] = 0;
623         }
624
625         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
626         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
627             int nb_refs;
628
629             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
630             if (sh->slice_type == B_SLICE)
631                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
632
633             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
634                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
635                 if (sh->slice_type == B_SLICE)
636                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
637             }
638             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
639                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
640                        sh->nb_refs[L0], sh->nb_refs[L1]);
641                 return AVERROR_INVALIDDATA;
642             }
643
644             sh->rpl_modification_flag[0] = 0;
645             sh->rpl_modification_flag[1] = 0;
646             nb_refs = ff_hevc_frame_nb_refs(s);
647             if (!nb_refs) {
648                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
649                 return AVERROR_INVALIDDATA;
650             }
651
652             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
653                 sh->rpl_modification_flag[0] = get_bits1(gb);
654                 if (sh->rpl_modification_flag[0]) {
655                     for (i = 0; i < sh->nb_refs[L0]; i++)
656                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
657                 }
658
659                 if (sh->slice_type == B_SLICE) {
660                     sh->rpl_modification_flag[1] = get_bits1(gb);
661                     if (sh->rpl_modification_flag[1] == 1)
662                         for (i = 0; i < sh->nb_refs[L1]; i++)
663                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
664                 }
665             }
666
667             if (sh->slice_type == B_SLICE)
668                 sh->mvd_l1_zero_flag = get_bits1(gb);
669
670             if (s->pps->cabac_init_present_flag)
671                 sh->cabac_init_flag = get_bits1(gb);
672             else
673                 sh->cabac_init_flag = 0;
674
675             sh->collocated_ref_idx = 0;
676             if (sh->slice_temporal_mvp_enabled_flag) {
677                 sh->collocated_list = L0;
678                 if (sh->slice_type == B_SLICE)
679                     sh->collocated_list = !get_bits1(gb);
680
681                 if (sh->nb_refs[sh->collocated_list] > 1) {
682                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
683                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
684                         av_log(s->avctx, AV_LOG_ERROR,
685                                "Invalid collocated_ref_idx: %d.\n",
686                                sh->collocated_ref_idx);
687                         return AVERROR_INVALIDDATA;
688                     }
689                 }
690             }
691
692             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
693                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
694                 pred_weight_table(s, gb);
695             }
696
697             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
698             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
699                 av_log(s->avctx, AV_LOG_ERROR,
700                        "Invalid number of merging MVP candidates: %d.\n",
701                        sh->max_num_merge_cand);
702                 return AVERROR_INVALIDDATA;
703             }
704         }
705
706         sh->slice_qp_delta = get_se_golomb(gb);
707
708         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
709             sh->slice_cb_qp_offset = get_se_golomb(gb);
710             sh->slice_cr_qp_offset = get_se_golomb(gb);
711         } else {
712             sh->slice_cb_qp_offset = 0;
713             sh->slice_cr_qp_offset = 0;
714         }
715
716         if (s->pps->deblocking_filter_control_present_flag) {
717             int deblocking_filter_override_flag = 0;
718
719             if (s->pps->deblocking_filter_override_enabled_flag)
720                 deblocking_filter_override_flag = get_bits1(gb);
721
722             if (deblocking_filter_override_flag) {
723                 sh->disable_deblocking_filter_flag = get_bits1(gb);
724                 if (!sh->disable_deblocking_filter_flag) {
725                     sh->beta_offset = get_se_golomb(gb) * 2;
726                     sh->tc_offset   = get_se_golomb(gb) * 2;
727                 }
728             } else {
729                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
730                 sh->beta_offset                    = s->pps->beta_offset;
731                 sh->tc_offset                      = s->pps->tc_offset;
732             }
733         } else {
734             sh->disable_deblocking_filter_flag = 0;
735             sh->beta_offset                    = 0;
736             sh->tc_offset                      = 0;
737         }
738
739         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
740             (sh->slice_sample_adaptive_offset_flag[0] ||
741              sh->slice_sample_adaptive_offset_flag[1] ||
742              !sh->disable_deblocking_filter_flag)) {
743             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
744         } else {
745             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
746         }
747     } else if (!s->slice_initialized) {
748         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
749         return AVERROR_INVALIDDATA;
750     }
751
752     sh->num_entry_point_offsets = 0;
753     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
754         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
755         if (sh->num_entry_point_offsets > 0) {
756             int offset_len = get_ue_golomb_long(gb) + 1;
757
758             for (i = 0; i < sh->num_entry_point_offsets; i++)
759                 skip_bits(gb, offset_len);
760         }
761     }
762
763     if (s->pps->slice_header_extension_present_flag) {
764         unsigned int length = get_ue_golomb_long(gb);
765         for (i = 0; i < length; i++)
766             skip_bits(gb, 8);  // slice_header_extension_data_byte
767     }
768
769     // Inferred parameters
770     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
771     if (sh->slice_qp > 51 ||
772         sh->slice_qp < -s->sps->qp_bd_offset) {
773         av_log(s->avctx, AV_LOG_ERROR,
774                "The slice_qp %d is outside the valid range "
775                "[%d, 51].\n",
776                sh->slice_qp,
777                -s->sps->qp_bd_offset);
778         return AVERROR_INVALIDDATA;
779     }
780
781     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
782
783     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
784         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
785         return AVERROR_INVALIDDATA;
786     }
787
788     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
789
790     if (!s->pps->cu_qp_delta_enabled_flag)
791         s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
792                                 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
793
794     s->slice_initialized = 1;
795
796     return 0;
797 }
798
799 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
800
801 #define SET_SAO(elem, value)                            \
802 do {                                                    \
803     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
804         sao->elem = value;                              \
805     else if (sao_merge_left_flag)                       \
806         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
807     else if (sao_merge_up_flag)                         \
808         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
809     else                                                \
810         sao->elem = 0;                                  \
811 } while (0)
812
813 static void hls_sao_param(HEVCContext *s, int rx, int ry)
814 {
815     HEVCLocalContext *lc    = &s->HEVClc;
816     int sao_merge_left_flag = 0;
817     int sao_merge_up_flag   = 0;
818     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
819     SAOParams *sao          = &CTB(s->sao, rx, ry);
820     int c_idx, i;
821
822     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
823         s->sh.slice_sample_adaptive_offset_flag[1]) {
824         if (rx > 0) {
825             if (lc->ctb_left_flag)
826                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
827         }
828         if (ry > 0 && !sao_merge_left_flag) {
829             if (lc->ctb_up_flag)
830                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
831         }
832     }
833
834     for (c_idx = 0; c_idx < 3; c_idx++) {
835         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
836             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
837             continue;
838         }
839
840         if (c_idx == 2) {
841             sao->type_idx[2] = sao->type_idx[1];
842             sao->eo_class[2] = sao->eo_class[1];
843         } else {
844             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
845         }
846
847         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
848             continue;
849
850         for (i = 0; i < 4; i++)
851             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
852
853         if (sao->type_idx[c_idx] == SAO_BAND) {
854             for (i = 0; i < 4; i++) {
855                 if (sao->offset_abs[c_idx][i]) {
856                     SET_SAO(offset_sign[c_idx][i],
857                             ff_hevc_sao_offset_sign_decode(s));
858                 } else {
859                     sao->offset_sign[c_idx][i] = 0;
860                 }
861             }
862             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
863         } else if (c_idx != 2) {
864             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
865         }
866
867         // Inferred parameters
868         sao->offset_val[c_idx][0] = 0;
869         for (i = 0; i < 4; i++) {
870             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
871             if (sao->type_idx[c_idx] == SAO_EDGE) {
872                 if (i > 1)
873                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
874             } else if (sao->offset_sign[c_idx][i]) {
875                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
876             }
877         }
878     }
879 }
880
881 #undef SET_SAO
882 #undef CTB
883
884 static void hls_residual_coding(HEVCContext *s, int x0, int y0,
885                                 int log2_trafo_size, enum ScanType scan_idx,
886                                 int c_idx)
887 {
888 #define GET_COORD(offset, n)                                    \
889     do {                                                        \
890         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
891         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
892     } while (0)
893     HEVCLocalContext *lc    = &s->HEVClc;
894     int transform_skip_flag = 0;
895
896     int last_significant_coeff_x, last_significant_coeff_y;
897     int last_scan_pos;
898     int n_end;
899     int num_coeff    = 0;
900     int greater1_ctx = 1;
901
902     int num_last_subset;
903     int x_cg_last_sig, y_cg_last_sig;
904
905     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
906
907     ptrdiff_t stride = s->frame->linesize[c_idx];
908     int hshift       = s->sps->hshift[c_idx];
909     int vshift       = s->sps->vshift[c_idx];
910     uint8_t *dst     = &s->frame->data[c_idx][(y0 >> vshift) * stride +
911                                               ((x0 >> hshift) << s->sps->pixel_shift)];
912     DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
913     DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
914
915     int trafo_size = 1 << log2_trafo_size;
916     int i, qp, shift, add, scale, scale_m;
917     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
918     const uint8_t *scale_matrix;
919     uint8_t dc_scale;
920
921     // Derive QP for dequant
922     if (!lc->cu.cu_transquant_bypass_flag) {
923         static const int qp_c[] = {
924             29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
925         };
926
927         static const uint8_t rem6[51 + 2 * 6 + 1] = {
928             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
929             3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
930             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
931         };
932
933         static const uint8_t div6[51 + 2 * 6 + 1] = {
934             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,  3,  3,  3,
935             3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6,  6,  6,  6,
936             7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
937         };
938         int qp_y = lc->qp_y;
939
940         if (c_idx == 0) {
941             qp = qp_y + s->sps->qp_bd_offset;
942         } else {
943             int qp_i, offset;
944
945             if (c_idx == 1)
946                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
947             else
948                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
949
950             qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
951             if (qp_i < 30)
952                 qp = qp_i;
953             else if (qp_i > 43)
954                 qp = qp_i - 6;
955             else
956                 qp = qp_c[qp_i - 30];
957
958             qp += s->sps->qp_bd_offset;
959         }
960
961         shift    = s->sps->bit_depth + log2_trafo_size - 5;
962         add      = 1 << (shift - 1);
963         scale    = level_scale[rem6[qp]] << (div6[qp]);
964         scale_m  = 16; // default when no custom scaling lists.
965         dc_scale = 16;
966
967         if (s->sps->scaling_list_enable_flag) {
968             const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
969                                     &s->pps->scaling_list : &s->sps->scaling_list;
970             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
971
972             if (log2_trafo_size != 5)
973                 matrix_id = 3 * matrix_id + c_idx;
974
975             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
976             if (log2_trafo_size >= 4)
977                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
978         }
979     }
980
981     if (s->pps->transform_skip_enabled_flag &&
982         !lc->cu.cu_transquant_bypass_flag   &&
983         log2_trafo_size == 2) {
984         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
985     }
986
987     last_significant_coeff_x =
988         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
989     last_significant_coeff_y =
990         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
991
992     if (last_significant_coeff_x > 3) {
993         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
994         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
995                                    (2 + (last_significant_coeff_x & 1)) +
996                                    suffix;
997     }
998
999     if (last_significant_coeff_y > 3) {
1000         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
1001         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1002                                    (2 + (last_significant_coeff_y & 1)) +
1003                                    suffix;
1004     }
1005
1006     if (scan_idx == SCAN_VERT)
1007         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
1008
1009     x_cg_last_sig = last_significant_coeff_x >> 2;
1010     y_cg_last_sig = last_significant_coeff_y >> 2;
1011
1012     switch (scan_idx) {
1013     case SCAN_DIAG: {
1014         int last_x_c = last_significant_coeff_x & 3;
1015         int last_y_c = last_significant_coeff_y & 3;
1016
1017         scan_x_off = ff_hevc_diag_scan4x4_x;
1018         scan_y_off = ff_hevc_diag_scan4x4_y;
1019         num_coeff  = diag_scan4x4_inv[last_y_c][last_x_c];
1020         if (trafo_size == 4) {
1021             scan_x_cg = scan_1x1;
1022             scan_y_cg = scan_1x1;
1023         } else if (trafo_size == 8) {
1024             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1025             scan_x_cg  = diag_scan2x2_x;
1026             scan_y_cg  = diag_scan2x2_y;
1027         } else if (trafo_size == 16) {
1028             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1029             scan_x_cg  = ff_hevc_diag_scan4x4_x;
1030             scan_y_cg  = ff_hevc_diag_scan4x4_y;
1031         } else { // trafo_size == 32
1032             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1033             scan_x_cg  = ff_hevc_diag_scan8x8_x;
1034             scan_y_cg  = ff_hevc_diag_scan8x8_y;
1035         }
1036         break;
1037     }
1038     case SCAN_HORIZ:
1039         scan_x_cg  = horiz_scan2x2_x;
1040         scan_y_cg  = horiz_scan2x2_y;
1041         scan_x_off = horiz_scan4x4_x;
1042         scan_y_off = horiz_scan4x4_y;
1043         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1044         break;
1045     default: //SCAN_VERT
1046         scan_x_cg  = horiz_scan2x2_y;
1047         scan_y_cg  = horiz_scan2x2_x;
1048         scan_x_off = horiz_scan4x4_y;
1049         scan_y_off = horiz_scan4x4_x;
1050         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1051         break;
1052     }
1053     num_coeff++;
1054     num_last_subset = (num_coeff - 1) >> 4;
1055
1056     for (i = num_last_subset; i >= 0; i--) {
1057         int n, m;
1058         int x_cg, y_cg, x_c, y_c;
1059         int implicit_non_zero_coeff = 0;
1060         int64_t trans_coeff_level;
1061         int prev_sig = 0;
1062         int offset   = i << 4;
1063
1064         uint8_t significant_coeff_flag_idx[16];
1065         uint8_t nb_significant_coeff_flag = 0;
1066
1067         x_cg = scan_x_cg[i];
1068         y_cg = scan_y_cg[i];
1069
1070         if (i < num_last_subset && i > 0) {
1071             int ctx_cg = 0;
1072             if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1073                 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1074             if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1075                 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1076
1077             significant_coeff_group_flag[x_cg][y_cg] =
1078                 ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
1079             implicit_non_zero_coeff = 1;
1080         } else {
1081             significant_coeff_group_flag[x_cg][y_cg] =
1082                 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1083                  (x_cg == 0 && y_cg == 0));
1084         }
1085
1086         last_scan_pos = num_coeff - offset - 1;
1087
1088         if (i == num_last_subset) {
1089             n_end                         = last_scan_pos - 1;
1090             significant_coeff_flag_idx[0] = last_scan_pos;
1091             nb_significant_coeff_flag     = 1;
1092         } else {
1093             n_end = 15;
1094         }
1095
1096         if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1097             prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1098         if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1099             prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1100
1101         for (n = n_end; n >= 0; n--) {
1102             GET_COORD(offset, n);
1103
1104             if (significant_coeff_group_flag[x_cg][y_cg] &&
1105                 (n > 0 || implicit_non_zero_coeff == 0)) {
1106                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
1107                                                           log2_trafo_size,
1108                                                           scan_idx,
1109                                                           prev_sig) == 1) {
1110                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1111                     nb_significant_coeff_flag++;
1112                     implicit_non_zero_coeff = 0;
1113                 }
1114             } else {
1115                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1116                 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1117                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1118                     nb_significant_coeff_flag++;
1119                 }
1120             }
1121         }
1122
1123         n_end = nb_significant_coeff_flag;
1124
1125         if (n_end) {
1126             int first_nz_pos_in_cg = 16;
1127             int last_nz_pos_in_cg = -1;
1128             int c_rice_param = 0;
1129             int first_greater1_coeff_idx = -1;
1130             uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1131             uint16_t coeff_sign_flag;
1132             int sum_abs = 0;
1133             int sign_hidden = 0;
1134
1135             // initialize first elem of coeff_bas_level_greater1_flag
1136             int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1137
1138             if (!(i == num_last_subset) && greater1_ctx == 0)
1139                 ctx_set++;
1140             greater1_ctx      = 1;
1141             last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1142
1143             for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1144                 int n_idx = significant_coeff_flag_idx[m];
1145                 int inc   = (ctx_set << 2) + greater1_ctx;
1146                 coeff_abs_level_greater1_flag[n_idx] =
1147                     ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
1148                 if (coeff_abs_level_greater1_flag[n_idx]) {
1149                     greater1_ctx = 0;
1150                 } else if (greater1_ctx > 0 && greater1_ctx < 3) {
1151                     greater1_ctx++;
1152                 }
1153
1154                 if (coeff_abs_level_greater1_flag[n_idx] &&
1155                     first_greater1_coeff_idx == -1)
1156                     first_greater1_coeff_idx = n_idx;
1157             }
1158             first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1159             sign_hidden        = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1160                                  !lc->cu.cu_transquant_bypass_flag;
1161
1162             if (first_greater1_coeff_idx != -1) {
1163                 coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
1164             }
1165             if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
1166                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
1167             } else {
1168                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1169             }
1170
1171             for (m = 0; m < n_end; m++) {
1172                 n = significant_coeff_flag_idx[m];
1173                 GET_COORD(offset, n);
1174                 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1175                 if (trans_coeff_level == ((m < 8) ?
1176                                           ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1177                     int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
1178
1179                     trans_coeff_level += last_coeff_abs_level_remaining;
1180                     if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1181                         c_rice_param = FFMIN(c_rice_param + 1, 4);
1182                 }
1183                 if (s->pps->sign_data_hiding_flag && sign_hidden) {
1184                     sum_abs += trans_coeff_level;
1185                     if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1186                         trans_coeff_level = -trans_coeff_level;
1187                 }
1188                 if (coeff_sign_flag >> 15)
1189                     trans_coeff_level = -trans_coeff_level;
1190                 coeff_sign_flag <<= 1;
1191                 if (!lc->cu.cu_transquant_bypass_flag) {
1192                     if (s->sps->scaling_list_enable_flag) {
1193                         if (y_c || x_c || log2_trafo_size < 4) {
1194                             int pos;
1195                             switch (log2_trafo_size) {
1196                             case 3:  pos = (y_c        << 3) +  x_c;       break;
1197                             case 4:  pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
1198                             case 5:  pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
1199                             default: pos = (y_c        << 2) +  x_c;
1200                             }
1201                             scale_m = scale_matrix[pos];
1202                         } else {
1203                             scale_m = dc_scale;
1204                         }
1205                     }
1206                     trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1207                     if(trans_coeff_level < 0) {
1208                         if((~trans_coeff_level) & 0xFffffffffff8000)
1209                             trans_coeff_level = -32768;
1210                     } else {
1211                         if (trans_coeff_level & 0xffffffffffff8000)
1212                             trans_coeff_level = 32767;
1213                     }
1214                 }
1215                 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1216             }
1217         }
1218     }
1219
1220     if (lc->cu.cu_transquant_bypass_flag) {
1221         s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
1222     } else {
1223         if (transform_skip_flag)
1224             s->hevcdsp.transform_skip(dst, coeffs, stride);
1225         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
1226                  log2_trafo_size == 2)
1227             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
1228         else
1229             s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
1230     }
1231 }
1232
1233 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
1234                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1235                               int log2_cb_size, int log2_trafo_size,
1236                               int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
1237 {
1238     HEVCLocalContext *lc = &s->HEVClc;
1239
1240     if (lc->cu.pred_mode == MODE_INTRA) {
1241         int trafo_size = 1 << log2_trafo_size;
1242         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1243
1244         s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
1245         if (log2_trafo_size > 2) {
1246             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
1247             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1248             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
1249             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
1250         } else if (blk_idx == 3) {
1251             trafo_size = trafo_size << s->sps->hshift[1];
1252             ff_hevc_set_neighbour_available(s, xBase, yBase,
1253                                             trafo_size, trafo_size);
1254             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
1255             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
1256         }
1257     }
1258
1259     if (cbf_luma || cbf_cb || cbf_cr) {
1260         int scan_idx   = SCAN_DIAG;
1261         int scan_idx_c = SCAN_DIAG;
1262
1263         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1264             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
1265             if (lc->tu.cu_qp_delta != 0)
1266                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
1267                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1268             lc->tu.is_cu_qp_delta_coded = 1;
1269
1270             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
1271                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
1272                 av_log(s->avctx, AV_LOG_ERROR,
1273                        "The cu_qp_delta %d is outside the valid range "
1274                        "[%d, %d].\n",
1275                        lc->tu.cu_qp_delta,
1276                        -(26 + s->sps->qp_bd_offset / 2),
1277                         (25 + s->sps->qp_bd_offset / 2));
1278                 return AVERROR_INVALIDDATA;
1279             }
1280
1281             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
1282         }
1283
1284         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1285             if (lc->tu.cur_intra_pred_mode >= 6 &&
1286                 lc->tu.cur_intra_pred_mode <= 14) {
1287                 scan_idx = SCAN_VERT;
1288             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
1289                        lc->tu.cur_intra_pred_mode <= 30) {
1290                 scan_idx = SCAN_HORIZ;
1291             }
1292
1293             if (lc->pu.intra_pred_mode_c >=  6 &&
1294                 lc->pu.intra_pred_mode_c <= 14) {
1295                 scan_idx_c = SCAN_VERT;
1296             } else if (lc->pu.intra_pred_mode_c >= 22 &&
1297                        lc->pu.intra_pred_mode_c <= 30) {
1298                 scan_idx_c = SCAN_HORIZ;
1299             }
1300         }
1301
1302         if (cbf_luma)
1303             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
1304         if (log2_trafo_size > 2) {
1305             if (cbf_cb)
1306                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
1307             if (cbf_cr)
1308                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
1309         } else if (blk_idx == 3) {
1310             if (cbf_cb)
1311                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
1312             if (cbf_cr)
1313                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
1314         }
1315     }
1316     return 0;
1317 }
1318
1319 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
1320 {
1321     int cb_size          = 1 << log2_cb_size;
1322     int log2_min_pu_size = s->sps->log2_min_pu_size;
1323
1324     int min_pu_width     = s->sps->min_pu_width;
1325     int x_end = FFMIN(x0 + cb_size, s->sps->width);
1326     int y_end = FFMIN(y0 + cb_size, s->sps->height);
1327     int i, j;
1328
1329     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1330         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1331             s->is_pcm[i + j * min_pu_width] = 2;
1332 }
1333
1334 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
1335                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1336                               int log2_cb_size, int log2_trafo_size,
1337                               int trafo_depth, int blk_idx,
1338                               int cbf_cb, int cbf_cr)
1339 {
1340     HEVCLocalContext *lc = &s->HEVClc;
1341     uint8_t split_transform_flag;
1342     int ret;
1343
1344     if (lc->cu.intra_split_flag) {
1345         if (trafo_depth == 1)
1346             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1347     } else {
1348         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
1349     }
1350
1351     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1352         log2_trafo_size >  s->sps->log2_min_tb_size    &&
1353         trafo_depth     < lc->cu.max_trafo_depth       &&
1354         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1355         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
1356     } else {
1357         int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
1358                           lc->cu.pred_mode == MODE_INTER &&
1359                           lc->cu.part_mode != PART_2Nx2N &&
1360                           trafo_depth == 0;
1361
1362         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
1363                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
1364                                inter_split;
1365     }
1366
1367     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1368         cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1369     else if (log2_trafo_size > 2 || trafo_depth == 0)
1370         cbf_cb = 0;
1371     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1372         cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1373     else if (log2_trafo_size > 2 || trafo_depth == 0)
1374         cbf_cr = 0;
1375
1376     if (split_transform_flag) {
1377         const int trafo_size_split = 1 << (log2_trafo_size - 1);
1378         const int x1 = x0 + trafo_size_split;
1379         const int y1 = y0 + trafo_size_split;
1380
1381 #define SUBDIVIDE(x, y, idx)                                                    \
1382 do {                                                                            \
1383     ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1384                              log2_trafo_size - 1, trafo_depth + 1, idx,         \
1385                              cbf_cb, cbf_cr);                                   \
1386     if (ret < 0)                                                                \
1387         return ret;                                                             \
1388 } while (0)
1389
1390         SUBDIVIDE(x0, y0, 0);
1391         SUBDIVIDE(x1, y0, 1);
1392         SUBDIVIDE(x0, y1, 2);
1393         SUBDIVIDE(x1, y1, 3);
1394
1395 #undef SUBDIVIDE
1396     } else {
1397         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
1398         int log2_min_tu_size = s->sps->log2_min_tb_size;
1399         int min_tu_width     = s->sps->min_tb_width;
1400         int cbf_luma         = 1;
1401
1402         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1403             cbf_cb || cbf_cr)
1404             cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
1405
1406         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1407                                  log2_cb_size, log2_trafo_size,
1408                                  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1409         if (ret < 0)
1410             return ret;
1411         // TODO: store cbf_luma somewhere else
1412         if (cbf_luma) {
1413             int i, j;
1414             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1415                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1416                     int x_tu = (x0 + j) >> log2_min_tu_size;
1417                     int y_tu = (y0 + i) >> log2_min_tu_size;
1418                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1419                 }
1420         }
1421         if (!s->sh.disable_deblocking_filter_flag) {
1422             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
1423             if (s->pps->transquant_bypass_enable_flag &&
1424                 lc->cu.cu_transquant_bypass_flag)
1425                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1426         }
1427     }
1428     return 0;
1429 }
1430
1431 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1432 {
1433     //TODO: non-4:2:0 support
1434     HEVCLocalContext *lc = &s->HEVClc;
1435     GetBitContext gb;
1436     int cb_size   = 1 << log2_cb_size;
1437     int stride0   = s->frame->linesize[0];
1438     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1439     int   stride1 = s->frame->linesize[1];
1440     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1441     int   stride2 = s->frame->linesize[2];
1442     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1443
1444     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1445     const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1446     int ret;
1447
1448     if (!s->sh.disable_deblocking_filter_flag)
1449         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
1450
1451     ret = init_get_bits(&gb, pcm, length);
1452     if (ret < 0)
1453         return ret;
1454
1455     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1456     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1457     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1458     return 0;
1459 }
1460
1461 static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
1462 {
1463     HEVCLocalContext *lc = &s->HEVClc;
1464     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
1465     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
1466
1467     if (x)
1468         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
1469     if (y)
1470         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
1471
1472     switch (x) {
1473     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
1474     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
1475     case 0: lc->pu.mvd.x = 0;                               break;
1476     }
1477
1478     switch (y) {
1479     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
1480     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
1481     case 0: lc->pu.mvd.y = 0;                               break;
1482     }
1483 }
1484
1485 /**
1486  * 8.5.3.2.2.1 Luma sample interpolation process
1487  *
1488  * @param s HEVC decoding context
1489  * @param dst target buffer for block data at block position
1490  * @param dststride stride of the dst buffer
1491  * @param ref reference picture buffer at origin (0, 0)
1492  * @param mv motion vector (relative to block position) to get pixel data from
1493  * @param x_off horizontal position of block from origin (0, 0)
1494  * @param y_off vertical position of block from origin (0, 0)
1495  * @param block_w width of block
1496  * @param block_h height of block
1497  */
1498 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1499                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1500                     int block_w, int block_h)
1501 {
1502     HEVCLocalContext *lc = &s->HEVClc;
1503     uint8_t *src         = ref->data[0];
1504     ptrdiff_t srcstride  = ref->linesize[0];
1505     int pic_width        = s->sps->width;
1506     int pic_height       = s->sps->height;
1507
1508     int mx         = mv->x & 3;
1509     int my         = mv->y & 3;
1510     int extra_left = ff_hevc_qpel_extra_before[mx];
1511     int extra_top  = ff_hevc_qpel_extra_before[my];
1512
1513     x_off += mv->x >> 2;
1514     y_off += mv->y >> 2;
1515     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1516
1517     if (x_off < extra_left || y_off < extra_top ||
1518         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1519         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1520         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1521         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1522         int buf_offset = extra_top *
1523                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1524
1525         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1526                                  edge_emu_stride, srcstride,
1527                                  block_w + ff_hevc_qpel_extra[mx],
1528                                  block_h + ff_hevc_qpel_extra[my],
1529                                  x_off - extra_left, y_off - extra_top,
1530                                  pic_width, pic_height);
1531         src = lc->edge_emu_buffer + buf_offset;
1532         srcstride = edge_emu_stride;
1533     }
1534     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1535                                      block_h, lc->mc_buffer);
1536 }
1537
1538 /**
1539  * 8.5.3.2.2.2 Chroma sample interpolation process
1540  *
1541  * @param s HEVC decoding context
1542  * @param dst1 target buffer for block data at block position (U plane)
1543  * @param dst2 target buffer for block data at block position (V plane)
1544  * @param dststride stride of the dst1 and dst2 buffers
1545  * @param ref reference picture buffer at origin (0, 0)
1546  * @param mv motion vector (relative to block position) to get pixel data from
1547  * @param x_off horizontal position of block from origin (0, 0)
1548  * @param y_off vertical position of block from origin (0, 0)
1549  * @param block_w width of block
1550  * @param block_h height of block
1551  */
1552 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1553                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1554                       int x_off, int y_off, int block_w, int block_h)
1555 {
1556     HEVCLocalContext *lc = &s->HEVClc;
1557     uint8_t *src1        = ref->data[1];
1558     uint8_t *src2        = ref->data[2];
1559     ptrdiff_t src1stride = ref->linesize[1];
1560     ptrdiff_t src2stride = ref->linesize[2];
1561     int pic_width        = s->sps->width >> 1;
1562     int pic_height       = s->sps->height >> 1;
1563
1564     int mx = mv->x & 7;
1565     int my = mv->y & 7;
1566
1567     x_off += mv->x >> 3;
1568     y_off += mv->y >> 3;
1569     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1570     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1571
1572     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1573         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1574         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1575         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1576         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1577         int buf_offset1 = EPEL_EXTRA_BEFORE *
1578                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1579         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1580         int buf_offset2 = EPEL_EXTRA_BEFORE *
1581                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1582
1583         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1584                                  edge_emu_stride, src1stride,
1585                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1586                                  x_off - EPEL_EXTRA_BEFORE,
1587                                  y_off - EPEL_EXTRA_BEFORE,
1588                                  pic_width, pic_height);
1589
1590         src1 = lc->edge_emu_buffer + buf_offset1;
1591         src1stride = edge_emu_stride;
1592         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1593                                              block_w, block_h, mx, my, lc->mc_buffer);
1594
1595         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1596                                  edge_emu_stride, src2stride,
1597                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1598                                  x_off - EPEL_EXTRA_BEFORE,
1599                                  y_off - EPEL_EXTRA_BEFORE,
1600                                  pic_width, pic_height);
1601         src2 = lc->edge_emu_buffer + buf_offset2;
1602         src2stride = edge_emu_stride;
1603
1604         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1605                                              block_w, block_h, mx, my,
1606                                              lc->mc_buffer);
1607     } else {
1608         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1609                                              block_w, block_h, mx, my,
1610                                              lc->mc_buffer);
1611         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1612                                              block_w, block_h, mx, my,
1613                                              lc->mc_buffer);
1614     }
1615 }
1616
1617 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1618                                 const Mv *mv, int y0, int height)
1619 {
1620     int y = (mv->y >> 2) + y0 + height + 9;
1621     ff_thread_await_progress(&ref->tf, y, 0);
1622 }
1623
1624 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1625                                 int nPbW, int nPbH,
1626                                 int log2_cb_size, int partIdx)
1627 {
1628 #define POS(c_idx, x, y)                                                              \
1629     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1630                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1631     HEVCLocalContext *lc = &s->HEVClc;
1632     int merge_idx = 0;
1633     struct MvField current_mv = {{{ 0 }}};
1634
1635     int min_pu_width = s->sps->min_pu_width;
1636
1637     MvField *tab_mvf = s->ref->tab_mvf;
1638     RefPicList  *refPicList = s->ref->refPicList;
1639     HEVCFrame *ref0, *ref1;
1640
1641     int tmpstride = MAX_PB_SIZE;
1642
1643     uint8_t *dst0 = POS(0, x0, y0);
1644     uint8_t *dst1 = POS(1, x0, y0);
1645     uint8_t *dst2 = POS(2, x0, y0);
1646     int log2_min_cb_size = s->sps->log2_min_cb_size;
1647     int min_cb_width     = s->sps->min_cb_width;
1648     int x_cb             = x0 >> log2_min_cb_size;
1649     int y_cb             = y0 >> log2_min_cb_size;
1650     int ref_idx[2];
1651     int mvp_flag[2];
1652     int x_pu, y_pu;
1653     int i, j;
1654
1655     int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
1656
1657     if (!skip_flag)
1658         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1659
1660     if (skip_flag || lc->pu.merge_flag) {
1661         if (s->sh.max_num_merge_cand > 1)
1662             merge_idx = ff_hevc_merge_idx_decode(s);
1663         else
1664             merge_idx = 0;
1665
1666         ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1667                                    partIdx, merge_idx, &current_mv);
1668     } else {
1669         enum InterPredIdc inter_pred_idc = PRED_L0;
1670         ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1671         if (s->sh.slice_type == B_SLICE)
1672             inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1673
1674         if (inter_pred_idc != PRED_L1) {
1675             if (s->sh.nb_refs[L0]) {
1676                 ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1677                 current_mv.ref_idx[0] = ref_idx[0];
1678             }
1679             current_mv.pred_flag[0] = 1;
1680             hls_mvd_coding(s, x0, y0, 0);
1681             mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
1682             ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1683                                      partIdx, merge_idx, &current_mv,
1684                                      mvp_flag[0], 0);
1685             current_mv.mv[0].x += lc->pu.mvd.x;
1686             current_mv.mv[0].y += lc->pu.mvd.y;
1687         }
1688
1689         if (inter_pred_idc != PRED_L0) {
1690             if (s->sh.nb_refs[L1]) {
1691                 ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1692                 current_mv.ref_idx[1] = ref_idx[1];
1693             }
1694
1695             if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1696                 AV_ZERO32(&lc->pu.mvd);
1697             } else {
1698                 hls_mvd_coding(s, x0, y0, 1);
1699             }
1700
1701             current_mv.pred_flag[1] = 1;
1702             mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
1703             ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1704                                      partIdx, merge_idx, &current_mv,
1705                                      mvp_flag[1], 1);
1706             current_mv.mv[1].x += lc->pu.mvd.x;
1707             current_mv.mv[1].y += lc->pu.mvd.y;
1708         }
1709     }
1710
1711     x_pu = x0 >> s->sps->log2_min_pu_size;
1712     y_pu = y0 >> s->sps->log2_min_pu_size;
1713
1714     for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1715         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1716             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1717
1718     if (current_mv.pred_flag[0]) {
1719         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1720         if (!ref0)
1721             return;
1722         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1723     }
1724     if (current_mv.pred_flag[1]) {
1725         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1726         if (!ref1)
1727             return;
1728         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1729     }
1730
1731     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1732         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1733         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1734
1735         luma_mc(s, tmp, tmpstride, ref0->frame,
1736                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1737
1738         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1739             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1740             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1741                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1742                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1743                                      dst0, s->frame->linesize[0], tmp,
1744                                      tmpstride, nPbW, nPbH);
1745         } else {
1746             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1747         }
1748         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1749                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1750
1751         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1752             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1753             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1754                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1755                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1756                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1757                                      nPbW / 2, nPbH / 2);
1758             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1759                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1760                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1761                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1762                                      nPbW / 2, nPbH / 2);
1763         } else {
1764             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1765             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1766         }
1767     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1768         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1769         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1770
1771         if (!ref1)
1772             return;
1773
1774         luma_mc(s, tmp, tmpstride, ref1->frame,
1775                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1776
1777         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1778             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1779             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1780                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1781                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1782                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1783                                       nPbW, nPbH);
1784         } else {
1785             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1786         }
1787
1788         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1789                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1790
1791         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1792             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1793             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1794                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1795                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1796                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1797             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1798                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1799                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1800                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1801         } else {
1802             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1803             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1804         }
1805     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1806         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1807         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1808         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1809         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1810         HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1811         HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1812
1813         if (!ref0 || !ref1)
1814             return;
1815
1816         luma_mc(s, tmp, tmpstride, ref0->frame,
1817                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1818         luma_mc(s, tmp2, tmpstride, ref1->frame,
1819                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1820
1821         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1822             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1823             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1824                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1825                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1826                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1827                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1828                                          dst0, s->frame->linesize[0],
1829                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1830         } else {
1831             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1832                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1833         }
1834
1835         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1836                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1837         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1838                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1839
1840         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1841             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1842             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1843                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1844                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1845                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1846                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1847                                          dst1, s->frame->linesize[1], tmp, tmp3,
1848                                          tmpstride, nPbW / 2, nPbH / 2);
1849             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1850                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1851                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1852                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1853                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1854                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1855                                          tmpstride, nPbW / 2, nPbH / 2);
1856         } else {
1857             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1858             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1859         }
1860     }
1861 }
1862
1863 /**
1864  * 8.4.1
1865  */
1866 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1867                                 int prev_intra_luma_pred_flag)
1868 {
1869     HEVCLocalContext *lc = &s->HEVClc;
1870     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1871     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1872     int min_pu_width     = s->sps->min_pu_width;
1873     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1874     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1875     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1876
1877     int cand_up   = (lc->ctb_up_flag || y0b) ?
1878                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1879     int cand_left = (lc->ctb_left_flag || x0b) ?
1880                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1881
1882     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1883
1884     MvField *tab_mvf = s->ref->tab_mvf;
1885     int intra_pred_mode;
1886     int candidate[3];
1887     int i, j;
1888
1889     // intra_pred_mode prediction does not cross vertical CTB boundaries
1890     if ((y0 - 1) < y_ctb)
1891         cand_up = INTRA_DC;
1892
1893     if (cand_left == cand_up) {
1894         if (cand_left < 2) {
1895             candidate[0] = INTRA_PLANAR;
1896             candidate[1] = INTRA_DC;
1897             candidate[2] = INTRA_ANGULAR_26;
1898         } else {
1899             candidate[0] = cand_left;
1900             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1901             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1902         }
1903     } else {
1904         candidate[0] = cand_left;
1905         candidate[1] = cand_up;
1906         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1907             candidate[2] = INTRA_PLANAR;
1908         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1909             candidate[2] = INTRA_DC;
1910         } else {
1911             candidate[2] = INTRA_ANGULAR_26;
1912         }
1913     }
1914
1915     if (prev_intra_luma_pred_flag) {
1916         intra_pred_mode = candidate[lc->pu.mpm_idx];
1917     } else {
1918         if (candidate[0] > candidate[1])
1919             FFSWAP(uint8_t, candidate[0], candidate[1]);
1920         if (candidate[0] > candidate[2])
1921             FFSWAP(uint8_t, candidate[0], candidate[2]);
1922         if (candidate[1] > candidate[2])
1923             FFSWAP(uint8_t, candidate[1], candidate[2]);
1924
1925         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1926         for (i = 0; i < 3; i++)
1927             if (intra_pred_mode >= candidate[i])
1928                 intra_pred_mode++;
1929     }
1930
1931     /* write the intra prediction units into the mv array */
1932     if (!size_in_pus)
1933         size_in_pus = 1;
1934     for (i = 0; i < size_in_pus; i++) {
1935         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1936                intra_pred_mode, size_in_pus);
1937
1938         for (j = 0; j < size_in_pus; j++) {
1939             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1940             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1941             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1942             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1943             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1944             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1945             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1946             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1947             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1948         }
1949     }
1950
1951     return intra_pred_mode;
1952 }
1953
1954 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1955                                           int log2_cb_size, int ct_depth)
1956 {
1957     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1958     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1959     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1960     int y;
1961
1962     for (y = 0; y < length; y++)
1963         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1964                ct_depth, length);
1965 }
1966
1967 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1968                                   int log2_cb_size)
1969 {
1970     HEVCLocalContext *lc = &s->HEVClc;
1971     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1972     uint8_t prev_intra_luma_pred_flag[4];
1973     int split   = lc->cu.part_mode == PART_NxN;
1974     int pb_size = (1 << log2_cb_size) >> split;
1975     int side    = split + 1;
1976     int chroma_mode;
1977     int i, j;
1978
1979     for (i = 0; i < side; i++)
1980         for (j = 0; j < side; j++)
1981             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
1982
1983     for (i = 0; i < side; i++) {
1984         for (j = 0; j < side; j++) {
1985             if (prev_intra_luma_pred_flag[2 * i + j])
1986                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
1987             else
1988                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
1989
1990             lc->pu.intra_pred_mode[2 * i + j] =
1991                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
1992                                      prev_intra_luma_pred_flag[2 * i + j]);
1993         }
1994     }
1995
1996     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
1997     if (chroma_mode != 4) {
1998         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
1999             lc->pu.intra_pred_mode_c = 34;
2000         else
2001             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
2002     } else {
2003         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
2004     }
2005 }
2006
2007 static void intra_prediction_unit_default_value(HEVCContext *s,
2008                                                 int x0, int y0,
2009                                                 int log2_cb_size)
2010 {
2011     HEVCLocalContext *lc = &s->HEVClc;
2012     int pb_size          = 1 << log2_cb_size;
2013     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
2014     int min_pu_width     = s->sps->min_pu_width;
2015     MvField *tab_mvf     = s->ref->tab_mvf;
2016     int x_pu             = x0 >> s->sps->log2_min_pu_size;
2017     int y_pu             = y0 >> s->sps->log2_min_pu_size;
2018     int j, k;
2019
2020     if (size_in_pus == 0)
2021         size_in_pus = 1;
2022     for (j = 0; j < size_in_pus; j++) {
2023         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2024         for (k = 0; k < size_in_pus; k++)
2025             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
2026     }
2027 }
2028
2029 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
2030 {
2031     int cb_size          = 1 << log2_cb_size;
2032     HEVCLocalContext *lc = &s->HEVClc;
2033     int log2_min_cb_size = s->sps->log2_min_cb_size;
2034     int length           = cb_size >> log2_min_cb_size;
2035     int min_cb_width     = s->sps->min_cb_width;
2036     int x_cb             = x0 >> log2_min_cb_size;
2037     int y_cb             = y0 >> log2_min_cb_size;
2038     int x, y, ret;
2039
2040     lc->cu.x                = x0;
2041     lc->cu.y                = y0;
2042     lc->cu.pred_mode        = MODE_INTRA;
2043     lc->cu.part_mode        = PART_2Nx2N;
2044     lc->cu.intra_split_flag = 0;
2045
2046     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
2047     for (x = 0; x < 4; x++)
2048         lc->pu.intra_pred_mode[x] = 1;
2049     if (s->pps->transquant_bypass_enable_flag) {
2050         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
2051         if (lc->cu.cu_transquant_bypass_flag)
2052             set_deblocking_bypass(s, x0, y0, log2_cb_size);
2053     } else
2054         lc->cu.cu_transquant_bypass_flag = 0;
2055
2056     if (s->sh.slice_type != I_SLICE) {
2057         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
2058
2059         x = y_cb * min_cb_width + x_cb;
2060         for (y = 0; y < length; y++) {
2061             memset(&s->skip_flag[x], skip_flag, length);
2062             x += min_cb_width;
2063         }
2064         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2065     }
2066
2067     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
2068         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2069         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2070
2071         if (!s->sh.disable_deblocking_filter_flag)
2072             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2073     } else {
2074         int pcm_flag = 0;
2075
2076         if (s->sh.slice_type != I_SLICE)
2077             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
2078         if (lc->cu.pred_mode != MODE_INTRA ||
2079             log2_cb_size == s->sps->log2_min_cb_size) {
2080             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
2081             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2082                                       lc->cu.pred_mode == MODE_INTRA;
2083         }
2084
2085         if (lc->cu.pred_mode == MODE_INTRA) {
2086             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
2087                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
2088                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2089                 pcm_flag = ff_hevc_pcm_flag_decode(s);
2090             }
2091             if (pcm_flag) {
2092                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2093                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
2094                 if (s->sps->pcm.loop_filter_disable_flag)
2095                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
2096
2097                 if (ret < 0)
2098                     return ret;
2099             } else {
2100                 intra_prediction_unit(s, x0, y0, log2_cb_size);
2101             }
2102         } else {
2103             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2104             switch (lc->cu.part_mode) {
2105             case PART_2Nx2N:
2106                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2107                 break;
2108             case PART_2NxN:
2109                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
2110                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
2111                 break;
2112             case PART_Nx2N:
2113                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
2114                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
2115                 break;
2116             case PART_2NxnU:
2117                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
2118                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
2119                 break;
2120             case PART_2NxnD:
2121                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
2122                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
2123                 break;
2124             case PART_nLx2N:
2125                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
2126                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
2127                 break;
2128             case PART_nRx2N:
2129                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
2130                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
2131                 break;
2132             case PART_NxN:
2133                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
2134                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
2135                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
2136                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2137                 break;
2138             }
2139         }
2140
2141         if (!pcm_flag) {
2142             int rqt_root_cbf = 1;
2143
2144             if (lc->cu.pred_mode != MODE_INTRA &&
2145                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2146                 rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
2147             }
2148             if (rqt_root_cbf) {
2149                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2150                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2151                                          s->sps->max_transform_hierarchy_depth_inter;
2152                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
2153                                          log2_cb_size,
2154                                          log2_cb_size, 0, 0, 0, 0);
2155                 if (ret < 0)
2156                     return ret;
2157             } else {
2158                 if (!s->sh.disable_deblocking_filter_flag)
2159                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2160             }
2161         }
2162     }
2163
2164     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2165         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
2166
2167     x = y_cb * min_cb_width + x_cb;
2168     for (y = 0; y < length; y++) {
2169         memset(&s->qp_y_tab[x], lc->qp_y, length);
2170         x += min_cb_width;
2171     }
2172
2173     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
2174
2175     return 0;
2176 }
2177
2178 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
2179                                int log2_cb_size, int cb_depth)
2180 {
2181     HEVCLocalContext *lc = &s->HEVClc;
2182     const int cb_size    = 1 << log2_cb_size;
2183     int split_cu;
2184
2185     lc->ct.depth = cb_depth;
2186     if (x0 + cb_size <= s->sps->width  &&
2187         y0 + cb_size <= s->sps->height &&
2188         log2_cb_size > s->sps->log2_min_cb_size) {
2189         split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
2190     } else {
2191         split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
2192     }
2193     if (s->pps->cu_qp_delta_enabled_flag &&
2194         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
2195         lc->tu.is_cu_qp_delta_coded = 0;
2196         lc->tu.cu_qp_delta          = 0;
2197     }
2198
2199     if (split_cu) {
2200         const int cb_size_split = cb_size >> 1;
2201         const int x1 = x0 + cb_size_split;
2202         const int y1 = y0 + cb_size_split;
2203
2204         log2_cb_size--;
2205         cb_depth++;
2206
2207 #define SUBDIVIDE(x, y)                                                \
2208 do {                                                                   \
2209     if (x < s->sps->width && y < s->sps->height) {                     \
2210         int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2211         if (ret < 0)                                                   \
2212             return ret;                                                \
2213     }                                                                  \
2214 } while (0)
2215
2216         SUBDIVIDE(x0, y0);
2217         SUBDIVIDE(x1, y0);
2218         SUBDIVIDE(x0, y1);
2219         SUBDIVIDE(x1, y1);
2220     } else {
2221         int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
2222         if (ret < 0)
2223             return ret;
2224     }
2225
2226     return 0;
2227 }
2228
2229 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
2230                                  int ctb_addr_ts)
2231 {
2232     HEVCLocalContext *lc  = &s->HEVClc;
2233     int ctb_size          = 1 << s->sps->log2_ctb_size;
2234     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2235     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2236
2237     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2238
2239     if (s->pps->entropy_coding_sync_enabled_flag) {
2240         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2241             lc->first_qp_group = 1;
2242         lc->end_of_tiles_x = s->sps->width;
2243     } else if (s->pps->tiles_enabled_flag) {
2244         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
2245             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
2246             lc->start_of_tiles_x = x_ctb;
2247             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
2248             lc->first_qp_group   = 1;
2249         }
2250     } else {
2251         lc->end_of_tiles_x = s->sps->width;
2252     }
2253
2254     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
2255
2256     lc->boundary_flags = 0;
2257     if (s->pps->tiles_enabled_flag) {
2258         if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2259             lc->boundary_flags |= BOUNDARY_LEFT_TILE;
2260         if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
2261             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2262         if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
2263             lc->boundary_flags |= BOUNDARY_UPPER_TILE;
2264         if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
2265             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2266     } else {
2267         if (!ctb_addr_in_slice > 0)
2268             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2269         if (ctb_addr_in_slice < s->sps->ctb_width)
2270             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2271     }
2272
2273     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2274     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2275     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
2276     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
2277 }
2278
2279 static int hls_slice_data(HEVCContext *s)
2280 {
2281     int ctb_size    = 1 << s->sps->log2_ctb_size;
2282     int more_data   = 1;
2283     int x_ctb       = 0;
2284     int y_ctb       = 0;
2285     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2286     int ret;
2287
2288     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2289         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2290
2291         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2292         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2293         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
2294
2295         ff_hevc_cabac_init(s, ctb_addr_ts);
2296
2297         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2298
2299         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2300         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
2301         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
2302
2303         ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2304         if (ret < 0)
2305             return ret;
2306         more_data = !ff_hevc_end_of_slice_flag_decode(s);
2307
2308         ctb_addr_ts++;
2309         ff_hevc_save_states(s, ctb_addr_ts);
2310         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2311     }
2312
2313     if (x_ctb + ctb_size >= s->sps->width &&
2314         y_ctb + ctb_size >= s->sps->height)
2315         ff_hevc_hls_filter(s, x_ctb, y_ctb);
2316
2317     return ctb_addr_ts;
2318 }
2319
2320 /**
2321  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2322  * 0 if the unit should be skipped, 1 otherwise
2323  */
2324 static int hls_nal_unit(HEVCContext *s)
2325 {
2326     GetBitContext *gb = &s->HEVClc.gb;
2327     int nuh_layer_id;
2328
2329     if (get_bits1(gb) != 0)
2330         return AVERROR_INVALIDDATA;
2331
2332     s->nal_unit_type = get_bits(gb, 6);
2333
2334     nuh_layer_id   = get_bits(gb, 6);
2335     s->temporal_id = get_bits(gb, 3) - 1;
2336     if (s->temporal_id < 0)
2337         return AVERROR_INVALIDDATA;
2338
2339     av_log(s->avctx, AV_LOG_DEBUG,
2340            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2341            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2342
2343     return nuh_layer_id == 0;
2344 }
2345
2346 static void restore_tqb_pixels(HEVCContext *s)
2347 {
2348     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2349     int x, y, c_idx;
2350
2351     for (c_idx = 0; c_idx < 3; c_idx++) {
2352         ptrdiff_t stride = s->frame->linesize[c_idx];
2353         int hshift       = s->sps->hshift[c_idx];
2354         int vshift       = s->sps->vshift[c_idx];
2355         for (y = 0; y < s->sps->min_pu_height; y++) {
2356             for (x = 0; x < s->sps->min_pu_width; x++) {
2357                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2358                     int n;
2359                     int len      = min_pu_size >> hshift;
2360                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2361                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2362                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2363                         memcpy(dst, src, len);
2364                         src += stride;
2365                         dst += stride;
2366                     }
2367                 }
2368             }
2369         }
2370     }
2371 }
2372
2373 static int set_side_data(HEVCContext *s)
2374 {
2375     AVFrame *out = s->ref->frame;
2376
2377     if (s->sei_frame_packing_present &&
2378         s->frame_packing_arrangement_type >= 3 &&
2379         s->frame_packing_arrangement_type <= 5 &&
2380         s->content_interpretation_type > 0 &&
2381         s->content_interpretation_type < 3) {
2382         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2383         if (!stereo)
2384             return AVERROR(ENOMEM);
2385
2386         switch (s->frame_packing_arrangement_type) {
2387         case 3:
2388             if (s->quincunx_subsampling)
2389                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2390             else
2391                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2392             break;
2393         case 4:
2394             stereo->type = AV_STEREO3D_TOPBOTTOM;
2395             break;
2396         case 5:
2397             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2398             break;
2399         }
2400
2401         if (s->content_interpretation_type == 2)
2402             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2403     }
2404
2405     if (s->sei_display_orientation_present &&
2406         (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
2407         double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
2408         AVFrameSideData *rotation = av_frame_new_side_data(out,
2409                                                            AV_FRAME_DATA_DISPLAYMATRIX,
2410                                                            sizeof(int32_t) * 9);
2411         if (!rotation)
2412             return AVERROR(ENOMEM);
2413
2414         av_display_rotation_set((int32_t *)rotation->data, angle);
2415         av_display_matrix_flip((int32_t *)rotation->data,
2416                                s->sei_hflip, s->sei_vflip);
2417     }
2418
2419     return 0;
2420 }
2421
2422 static int hevc_frame_start(HEVCContext *s)
2423 {
2424     HEVCLocalContext *lc = &s->HEVClc;
2425     int ret;
2426
2427     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2428     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2429     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2430     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2431
2432     lc->start_of_tiles_x = 0;
2433     s->is_decoded        = 0;
2434     s->first_nal_type    = s->nal_unit_type;
2435
2436     if (s->pps->tiles_enabled_flag)
2437         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2438
2439     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2440                               s->poc);
2441     if (ret < 0)
2442         goto fail;
2443
2444     ret = ff_hevc_frame_rps(s);
2445     if (ret < 0) {
2446         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2447         goto fail;
2448     }
2449
2450     s->ref->frame->key_frame = IS_IRAP(s);
2451
2452     ret = set_side_data(s);
2453     if (ret < 0)
2454         goto fail;
2455
2456     av_frame_unref(s->output_frame);
2457     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2458     if (ret < 0)
2459         goto fail;
2460
2461     ff_thread_finish_setup(s->avctx);
2462
2463     return 0;
2464
2465 fail:
2466     if (s->ref)
2467         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2468     s->ref = NULL;
2469     return ret;
2470 }
2471
2472 static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2473 {
2474     HEVCLocalContext *lc = &s->HEVClc;
2475     GetBitContext *gb    = &lc->gb;
2476     int ctb_addr_ts, ret;
2477
2478     ret = init_get_bits8(gb, nal, length);
2479     if (ret < 0)
2480         return ret;
2481
2482     ret = hls_nal_unit(s);
2483     if (ret < 0) {
2484         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2485                s->nal_unit_type);
2486         goto fail;
2487     } else if (!ret)
2488         return 0;
2489
2490     switch (s->nal_unit_type) {
2491     case NAL_VPS:
2492         ret = ff_hevc_decode_nal_vps(s);
2493         if (ret < 0)
2494             goto fail;
2495         break;
2496     case NAL_SPS:
2497         ret = ff_hevc_decode_nal_sps(s);
2498         if (ret < 0)
2499             goto fail;
2500         break;
2501     case NAL_PPS:
2502         ret = ff_hevc_decode_nal_pps(s);
2503         if (ret < 0)
2504             goto fail;
2505         break;
2506     case NAL_SEI_PREFIX:
2507     case NAL_SEI_SUFFIX:
2508         ret = ff_hevc_decode_nal_sei(s);
2509         if (ret < 0)
2510             goto fail;
2511         break;
2512     case NAL_TRAIL_R:
2513     case NAL_TRAIL_N:
2514     case NAL_TSA_N:
2515     case NAL_TSA_R:
2516     case NAL_STSA_N:
2517     case NAL_STSA_R:
2518     case NAL_BLA_W_LP:
2519     case NAL_BLA_W_RADL:
2520     case NAL_BLA_N_LP:
2521     case NAL_IDR_W_RADL:
2522     case NAL_IDR_N_LP:
2523     case NAL_CRA_NUT:
2524     case NAL_RADL_N:
2525     case NAL_RADL_R:
2526     case NAL_RASL_N:
2527     case NAL_RASL_R:
2528         ret = hls_slice_header(s);
2529         if (ret < 0)
2530             return ret;
2531
2532         if (s->max_ra == INT_MAX) {
2533             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2534                 s->max_ra = s->poc;
2535             } else {
2536                 if (IS_IDR(s))
2537                     s->max_ra = INT_MIN;
2538             }
2539         }
2540
2541         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2542             s->poc <= s->max_ra) {
2543             s->is_decoded = 0;
2544             break;
2545         } else {
2546             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2547                 s->max_ra = INT_MIN;
2548         }
2549
2550         if (s->sh.first_slice_in_pic_flag) {
2551             ret = hevc_frame_start(s);
2552             if (ret < 0)
2553                 return ret;
2554         } else if (!s->ref) {
2555             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2556             goto fail;
2557         }
2558
2559         if (s->nal_unit_type != s->first_nal_type) {
2560             av_log(s->avctx, AV_LOG_ERROR,
2561                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2562                    s->first_nal_type, s->nal_unit_type);
2563             return AVERROR_INVALIDDATA;
2564         }
2565
2566         if (!s->sh.dependent_slice_segment_flag &&
2567             s->sh.slice_type != I_SLICE) {
2568             ret = ff_hevc_slice_rpl(s);
2569             if (ret < 0) {
2570                 av_log(s->avctx, AV_LOG_WARNING,
2571                        "Error constructing the reference lists for the current slice.\n");
2572                 goto fail;
2573             }
2574         }
2575
2576         ctb_addr_ts = hls_slice_data(s);
2577         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2578             s->is_decoded = 1;
2579             if ((s->pps->transquant_bypass_enable_flag ||
2580                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2581                 s->sps->sao_enabled)
2582                 restore_tqb_pixels(s);
2583         }
2584
2585         if (ctb_addr_ts < 0) {
2586             ret = ctb_addr_ts;
2587             goto fail;
2588         }
2589         break;
2590     case NAL_EOS_NUT:
2591     case NAL_EOB_NUT:
2592         s->seq_decode = (s->seq_decode + 1) & 0xff;
2593         s->max_ra     = INT_MAX;
2594         break;
2595     case NAL_AUD:
2596     case NAL_FD_NUT:
2597         break;
2598     default:
2599         av_log(s->avctx, AV_LOG_INFO,
2600                "Skipping NAL unit %d\n", s->nal_unit_type);
2601     }
2602
2603     return 0;
2604 fail:
2605     if (s->avctx->err_recognition & AV_EF_EXPLODE)
2606         return ret;
2607     return 0;
2608 }
2609
2610 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2611  * between these functions would be nice. */
2612 static int extract_rbsp(const uint8_t *src, int length,
2613                         HEVCNAL *nal)
2614 {
2615     int i, si, di;
2616     uint8_t *dst;
2617
2618 #define STARTCODE_TEST                                                  \
2619         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2620             if (src[i + 2] != 3) {                                      \
2621                 /* startcode, so we must be past the end */             \
2622                 length = i;                                             \
2623             }                                                           \
2624             break;                                                      \
2625         }
2626 #if HAVE_FAST_UNALIGNED
2627 #define FIND_FIRST_ZERO                                                 \
2628         if (i > 0 && !src[i])                                           \
2629             i--;                                                        \
2630         while (src[i])                                                  \
2631             i++
2632 #if HAVE_FAST_64BIT
2633     for (i = 0; i + 1 < length; i += 9) {
2634         if (!((~AV_RN64A(src + i) &
2635                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2636               0x8000800080008080ULL))
2637             continue;
2638         FIND_FIRST_ZERO;
2639         STARTCODE_TEST;
2640         i -= 7;
2641     }
2642 #else
2643     for (i = 0; i + 1 < length; i += 5) {
2644         if (!((~AV_RN32A(src + i) &
2645                (AV_RN32A(src + i) - 0x01000101U)) &
2646               0x80008080U))
2647             continue;
2648         FIND_FIRST_ZERO;
2649         STARTCODE_TEST;
2650         i -= 3;
2651     }
2652 #endif /* HAVE_FAST_64BIT */
2653 #else
2654     for (i = 0; i + 1 < length; i += 2) {
2655         if (src[i])
2656             continue;
2657         if (i > 0 && src[i - 1] == 0)
2658             i--;
2659         STARTCODE_TEST;
2660     }
2661 #endif /* HAVE_FAST_UNALIGNED */
2662
2663     if (i >= length - 1) { // no escaped 0
2664         nal->data = src;
2665         nal->size = length;
2666         return length;
2667     }
2668
2669     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2670                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2671     if (!nal->rbsp_buffer)
2672         return AVERROR(ENOMEM);
2673
2674     dst = nal->rbsp_buffer;
2675
2676     memcpy(dst, src, i);
2677     si = di = i;
2678     while (si + 2 < length) {
2679         // remove escapes (very rare 1:2^22)
2680         if (src[si + 2] > 3) {
2681             dst[di++] = src[si++];
2682             dst[di++] = src[si++];
2683         } else if (src[si] == 0 && src[si + 1] == 0) {
2684             if (src[si + 2] == 3) { // escape
2685                 dst[di++] = 0;
2686                 dst[di++] = 0;
2687                 si       += 3;
2688
2689                 continue;
2690             } else // next start code
2691                 goto nsc;
2692         }
2693
2694         dst[di++] = src[si++];
2695     }
2696     while (si < length)
2697         dst[di++] = src[si++];
2698
2699 nsc:
2700     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2701
2702     nal->data = dst;
2703     nal->size = di;
2704     return si;
2705 }
2706
2707 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2708 {
2709     int i, consumed, ret = 0;
2710
2711     s->ref = NULL;
2712     s->eos = 0;
2713
2714     /* split the input packet into NAL units, so we know the upper bound on the
2715      * number of slices in the frame */
2716     s->nb_nals = 0;
2717     while (length >= 4) {
2718         HEVCNAL *nal;
2719         int extract_length = 0;
2720
2721         if (s->is_nalff) {
2722             int i;
2723             for (i = 0; i < s->nal_length_size; i++)
2724                 extract_length = (extract_length << 8) | buf[i];
2725             buf    += s->nal_length_size;
2726             length -= s->nal_length_size;
2727
2728             if (extract_length > length) {
2729                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2730                 ret = AVERROR_INVALIDDATA;
2731                 goto fail;
2732             }
2733         } else {
2734             if (buf[2] == 0) {
2735                 length--;
2736                 buf++;
2737                 continue;
2738             }
2739             if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2740                 ret = AVERROR_INVALIDDATA;
2741                 goto fail;
2742             }
2743
2744             buf           += 3;
2745             length        -= 3;
2746             extract_length = length;
2747         }
2748
2749         if (s->nals_allocated < s->nb_nals + 1) {
2750             int new_size = s->nals_allocated + 1;
2751             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2752             if (!tmp) {
2753                 ret = AVERROR(ENOMEM);
2754                 goto fail;
2755             }
2756             s->nals = tmp;
2757             memset(s->nals + s->nals_allocated, 0,
2758                    (new_size - s->nals_allocated) * sizeof(*tmp));
2759             s->nals_allocated = new_size;
2760         }
2761         nal = &s->nals[s->nb_nals++];
2762
2763         consumed = extract_rbsp(buf, extract_length, nal);
2764         if (consumed < 0) {
2765             ret = consumed;
2766             goto fail;
2767         }
2768
2769         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
2770         if (ret < 0)
2771             goto fail;
2772         hls_nal_unit(s);
2773
2774         if (s->nal_unit_type == NAL_EOB_NUT ||
2775             s->nal_unit_type == NAL_EOS_NUT)
2776             s->eos = 1;
2777
2778         buf    += consumed;
2779         length -= consumed;
2780     }
2781
2782     /* parse the NAL units */
2783     for (i = 0; i < s->nb_nals; i++) {
2784         int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2785         if (ret < 0) {
2786             av_log(s->avctx, AV_LOG_WARNING,
2787                    "Error parsing NAL unit #%d.\n", i);
2788             goto fail;
2789         }
2790     }
2791
2792 fail:
2793     if (s->ref)
2794         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2795
2796     return ret;
2797 }
2798
2799 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2800 {
2801     int i;
2802     for (i = 0; i < 16; i++)
2803         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2804 }
2805
2806 static int verify_md5(HEVCContext *s, AVFrame *frame)
2807 {
2808     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2809     int pixel_shift;
2810     int i, j;
2811
2812     if (!desc)
2813         return AVERROR(EINVAL);
2814
2815     pixel_shift = desc->comp[0].depth_minus1 > 7;
2816
2817     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2818            s->poc);
2819
2820     /* the checksums are LE, so we have to byteswap for >8bpp formats
2821      * on BE arches */
2822 #if HAVE_BIGENDIAN
2823     if (pixel_shift && !s->checksum_buf) {
2824         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2825                        FFMAX3(frame->linesize[0], frame->linesize[1],
2826                               frame->linesize[2]));
2827         if (!s->checksum_buf)
2828             return AVERROR(ENOMEM);
2829     }
2830 #endif
2831
2832     for (i = 0; frame->data[i]; i++) {
2833         int width  = s->avctx->coded_width;
2834         int height = s->avctx->coded_height;
2835         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2836         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2837         uint8_t md5[16];
2838
2839         av_md5_init(s->md5_ctx);
2840         for (j = 0; j < h; j++) {
2841             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2842 #if HAVE_BIGENDIAN
2843             if (pixel_shift) {
2844                 s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
2845                                     (const uint16_t *) src, w);
2846                 src = s->checksum_buf;
2847             }
2848 #endif
2849             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2850         }
2851         av_md5_final(s->md5_ctx, md5);
2852
2853         if (!memcmp(md5, s->md5[i], 16)) {
2854             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2855             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2856             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2857         } else {
2858             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2859             print_md5(s->avctx, AV_LOG_ERROR, md5);
2860             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2861             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2862             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2863             return AVERROR_INVALIDDATA;
2864         }
2865     }
2866
2867     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2868
2869     return 0;
2870 }
2871
2872 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2873                              AVPacket *avpkt)
2874 {
2875     int ret;
2876     HEVCContext *s = avctx->priv_data;
2877
2878     if (!avpkt->size) {
2879         ret = ff_hevc_output_frame(s, data, 1);
2880         if (ret < 0)
2881             return ret;
2882
2883         *got_output = ret;
2884         return 0;
2885     }
2886
2887     s->ref = NULL;
2888     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2889     if (ret < 0)
2890         return ret;
2891
2892     /* verify the SEI checksum */
2893     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2894         s->is_md5) {
2895         ret = verify_md5(s, s->ref->frame);
2896         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2897             ff_hevc_unref_frame(s, s->ref, ~0);
2898             return ret;
2899         }
2900     }
2901     s->is_md5 = 0;
2902
2903     if (s->is_decoded) {
2904         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2905         s->is_decoded = 0;
2906     }
2907
2908     if (s->output_frame->buf[0]) {
2909         av_frame_move_ref(data, s->output_frame);
2910         *got_output = 1;
2911     }
2912
2913     return avpkt->size;
2914 }
2915
2916 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2917 {
2918     int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2919     if (ret < 0)
2920         return ret;
2921
2922     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2923     if (!dst->tab_mvf_buf)
2924         goto fail;
2925     dst->tab_mvf = src->tab_mvf;
2926
2927     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2928     if (!dst->rpl_tab_buf)
2929         goto fail;
2930     dst->rpl_tab = src->rpl_tab;
2931
2932     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2933     if (!dst->rpl_buf)
2934         goto fail;
2935
2936     dst->poc        = src->poc;
2937     dst->ctb_count  = src->ctb_count;
2938     dst->window     = src->window;
2939     dst->flags      = src->flags;
2940     dst->sequence   = src->sequence;
2941
2942     return 0;
2943 fail:
2944     ff_hevc_unref_frame(s, dst, ~0);
2945     return AVERROR(ENOMEM);
2946 }
2947
2948 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2949 {
2950     HEVCContext       *s = avctx->priv_data;
2951     int i;
2952
2953     pic_arrays_free(s);
2954
2955     av_freep(&s->md5_ctx);
2956
2957     av_frame_free(&s->tmp_frame);
2958     av_frame_free(&s->output_frame);
2959
2960     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2961         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2962         av_frame_free(&s->DPB[i].frame);
2963     }
2964
2965     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2966         av_buffer_unref(&s->vps_list[i]);
2967     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2968         av_buffer_unref(&s->sps_list[i]);
2969     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2970         av_buffer_unref(&s->pps_list[i]);
2971
2972     for (i = 0; i < s->nals_allocated; i++)
2973         av_freep(&s->nals[i].rbsp_buffer);
2974     av_freep(&s->nals);
2975     s->nals_allocated = 0;
2976
2977     return 0;
2978 }
2979
2980 static av_cold int hevc_init_context(AVCodecContext *avctx)
2981 {
2982     HEVCContext *s = avctx->priv_data;
2983     int i;
2984
2985     s->avctx = avctx;
2986
2987     s->tmp_frame = av_frame_alloc();
2988     if (!s->tmp_frame)
2989         goto fail;
2990
2991     s->output_frame = av_frame_alloc();
2992     if (!s->output_frame)
2993         goto fail;
2994
2995     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2996         s->DPB[i].frame = av_frame_alloc();
2997         if (!s->DPB[i].frame)
2998             goto fail;
2999         s->DPB[i].tf.f = s->DPB[i].frame;
3000     }
3001
3002     s->max_ra = INT_MAX;
3003
3004     s->md5_ctx = av_md5_alloc();
3005     if (!s->md5_ctx)
3006         goto fail;
3007
3008     ff_bswapdsp_init(&s->bdsp);
3009
3010     s->context_initialized = 1;
3011
3012     return 0;
3013
3014 fail:
3015     hevc_decode_free(avctx);
3016     return AVERROR(ENOMEM);
3017 }
3018
3019 static int hevc_update_thread_context(AVCodecContext *dst,
3020                                       const AVCodecContext *src)
3021 {
3022     HEVCContext *s  = dst->priv_data;
3023     HEVCContext *s0 = src->priv_data;
3024     int i, ret;
3025
3026     if (!s->context_initialized) {
3027         ret = hevc_init_context(dst);
3028         if (ret < 0)
3029             return ret;
3030     }
3031
3032     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3033         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
3034         if (s0->DPB[i].frame->buf[0]) {
3035             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
3036             if (ret < 0)
3037                 return ret;
3038         }
3039     }
3040
3041     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
3042         av_buffer_unref(&s->vps_list[i]);
3043         if (s0->vps_list[i]) {
3044             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
3045             if (!s->vps_list[i])
3046                 return AVERROR(ENOMEM);
3047         }
3048     }
3049
3050     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
3051         av_buffer_unref(&s->sps_list[i]);
3052         if (s0->sps_list[i]) {
3053             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
3054             if (!s->sps_list[i])
3055                 return AVERROR(ENOMEM);
3056         }
3057     }
3058
3059     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
3060         av_buffer_unref(&s->pps_list[i]);
3061         if (s0->pps_list[i]) {
3062             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
3063             if (!s->pps_list[i])
3064                 return AVERROR(ENOMEM);
3065         }
3066     }
3067
3068     if (s->sps != s0->sps)
3069         ret = set_sps(s, s0->sps);
3070
3071     s->seq_decode = s0->seq_decode;
3072     s->seq_output = s0->seq_output;
3073     s->pocTid0    = s0->pocTid0;
3074     s->max_ra     = s0->max_ra;
3075
3076     s->is_nalff        = s0->is_nalff;
3077     s->nal_length_size = s0->nal_length_size;
3078
3079     if (s0->eos) {
3080         s->seq_decode = (s->seq_decode + 1) & 0xff;
3081         s->max_ra = INT_MAX;
3082     }
3083
3084     return 0;
3085 }
3086
3087 static int hevc_decode_extradata(HEVCContext *s)
3088 {
3089     AVCodecContext *avctx = s->avctx;
3090     GetByteContext gb;
3091     int ret;
3092
3093     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
3094
3095     if (avctx->extradata_size > 3 &&
3096         (avctx->extradata[0] || avctx->extradata[1] ||
3097          avctx->extradata[2] > 1)) {
3098         /* It seems the extradata is encoded as hvcC format.
3099          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
3100          * is finalized. When finalized, configurationVersion will be 1 and we
3101          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
3102         int i, j, num_arrays, nal_len_size;
3103
3104         s->is_nalff = 1;
3105
3106         bytestream2_skip(&gb, 21);
3107         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3108         num_arrays   = bytestream2_get_byte(&gb);
3109
3110         /* nal units in the hvcC always have length coded with 2 bytes,
3111          * so put a fake nal_length_size = 2 while parsing them */
3112         s->nal_length_size = 2;
3113
3114         /* Decode nal units from hvcC. */
3115         for (i = 0; i < num_arrays; i++) {
3116             int type = bytestream2_get_byte(&gb) & 0x3f;
3117             int cnt  = bytestream2_get_be16(&gb);
3118
3119             for (j = 0; j < cnt; j++) {
3120                 // +2 for the nal size field
3121                 int nalsize = bytestream2_peek_be16(&gb) + 2;
3122                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
3123                     av_log(s->avctx, AV_LOG_ERROR,
3124                            "Invalid NAL unit size in extradata.\n");
3125                     return AVERROR_INVALIDDATA;
3126                 }
3127
3128                 ret = decode_nal_units(s, gb.buffer, nalsize);
3129                 if (ret < 0) {
3130                     av_log(avctx, AV_LOG_ERROR,
3131                            "Decoding nal unit %d %d from hvcC failed\n",
3132                            type, i);
3133                     return ret;
3134                 }
3135                 bytestream2_skip(&gb, nalsize);
3136             }
3137         }
3138
3139         /* Now store right nal length size, that will be used to parse
3140          * all other nals */
3141         s->nal_length_size = nal_len_size;
3142     } else {
3143         s->is_nalff = 0;
3144         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
3145         if (ret < 0)
3146             return ret;
3147     }
3148     return 0;
3149 }
3150
3151 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3152 {
3153     HEVCContext *s = avctx->priv_data;
3154     int ret;
3155
3156     ff_init_cabac_states();
3157
3158     avctx->internal->allocate_progress = 1;
3159
3160     ret = hevc_init_context(avctx);
3161     if (ret < 0)
3162         return ret;
3163
3164     if (avctx->extradata_size > 0 && avctx->extradata) {
3165         ret = hevc_decode_extradata(s);
3166         if (ret < 0) {
3167             hevc_decode_free(avctx);
3168             return ret;
3169         }
3170     }
3171
3172     return 0;
3173 }
3174
3175 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3176 {
3177     HEVCContext *s = avctx->priv_data;
3178     int ret;
3179
3180     memset(s, 0, sizeof(*s));
3181
3182     ret = hevc_init_context(avctx);
3183     if (ret < 0)
3184         return ret;
3185
3186     return 0;
3187 }
3188
3189 static void hevc_decode_flush(AVCodecContext *avctx)
3190 {
3191     HEVCContext *s = avctx->priv_data;
3192     ff_hevc_flush_dpb(s);
3193     s->max_ra = INT_MAX;
3194 }
3195
3196 #define OFFSET(x) offsetof(HEVCContext, x)
3197 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3198
3199 static const AVProfile profiles[] = {
3200     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3201     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3202     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3203     { FF_PROFILE_UNKNOWN },
3204 };
3205
3206 static const AVOption options[] = {
3207     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3208         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3209     { NULL },
3210 };
3211
3212 static const AVClass hevc_decoder_class = {
3213     .class_name = "HEVC decoder",
3214     .item_name  = av_default_item_name,
3215     .option     = options,
3216     .version    = LIBAVUTIL_VERSION_INT,
3217 };
3218
3219 AVCodec ff_hevc_decoder = {
3220     .name                  = "hevc",
3221     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3222     .type                  = AVMEDIA_TYPE_VIDEO,
3223     .id                    = AV_CODEC_ID_HEVC,
3224     .priv_data_size        = sizeof(HEVCContext),
3225     .priv_class            = &hevc_decoder_class,
3226     .init                  = hevc_decode_init,
3227     .close                 = hevc_decode_free,
3228     .decode                = hevc_decode_frame,
3229     .flush                 = hevc_decode_flush,
3230     .update_thread_context = hevc_update_thread_context,
3231     .init_thread_copy      = hevc_init_thread_copy,
3232     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3233                              CODEC_CAP_FRAME_THREADS,
3234     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3235 };