]> git.sesse.net Git - ffmpeg/blob - libavcodec/hevc.c
hevc: remove an unused function parameter
[ffmpeg] / libavcodec / hevc.c
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/common.h"
28 #include "libavutil/display.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bswapdsp.h"
36 #include "bytestream.h"
37 #include "cabac_functions.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 static const uint8_t scan_1x1[1] = { 0 };
46
47 static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
48
49 static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
50
51 static const uint8_t horiz_scan4x4_x[16] = {
52     0, 1, 2, 3,
53     0, 1, 2, 3,
54     0, 1, 2, 3,
55     0, 1, 2, 3,
56 };
57
58 static const uint8_t horiz_scan4x4_y[16] = {
59     0, 0, 0, 0,
60     1, 1, 1, 1,
61     2, 2, 2, 2,
62     3, 3, 3, 3,
63 };
64
65 static const uint8_t horiz_scan8x8_inv[8][8] = {
66     {  0,  1,  2,  3, 16, 17, 18, 19, },
67     {  4,  5,  6,  7, 20, 21, 22, 23, },
68     {  8,  9, 10, 11, 24, 25, 26, 27, },
69     { 12, 13, 14, 15, 28, 29, 30, 31, },
70     { 32, 33, 34, 35, 48, 49, 50, 51, },
71     { 36, 37, 38, 39, 52, 53, 54, 55, },
72     { 40, 41, 42, 43, 56, 57, 58, 59, },
73     { 44, 45, 46, 47, 60, 61, 62, 63, },
74 };
75
76 static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
77
78 static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
79
80 static const uint8_t diag_scan2x2_inv[2][2] = {
81     { 0, 2, },
82     { 1, 3, },
83 };
84
85 const uint8_t ff_hevc_diag_scan4x4_x[16] = {
86     0, 0, 1, 0,
87     1, 2, 0, 1,
88     2, 3, 1, 2,
89     3, 2, 3, 3,
90 };
91
92 const uint8_t ff_hevc_diag_scan4x4_y[16] = {
93     0, 1, 0, 2,
94     1, 0, 3, 2,
95     1, 0, 3, 2,
96     1, 3, 2, 3,
97 };
98
99 static const uint8_t diag_scan4x4_inv[4][4] = {
100     { 0,  2,  5,  9, },
101     { 1,  4,  8, 12, },
102     { 3,  7, 11, 14, },
103     { 6, 10, 13, 15, },
104 };
105
106 const uint8_t ff_hevc_diag_scan8x8_x[64] = {
107     0, 0, 1, 0,
108     1, 2, 0, 1,
109     2, 3, 0, 1,
110     2, 3, 4, 0,
111     1, 2, 3, 4,
112     5, 0, 1, 2,
113     3, 4, 5, 6,
114     0, 1, 2, 3,
115     4, 5, 6, 7,
116     1, 2, 3, 4,
117     5, 6, 7, 2,
118     3, 4, 5, 6,
119     7, 3, 4, 5,
120     6, 7, 4, 5,
121     6, 7, 5, 6,
122     7, 6, 7, 7,
123 };
124
125 const uint8_t ff_hevc_diag_scan8x8_y[64] = {
126     0, 1, 0, 2,
127     1, 0, 3, 2,
128     1, 0, 4, 3,
129     2, 1, 0, 5,
130     4, 3, 2, 1,
131     0, 6, 5, 4,
132     3, 2, 1, 0,
133     7, 6, 5, 4,
134     3, 2, 1, 0,
135     7, 6, 5, 4,
136     3, 2, 1, 7,
137     6, 5, 4, 3,
138     2, 7, 6, 5,
139     4, 3, 7, 6,
140     5, 4, 7, 6,
141     5, 7, 6, 7,
142 };
143
144 static const uint8_t diag_scan8x8_inv[8][8] = {
145     {  0,  2,  5,  9, 14, 20, 27, 35, },
146     {  1,  4,  8, 13, 19, 26, 34, 42, },
147     {  3,  7, 12, 18, 25, 33, 41, 48, },
148     {  6, 11, 17, 24, 32, 40, 47, 53, },
149     { 10, 16, 23, 31, 39, 46, 52, 57, },
150     { 15, 22, 30, 38, 45, 51, 56, 60, },
151     { 21, 29, 37, 44, 50, 55, 59, 62, },
152     { 28, 36, 43, 49, 54, 58, 61, 63, },
153 };
154
155 /**
156  * NOTE: Each function hls_foo correspond to the function foo in the
157  * specification (HLS stands for High Level Syntax).
158  */
159
160 /**
161  * Section 5.7
162  */
163
164 /* free everything allocated  by pic_arrays_init() */
165 static void pic_arrays_free(HEVCContext *s)
166 {
167     av_freep(&s->sao);
168     av_freep(&s->deblock);
169
170     av_freep(&s->skip_flag);
171     av_freep(&s->tab_ct_depth);
172
173     av_freep(&s->tab_ipm);
174     av_freep(&s->cbf_luma);
175     av_freep(&s->is_pcm);
176
177     av_freep(&s->qp_y_tab);
178     av_freep(&s->tab_slice_address);
179     av_freep(&s->filter_slice_edges);
180
181     av_freep(&s->horizontal_bs);
182     av_freep(&s->vertical_bs);
183
184     av_buffer_pool_uninit(&s->tab_mvf_pool);
185     av_buffer_pool_uninit(&s->rpl_tab_pool);
186 }
187
188 /* allocate arrays that depend on frame dimensions */
189 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
190 {
191     int log2_min_cb_size = sps->log2_min_cb_size;
192     int width            = sps->width;
193     int height           = sps->height;
194     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
195                            ((height >> log2_min_cb_size) + 1);
196     int ctb_count        = sps->ctb_width * sps->ctb_height;
197     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
198
199     s->bs_width  = width  >> 3;
200     s->bs_height = height >> 3;
201
202     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
203     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
204     if (!s->sao || !s->deblock)
205         goto fail;
206
207     s->skip_flag    = av_malloc(pic_size_in_ctb);
208     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
209     if (!s->skip_flag || !s->tab_ct_depth)
210         goto fail;
211
212     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
213     s->tab_ipm  = av_mallocz(min_pu_size);
214     s->is_pcm   = av_malloc(min_pu_size);
215     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
216         goto fail;
217
218     s->filter_slice_edges = av_malloc(ctb_count);
219     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
220                                       sizeof(*s->tab_slice_address));
221     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
222                                       sizeof(*s->qp_y_tab));
223     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
224         goto fail;
225
226     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
227     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
228     if (!s->horizontal_bs || !s->vertical_bs)
229         goto fail;
230
231     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
232                                           av_buffer_alloc);
233     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
234                                           av_buffer_allocz);
235     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
236         goto fail;
237
238     return 0;
239
240 fail:
241     pic_arrays_free(s);
242     return AVERROR(ENOMEM);
243 }
244
245 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
246 {
247     int i = 0;
248     int j = 0;
249     uint8_t luma_weight_l0_flag[16];
250     uint8_t chroma_weight_l0_flag[16];
251     uint8_t luma_weight_l1_flag[16];
252     uint8_t chroma_weight_l1_flag[16];
253
254     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
255     if (s->sps->chroma_format_idc != 0) {
256         int delta = get_se_golomb(gb);
257         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
258     }
259
260     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
261         luma_weight_l0_flag[i] = get_bits1(gb);
262         if (!luma_weight_l0_flag[i]) {
263             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
264             s->sh.luma_offset_l0[i] = 0;
265         }
266     }
267     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
268         for (i = 0; i < s->sh.nb_refs[L0]; i++)
269             chroma_weight_l0_flag[i] = get_bits1(gb);
270     } else {
271         for (i = 0; i < s->sh.nb_refs[L0]; i++)
272             chroma_weight_l0_flag[i] = 0;
273     }
274     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
275         if (luma_weight_l0_flag[i]) {
276             int delta_luma_weight_l0 = get_se_golomb(gb);
277             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
278             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
279         }
280         if (chroma_weight_l0_flag[i]) {
281             for (j = 0; j < 2; j++) {
282                 int delta_chroma_weight_l0 = get_se_golomb(gb);
283                 int delta_chroma_offset_l0 = get_se_golomb(gb);
284                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
285                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
286                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
287             }
288         } else {
289             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
290             s->sh.chroma_offset_l0[i][0] = 0;
291             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
292             s->sh.chroma_offset_l0[i][1] = 0;
293         }
294     }
295     if (s->sh.slice_type == B_SLICE) {
296         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
297             luma_weight_l1_flag[i] = get_bits1(gb);
298             if (!luma_weight_l1_flag[i]) {
299                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
300                 s->sh.luma_offset_l1[i] = 0;
301             }
302         }
303         if (s->sps->chroma_format_idc != 0) {
304             for (i = 0; i < s->sh.nb_refs[L1]; i++)
305                 chroma_weight_l1_flag[i] = get_bits1(gb);
306         } else {
307             for (i = 0; i < s->sh.nb_refs[L1]; i++)
308                 chroma_weight_l1_flag[i] = 0;
309         }
310         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
311             if (luma_weight_l1_flag[i]) {
312                 int delta_luma_weight_l1 = get_se_golomb(gb);
313                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
314                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
315             }
316             if (chroma_weight_l1_flag[i]) {
317                 for (j = 0; j < 2; j++) {
318                     int delta_chroma_weight_l1 = get_se_golomb(gb);
319                     int delta_chroma_offset_l1 = get_se_golomb(gb);
320                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
321                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
322                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
323                 }
324             } else {
325                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
326                 s->sh.chroma_offset_l1[i][0] = 0;
327                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
328                 s->sh.chroma_offset_l1[i][1] = 0;
329             }
330         }
331     }
332 }
333
334 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
335 {
336     const HEVCSPS *sps = s->sps;
337     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
338     int prev_delta_msb = 0;
339     unsigned int nb_sps = 0, nb_sh;
340     int i;
341
342     rps->nb_refs = 0;
343     if (!sps->long_term_ref_pics_present_flag)
344         return 0;
345
346     if (sps->num_long_term_ref_pics_sps > 0)
347         nb_sps = get_ue_golomb_long(gb);
348     nb_sh = get_ue_golomb_long(gb);
349
350     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
351         return AVERROR_INVALIDDATA;
352
353     rps->nb_refs = nb_sh + nb_sps;
354
355     for (i = 0; i < rps->nb_refs; i++) {
356         uint8_t delta_poc_msb_present;
357
358         if (i < nb_sps) {
359             uint8_t lt_idx_sps = 0;
360
361             if (sps->num_long_term_ref_pics_sps > 1)
362                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
363
364             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
365             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
366         } else {
367             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
368             rps->used[i] = get_bits1(gb);
369         }
370
371         delta_poc_msb_present = get_bits1(gb);
372         if (delta_poc_msb_present) {
373             int delta = get_ue_golomb_long(gb);
374
375             if (i && i != nb_sps)
376                 delta += prev_delta_msb;
377
378             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
379             prev_delta_msb = delta;
380         }
381     }
382
383     return 0;
384 }
385
386 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
387 {
388     int ret;
389     unsigned int num = 0, den = 0;
390
391     pic_arrays_free(s);
392     ret = pic_arrays_init(s, sps);
393     if (ret < 0)
394         goto fail;
395
396     s->avctx->coded_width         = sps->width;
397     s->avctx->coded_height        = sps->height;
398     s->avctx->width               = sps->output_width;
399     s->avctx->height              = sps->output_height;
400     s->avctx->pix_fmt             = sps->pix_fmt;
401     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
402
403     ff_set_sar(s->avctx, sps->vui.sar);
404
405     if (sps->vui.video_signal_type_present_flag)
406         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
407                                                                : AVCOL_RANGE_MPEG;
408     else
409         s->avctx->color_range = AVCOL_RANGE_MPEG;
410
411     if (sps->vui.colour_description_present_flag) {
412         s->avctx->color_primaries = sps->vui.colour_primaries;
413         s->avctx->color_trc       = sps->vui.transfer_characteristic;
414         s->avctx->colorspace      = sps->vui.matrix_coeffs;
415     } else {
416         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
417         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
418         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
419     }
420
421     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
422     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
423     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
424
425     if (sps->sao_enabled) {
426         av_frame_unref(s->tmp_frame);
427         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
428         if (ret < 0)
429             goto fail;
430         s->frame = s->tmp_frame;
431     }
432
433     s->sps = sps;
434     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
435
436     if (s->vps->vps_timing_info_present_flag) {
437         num = s->vps->vps_num_units_in_tick;
438         den = s->vps->vps_time_scale;
439     } else if (sps->vui.vui_timing_info_present_flag) {
440         num = sps->vui.vui_num_units_in_tick;
441         den = sps->vui.vui_time_scale;
442     }
443
444     if (num != 0 && den != 0)
445         av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
446                   num, den, 1 << 30);
447
448     return 0;
449
450 fail:
451     pic_arrays_free(s);
452     s->sps = NULL;
453     return ret;
454 }
455
456 static int hls_slice_header(HEVCContext *s)
457 {
458     GetBitContext *gb = &s->HEVClc.gb;
459     SliceHeader *sh   = &s->sh;
460     int i, ret;
461
462     // Coded parameters
463     sh->first_slice_in_pic_flag = get_bits1(gb);
464     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
465         s->seq_decode = (s->seq_decode + 1) & 0xff;
466         s->max_ra     = INT_MAX;
467         if (IS_IDR(s))
468             ff_hevc_clear_refs(s);
469     }
470     if (IS_IRAP(s))
471         sh->no_output_of_prior_pics_flag = get_bits1(gb);
472
473     sh->pps_id = get_ue_golomb_long(gb);
474     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
475         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
476         return AVERROR_INVALIDDATA;
477     }
478     if (!sh->first_slice_in_pic_flag &&
479         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
480         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
481         return AVERROR_INVALIDDATA;
482     }
483     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
484
485     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
486         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
487
488         ff_hevc_clear_refs(s);
489         ret = set_sps(s, s->sps);
490         if (ret < 0)
491             return ret;
492
493         s->seq_decode = (s->seq_decode + 1) & 0xff;
494         s->max_ra     = INT_MAX;
495     }
496
497     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
498     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
499
500     sh->dependent_slice_segment_flag = 0;
501     if (!sh->first_slice_in_pic_flag) {
502         int slice_address_length;
503
504         if (s->pps->dependent_slice_segments_enabled_flag)
505             sh->dependent_slice_segment_flag = get_bits1(gb);
506
507         slice_address_length = av_ceil_log2(s->sps->ctb_width *
508                                             s->sps->ctb_height);
509         sh->slice_segment_addr = get_bits(gb, slice_address_length);
510         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
511             av_log(s->avctx, AV_LOG_ERROR,
512                    "Invalid slice segment address: %u.\n",
513                    sh->slice_segment_addr);
514             return AVERROR_INVALIDDATA;
515         }
516
517         if (!sh->dependent_slice_segment_flag) {
518             sh->slice_addr = sh->slice_segment_addr;
519             s->slice_idx++;
520         }
521     } else {
522         sh->slice_segment_addr = sh->slice_addr = 0;
523         s->slice_idx           = 0;
524         s->slice_initialized   = 0;
525     }
526
527     if (!sh->dependent_slice_segment_flag) {
528         s->slice_initialized = 0;
529
530         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
531             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
532
533         sh->slice_type = get_ue_golomb_long(gb);
534         if (!(sh->slice_type == I_SLICE ||
535               sh->slice_type == P_SLICE ||
536               sh->slice_type == B_SLICE)) {
537             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
538                    sh->slice_type);
539             return AVERROR_INVALIDDATA;
540         }
541         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
542             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
543             return AVERROR_INVALIDDATA;
544         }
545
546         // when flag is not present, picture is inferred to be output
547         sh->pic_output_flag = 1;
548         if (s->pps->output_flag_present_flag)
549             sh->pic_output_flag = get_bits1(gb);
550
551         if (s->sps->separate_colour_plane_flag)
552             sh->colour_plane_id = get_bits(gb, 2);
553
554         if (!IS_IDR(s)) {
555             int short_term_ref_pic_set_sps_flag, poc;
556
557             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
558             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
559             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
560                 av_log(s->avctx, AV_LOG_WARNING,
561                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
562                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
563                     return AVERROR_INVALIDDATA;
564                 poc = s->poc;
565             }
566             s->poc = poc;
567
568             short_term_ref_pic_set_sps_flag = get_bits1(gb);
569             if (!short_term_ref_pic_set_sps_flag) {
570                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
571                 if (ret < 0)
572                     return ret;
573
574                 sh->short_term_rps = &sh->slice_rps;
575             } else {
576                 int numbits, rps_idx;
577
578                 if (!s->sps->nb_st_rps) {
579                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
580                     return AVERROR_INVALIDDATA;
581                 }
582
583                 numbits = av_ceil_log2(s->sps->nb_st_rps);
584                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
585                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
586             }
587
588             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
589             if (ret < 0) {
590                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
591                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
592                     return AVERROR_INVALIDDATA;
593             }
594
595             if (s->sps->sps_temporal_mvp_enabled_flag)
596                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
597             else
598                 sh->slice_temporal_mvp_enabled_flag = 0;
599         } else {
600             s->sh.short_term_rps = NULL;
601             s->poc               = 0;
602         }
603
604         /* 8.3.1 */
605         if (s->temporal_id == 0 &&
606             s->nal_unit_type != NAL_TRAIL_N &&
607             s->nal_unit_type != NAL_TSA_N   &&
608             s->nal_unit_type != NAL_STSA_N  &&
609             s->nal_unit_type != NAL_RADL_N  &&
610             s->nal_unit_type != NAL_RADL_R  &&
611             s->nal_unit_type != NAL_RASL_N  &&
612             s->nal_unit_type != NAL_RASL_R)
613             s->pocTid0 = s->poc;
614
615         if (s->sps->sao_enabled) {
616             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
617             sh->slice_sample_adaptive_offset_flag[1] =
618             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
619         } else {
620             sh->slice_sample_adaptive_offset_flag[0] = 0;
621             sh->slice_sample_adaptive_offset_flag[1] = 0;
622             sh->slice_sample_adaptive_offset_flag[2] = 0;
623         }
624
625         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
626         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
627             int nb_refs;
628
629             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
630             if (sh->slice_type == B_SLICE)
631                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
632
633             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
634                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
635                 if (sh->slice_type == B_SLICE)
636                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
637             }
638             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
639                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
640                        sh->nb_refs[L0], sh->nb_refs[L1]);
641                 return AVERROR_INVALIDDATA;
642             }
643
644             sh->rpl_modification_flag[0] = 0;
645             sh->rpl_modification_flag[1] = 0;
646             nb_refs = ff_hevc_frame_nb_refs(s);
647             if (!nb_refs) {
648                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
649                 return AVERROR_INVALIDDATA;
650             }
651
652             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
653                 sh->rpl_modification_flag[0] = get_bits1(gb);
654                 if (sh->rpl_modification_flag[0]) {
655                     for (i = 0; i < sh->nb_refs[L0]; i++)
656                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
657                 }
658
659                 if (sh->slice_type == B_SLICE) {
660                     sh->rpl_modification_flag[1] = get_bits1(gb);
661                     if (sh->rpl_modification_flag[1] == 1)
662                         for (i = 0; i < sh->nb_refs[L1]; i++)
663                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
664                 }
665             }
666
667             if (sh->slice_type == B_SLICE)
668                 sh->mvd_l1_zero_flag = get_bits1(gb);
669
670             if (s->pps->cabac_init_present_flag)
671                 sh->cabac_init_flag = get_bits1(gb);
672             else
673                 sh->cabac_init_flag = 0;
674
675             sh->collocated_ref_idx = 0;
676             if (sh->slice_temporal_mvp_enabled_flag) {
677                 sh->collocated_list = L0;
678                 if (sh->slice_type == B_SLICE)
679                     sh->collocated_list = !get_bits1(gb);
680
681                 if (sh->nb_refs[sh->collocated_list] > 1) {
682                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
683                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
684                         av_log(s->avctx, AV_LOG_ERROR,
685                                "Invalid collocated_ref_idx: %d.\n",
686                                sh->collocated_ref_idx);
687                         return AVERROR_INVALIDDATA;
688                     }
689                 }
690             }
691
692             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
693                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
694                 pred_weight_table(s, gb);
695             }
696
697             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
698             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
699                 av_log(s->avctx, AV_LOG_ERROR,
700                        "Invalid number of merging MVP candidates: %d.\n",
701                        sh->max_num_merge_cand);
702                 return AVERROR_INVALIDDATA;
703             }
704         }
705
706         sh->slice_qp_delta = get_se_golomb(gb);
707
708         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
709             sh->slice_cb_qp_offset = get_se_golomb(gb);
710             sh->slice_cr_qp_offset = get_se_golomb(gb);
711         } else {
712             sh->slice_cb_qp_offset = 0;
713             sh->slice_cr_qp_offset = 0;
714         }
715
716         if (s->pps->deblocking_filter_control_present_flag) {
717             int deblocking_filter_override_flag = 0;
718
719             if (s->pps->deblocking_filter_override_enabled_flag)
720                 deblocking_filter_override_flag = get_bits1(gb);
721
722             if (deblocking_filter_override_flag) {
723                 sh->disable_deblocking_filter_flag = get_bits1(gb);
724                 if (!sh->disable_deblocking_filter_flag) {
725                     sh->beta_offset = get_se_golomb(gb) * 2;
726                     sh->tc_offset   = get_se_golomb(gb) * 2;
727                 }
728             } else {
729                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
730                 sh->beta_offset                    = s->pps->beta_offset;
731                 sh->tc_offset                      = s->pps->tc_offset;
732             }
733         } else {
734             sh->disable_deblocking_filter_flag = 0;
735             sh->beta_offset                    = 0;
736             sh->tc_offset                      = 0;
737         }
738
739         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
740             (sh->slice_sample_adaptive_offset_flag[0] ||
741              sh->slice_sample_adaptive_offset_flag[1] ||
742              !sh->disable_deblocking_filter_flag)) {
743             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
744         } else {
745             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
746         }
747     } else if (!s->slice_initialized) {
748         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
749         return AVERROR_INVALIDDATA;
750     }
751
752     sh->num_entry_point_offsets = 0;
753     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
754         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
755         if (sh->num_entry_point_offsets > 0) {
756             int offset_len = get_ue_golomb_long(gb) + 1;
757
758             for (i = 0; i < sh->num_entry_point_offsets; i++)
759                 skip_bits(gb, offset_len);
760         }
761     }
762
763     if (s->pps->slice_header_extension_present_flag) {
764         unsigned int length = get_ue_golomb_long(gb);
765         for (i = 0; i < length; i++)
766             skip_bits(gb, 8);  // slice_header_extension_data_byte
767     }
768
769     // Inferred parameters
770     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
771     if (sh->slice_qp > 51 ||
772         sh->slice_qp < -s->sps->qp_bd_offset) {
773         av_log(s->avctx, AV_LOG_ERROR,
774                "The slice_qp %d is outside the valid range "
775                "[%d, 51].\n",
776                sh->slice_qp,
777                -s->sps->qp_bd_offset);
778         return AVERROR_INVALIDDATA;
779     }
780
781     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
782
783     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
784         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
785         return AVERROR_INVALIDDATA;
786     }
787
788     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
789
790     if (!s->pps->cu_qp_delta_enabled_flag)
791         s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
792                                 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
793
794     s->slice_initialized = 1;
795
796     return 0;
797 }
798
799 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
800
801 #define SET_SAO(elem, value)                            \
802 do {                                                    \
803     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
804         sao->elem = value;                              \
805     else if (sao_merge_left_flag)                       \
806         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
807     else if (sao_merge_up_flag)                         \
808         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
809     else                                                \
810         sao->elem = 0;                                  \
811 } while (0)
812
813 static void hls_sao_param(HEVCContext *s, int rx, int ry)
814 {
815     HEVCLocalContext *lc    = &s->HEVClc;
816     int sao_merge_left_flag = 0;
817     int sao_merge_up_flag   = 0;
818     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
819     SAOParams *sao          = &CTB(s->sao, rx, ry);
820     int c_idx, i;
821
822     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
823         s->sh.slice_sample_adaptive_offset_flag[1]) {
824         if (rx > 0) {
825             if (lc->ctb_left_flag)
826                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
827         }
828         if (ry > 0 && !sao_merge_left_flag) {
829             if (lc->ctb_up_flag)
830                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
831         }
832     }
833
834     for (c_idx = 0; c_idx < 3; c_idx++) {
835         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
836             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
837             continue;
838         }
839
840         if (c_idx == 2) {
841             sao->type_idx[2] = sao->type_idx[1];
842             sao->eo_class[2] = sao->eo_class[1];
843         } else {
844             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
845         }
846
847         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
848             continue;
849
850         for (i = 0; i < 4; i++)
851             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
852
853         if (sao->type_idx[c_idx] == SAO_BAND) {
854             for (i = 0; i < 4; i++) {
855                 if (sao->offset_abs[c_idx][i]) {
856                     SET_SAO(offset_sign[c_idx][i],
857                             ff_hevc_sao_offset_sign_decode(s));
858                 } else {
859                     sao->offset_sign[c_idx][i] = 0;
860                 }
861             }
862             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
863         } else if (c_idx != 2) {
864             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
865         }
866
867         // Inferred parameters
868         sao->offset_val[c_idx][0] = 0;
869         for (i = 0; i < 4; i++) {
870             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
871             if (sao->type_idx[c_idx] == SAO_EDGE) {
872                 if (i > 1)
873                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
874             } else if (sao->offset_sign[c_idx][i]) {
875                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
876             }
877         }
878     }
879 }
880
881 #undef SET_SAO
882 #undef CTB
883
884 static void hls_residual_coding(HEVCContext *s, int x0, int y0,
885                                 int log2_trafo_size, enum ScanType scan_idx,
886                                 int c_idx)
887 {
888 #define GET_COORD(offset, n)                                    \
889     do {                                                        \
890         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
891         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
892     } while (0)
893     HEVCLocalContext *lc    = &s->HEVClc;
894     int transform_skip_flag = 0;
895
896     int last_significant_coeff_x, last_significant_coeff_y;
897     int last_scan_pos;
898     int n_end;
899     int num_coeff    = 0;
900     int greater1_ctx = 1;
901
902     int num_last_subset;
903     int x_cg_last_sig, y_cg_last_sig;
904
905     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
906
907     ptrdiff_t stride = s->frame->linesize[c_idx];
908     int hshift       = s->sps->hshift[c_idx];
909     int vshift       = s->sps->vshift[c_idx];
910     uint8_t *dst     = &s->frame->data[c_idx][(y0 >> vshift) * stride +
911                                               ((x0 >> hshift) << s->sps->pixel_shift)];
912     DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
913     DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
914
915     int trafo_size = 1 << log2_trafo_size;
916     int i, qp, shift, add, scale, scale_m;
917     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
918     const uint8_t *scale_matrix;
919     uint8_t dc_scale;
920
921     // Derive QP for dequant
922     if (!lc->cu.cu_transquant_bypass_flag) {
923         static const int qp_c[] = {
924             29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
925         };
926
927         static const uint8_t rem6[51 + 2 * 6 + 1] = {
928             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
929             3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
930             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
931         };
932
933         static const uint8_t div6[51 + 2 * 6 + 1] = {
934             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,  3,  3,  3,
935             3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6,  6,  6,  6,
936             7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
937         };
938         int qp_y = lc->qp_y;
939
940         if (c_idx == 0) {
941             qp = qp_y + s->sps->qp_bd_offset;
942         } else {
943             int qp_i, offset;
944
945             if (c_idx == 1)
946                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
947             else
948                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
949
950             qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
951             if (qp_i < 30)
952                 qp = qp_i;
953             else if (qp_i > 43)
954                 qp = qp_i - 6;
955             else
956                 qp = qp_c[qp_i - 30];
957
958             qp += s->sps->qp_bd_offset;
959         }
960
961         shift    = s->sps->bit_depth + log2_trafo_size - 5;
962         add      = 1 << (shift - 1);
963         scale    = level_scale[rem6[qp]] << (div6[qp]);
964         scale_m  = 16; // default when no custom scaling lists.
965         dc_scale = 16;
966
967         if (s->sps->scaling_list_enable_flag) {
968             const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
969                                     &s->pps->scaling_list : &s->sps->scaling_list;
970             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
971
972             if (log2_trafo_size != 5)
973                 matrix_id = 3 * matrix_id + c_idx;
974
975             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
976             if (log2_trafo_size >= 4)
977                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
978         }
979     }
980
981     if (s->pps->transform_skip_enabled_flag &&
982         !lc->cu.cu_transquant_bypass_flag   &&
983         log2_trafo_size == 2) {
984         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
985     }
986
987     last_significant_coeff_x =
988         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
989     last_significant_coeff_y =
990         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
991
992     if (last_significant_coeff_x > 3) {
993         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
994         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
995                                    (2 + (last_significant_coeff_x & 1)) +
996                                    suffix;
997     }
998
999     if (last_significant_coeff_y > 3) {
1000         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
1001         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1002                                    (2 + (last_significant_coeff_y & 1)) +
1003                                    suffix;
1004     }
1005
1006     if (scan_idx == SCAN_VERT)
1007         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
1008
1009     x_cg_last_sig = last_significant_coeff_x >> 2;
1010     y_cg_last_sig = last_significant_coeff_y >> 2;
1011
1012     switch (scan_idx) {
1013     case SCAN_DIAG: {
1014         int last_x_c = last_significant_coeff_x & 3;
1015         int last_y_c = last_significant_coeff_y & 3;
1016
1017         scan_x_off = ff_hevc_diag_scan4x4_x;
1018         scan_y_off = ff_hevc_diag_scan4x4_y;
1019         num_coeff  = diag_scan4x4_inv[last_y_c][last_x_c];
1020         if (trafo_size == 4) {
1021             scan_x_cg = scan_1x1;
1022             scan_y_cg = scan_1x1;
1023         } else if (trafo_size == 8) {
1024             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1025             scan_x_cg  = diag_scan2x2_x;
1026             scan_y_cg  = diag_scan2x2_y;
1027         } else if (trafo_size == 16) {
1028             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1029             scan_x_cg  = ff_hevc_diag_scan4x4_x;
1030             scan_y_cg  = ff_hevc_diag_scan4x4_y;
1031         } else { // trafo_size == 32
1032             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1033             scan_x_cg  = ff_hevc_diag_scan8x8_x;
1034             scan_y_cg  = ff_hevc_diag_scan8x8_y;
1035         }
1036         break;
1037     }
1038     case SCAN_HORIZ:
1039         scan_x_cg  = horiz_scan2x2_x;
1040         scan_y_cg  = horiz_scan2x2_y;
1041         scan_x_off = horiz_scan4x4_x;
1042         scan_y_off = horiz_scan4x4_y;
1043         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1044         break;
1045     default: //SCAN_VERT
1046         scan_x_cg  = horiz_scan2x2_y;
1047         scan_y_cg  = horiz_scan2x2_x;
1048         scan_x_off = horiz_scan4x4_y;
1049         scan_y_off = horiz_scan4x4_x;
1050         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1051         break;
1052     }
1053     num_coeff++;
1054     num_last_subset = (num_coeff - 1) >> 4;
1055
1056     for (i = num_last_subset; i >= 0; i--) {
1057         int n, m;
1058         int x_cg, y_cg, x_c, y_c;
1059         int implicit_non_zero_coeff = 0;
1060         int64_t trans_coeff_level;
1061         int prev_sig = 0;
1062         int offset   = i << 4;
1063
1064         uint8_t significant_coeff_flag_idx[16];
1065         uint8_t nb_significant_coeff_flag = 0;
1066
1067         x_cg = scan_x_cg[i];
1068         y_cg = scan_y_cg[i];
1069
1070         if (i < num_last_subset && i > 0) {
1071             int ctx_cg = 0;
1072             if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1073                 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1074             if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1075                 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1076
1077             significant_coeff_group_flag[x_cg][y_cg] =
1078                 ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
1079             implicit_non_zero_coeff = 1;
1080         } else {
1081             significant_coeff_group_flag[x_cg][y_cg] =
1082                 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1083                  (x_cg == 0 && y_cg == 0));
1084         }
1085
1086         last_scan_pos = num_coeff - offset - 1;
1087
1088         if (i == num_last_subset) {
1089             n_end                         = last_scan_pos - 1;
1090             significant_coeff_flag_idx[0] = last_scan_pos;
1091             nb_significant_coeff_flag     = 1;
1092         } else {
1093             n_end = 15;
1094         }
1095
1096         if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1097             prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1098         if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1099             prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1100
1101         for (n = n_end; n >= 0; n--) {
1102             GET_COORD(offset, n);
1103
1104             if (significant_coeff_group_flag[x_cg][y_cg] &&
1105                 (n > 0 || implicit_non_zero_coeff == 0)) {
1106                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
1107                                                           log2_trafo_size,
1108                                                           scan_idx,
1109                                                           prev_sig) == 1) {
1110                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1111                     nb_significant_coeff_flag++;
1112                     implicit_non_zero_coeff = 0;
1113                 }
1114             } else {
1115                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1116                 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1117                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1118                     nb_significant_coeff_flag++;
1119                 }
1120             }
1121         }
1122
1123         n_end = nb_significant_coeff_flag;
1124
1125         if (n_end) {
1126             int first_nz_pos_in_cg = 16;
1127             int last_nz_pos_in_cg = -1;
1128             int c_rice_param = 0;
1129             int first_greater1_coeff_idx = -1;
1130             uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1131             uint16_t coeff_sign_flag;
1132             int sum_abs = 0;
1133             int sign_hidden = 0;
1134
1135             // initialize first elem of coeff_bas_level_greater1_flag
1136             int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1137
1138             if (!(i == num_last_subset) && greater1_ctx == 0)
1139                 ctx_set++;
1140             greater1_ctx      = 1;
1141             last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1142
1143             for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1144                 int n_idx = significant_coeff_flag_idx[m];
1145                 int inc   = (ctx_set << 2) + greater1_ctx;
1146                 coeff_abs_level_greater1_flag[n_idx] =
1147                     ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
1148                 if (coeff_abs_level_greater1_flag[n_idx]) {
1149                     greater1_ctx = 0;
1150                 } else if (greater1_ctx > 0 && greater1_ctx < 3) {
1151                     greater1_ctx++;
1152                 }
1153
1154                 if (coeff_abs_level_greater1_flag[n_idx] &&
1155                     first_greater1_coeff_idx == -1)
1156                     first_greater1_coeff_idx = n_idx;
1157             }
1158             first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1159             sign_hidden        = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1160                                  !lc->cu.cu_transquant_bypass_flag;
1161
1162             if (first_greater1_coeff_idx != -1) {
1163                 coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
1164             }
1165             if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
1166                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
1167             } else {
1168                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1169             }
1170
1171             for (m = 0; m < n_end; m++) {
1172                 n = significant_coeff_flag_idx[m];
1173                 GET_COORD(offset, n);
1174                 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1175                 if (trans_coeff_level == ((m < 8) ?
1176                                           ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1177                     int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
1178
1179                     trans_coeff_level += last_coeff_abs_level_remaining;
1180                     if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1181                         c_rice_param = FFMIN(c_rice_param + 1, 4);
1182                 }
1183                 if (s->pps->sign_data_hiding_flag && sign_hidden) {
1184                     sum_abs += trans_coeff_level;
1185                     if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1186                         trans_coeff_level = -trans_coeff_level;
1187                 }
1188                 if (coeff_sign_flag >> 15)
1189                     trans_coeff_level = -trans_coeff_level;
1190                 coeff_sign_flag <<= 1;
1191                 if (!lc->cu.cu_transquant_bypass_flag) {
1192                     if (s->sps->scaling_list_enable_flag) {
1193                         if (y_c || x_c || log2_trafo_size < 4) {
1194                             int pos;
1195                             switch (log2_trafo_size) {
1196                             case 3:  pos = (y_c        << 3) +  x_c;       break;
1197                             case 4:  pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
1198                             case 5:  pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
1199                             default: pos = (y_c        << 2) +  x_c;
1200                             }
1201                             scale_m = scale_matrix[pos];
1202                         } else {
1203                             scale_m = dc_scale;
1204                         }
1205                     }
1206                     trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1207                     if(trans_coeff_level < 0) {
1208                         if((~trans_coeff_level) & 0xFffffffffff8000)
1209                             trans_coeff_level = -32768;
1210                     } else {
1211                         if (trans_coeff_level & 0xffffffffffff8000)
1212                             trans_coeff_level = 32767;
1213                     }
1214                 }
1215                 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1216             }
1217         }
1218     }
1219
1220     if (lc->cu.cu_transquant_bypass_flag) {
1221         s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
1222     } else {
1223         if (transform_skip_flag)
1224             s->hevcdsp.transform_skip(dst, coeffs, stride);
1225         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
1226                  log2_trafo_size == 2)
1227             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
1228         else
1229             s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
1230     }
1231 }
1232
1233 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
1234                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1235                               int log2_cb_size, int log2_trafo_size,
1236                               int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
1237 {
1238     HEVCLocalContext *lc = &s->HEVClc;
1239
1240     if (lc->cu.pred_mode == MODE_INTRA) {
1241         int trafo_size = 1 << log2_trafo_size;
1242         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1243
1244         s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
1245         if (log2_trafo_size > 2) {
1246             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
1247             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1248             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
1249             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
1250         } else if (blk_idx == 3) {
1251             trafo_size = trafo_size << s->sps->hshift[1];
1252             ff_hevc_set_neighbour_available(s, xBase, yBase,
1253                                             trafo_size, trafo_size);
1254             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
1255             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
1256         }
1257     }
1258
1259     if (cbf_luma || cbf_cb || cbf_cr) {
1260         int scan_idx   = SCAN_DIAG;
1261         int scan_idx_c = SCAN_DIAG;
1262
1263         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1264             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
1265             if (lc->tu.cu_qp_delta != 0)
1266                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
1267                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1268             lc->tu.is_cu_qp_delta_coded = 1;
1269
1270             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
1271                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
1272                 av_log(s->avctx, AV_LOG_ERROR,
1273                        "The cu_qp_delta %d is outside the valid range "
1274                        "[%d, %d].\n",
1275                        lc->tu.cu_qp_delta,
1276                        -(26 + s->sps->qp_bd_offset / 2),
1277                         (25 + s->sps->qp_bd_offset / 2));
1278                 return AVERROR_INVALIDDATA;
1279             }
1280
1281             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
1282         }
1283
1284         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1285             if (lc->tu.cur_intra_pred_mode >= 6 &&
1286                 lc->tu.cur_intra_pred_mode <= 14) {
1287                 scan_idx = SCAN_VERT;
1288             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
1289                        lc->tu.cur_intra_pred_mode <= 30) {
1290                 scan_idx = SCAN_HORIZ;
1291             }
1292
1293             if (lc->pu.intra_pred_mode_c >=  6 &&
1294                 lc->pu.intra_pred_mode_c <= 14) {
1295                 scan_idx_c = SCAN_VERT;
1296             } else if (lc->pu.intra_pred_mode_c >= 22 &&
1297                        lc->pu.intra_pred_mode_c <= 30) {
1298                 scan_idx_c = SCAN_HORIZ;
1299             }
1300         }
1301
1302         if (cbf_luma)
1303             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
1304         if (log2_trafo_size > 2) {
1305             if (cbf_cb)
1306                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
1307             if (cbf_cr)
1308                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
1309         } else if (blk_idx == 3) {
1310             if (cbf_cb)
1311                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
1312             if (cbf_cr)
1313                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
1314         }
1315     }
1316     return 0;
1317 }
1318
1319 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
1320 {
1321     int cb_size          = 1 << log2_cb_size;
1322     int log2_min_pu_size = s->sps->log2_min_pu_size;
1323
1324     int min_pu_width     = s->sps->min_pu_width;
1325     int x_end = FFMIN(x0 + cb_size, s->sps->width);
1326     int y_end = FFMIN(y0 + cb_size, s->sps->height);
1327     int i, j;
1328
1329     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1330         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1331             s->is_pcm[i + j * min_pu_width] = 2;
1332 }
1333
1334 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
1335                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1336                               int log2_cb_size, int log2_trafo_size,
1337                               int trafo_depth, int blk_idx,
1338                               int cbf_cb, int cbf_cr)
1339 {
1340     HEVCLocalContext *lc = &s->HEVClc;
1341     uint8_t split_transform_flag;
1342     int ret;
1343
1344     if (lc->cu.intra_split_flag) {
1345         if (trafo_depth == 1)
1346             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1347     } else {
1348         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
1349     }
1350
1351     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1352         log2_trafo_size >  s->sps->log2_min_tb_size    &&
1353         trafo_depth     < lc->cu.max_trafo_depth       &&
1354         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1355         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
1356     } else {
1357         int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
1358                           lc->cu.pred_mode == MODE_INTER &&
1359                           lc->cu.part_mode != PART_2Nx2N &&
1360                           trafo_depth == 0;
1361
1362         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
1363                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
1364                                inter_split;
1365     }
1366
1367     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1368         cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1369     else if (log2_trafo_size > 2 || trafo_depth == 0)
1370         cbf_cb = 0;
1371     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1372         cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1373     else if (log2_trafo_size > 2 || trafo_depth == 0)
1374         cbf_cr = 0;
1375
1376     if (split_transform_flag) {
1377         const int trafo_size_split = 1 << (log2_trafo_size - 1);
1378         const int x1 = x0 + trafo_size_split;
1379         const int y1 = y0 + trafo_size_split;
1380
1381 #define SUBDIVIDE(x, y, idx)                                                    \
1382 do {                                                                            \
1383     ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1384                              log2_trafo_size - 1, trafo_depth + 1, idx,         \
1385                              cbf_cb, cbf_cr);                                   \
1386     if (ret < 0)                                                                \
1387         return ret;                                                             \
1388 } while (0)
1389
1390         SUBDIVIDE(x0, y0, 0);
1391         SUBDIVIDE(x1, y0, 1);
1392         SUBDIVIDE(x0, y1, 2);
1393         SUBDIVIDE(x1, y1, 3);
1394
1395 #undef SUBDIVIDE
1396     } else {
1397         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
1398         int log2_min_tu_size = s->sps->log2_min_tb_size;
1399         int min_tu_width     = s->sps->min_tb_width;
1400         int cbf_luma         = 1;
1401
1402         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1403             cbf_cb || cbf_cr)
1404             cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
1405
1406         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1407                                  log2_cb_size, log2_trafo_size,
1408                                  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1409         if (ret < 0)
1410             return ret;
1411         // TODO: store cbf_luma somewhere else
1412         if (cbf_luma) {
1413             int i, j;
1414             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1415                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1416                     int x_tu = (x0 + j) >> log2_min_tu_size;
1417                     int y_tu = (y0 + i) >> log2_min_tu_size;
1418                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1419                 }
1420         }
1421         if (!s->sh.disable_deblocking_filter_flag) {
1422             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
1423             if (s->pps->transquant_bypass_enable_flag &&
1424                 lc->cu.cu_transquant_bypass_flag)
1425                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1426         }
1427     }
1428     return 0;
1429 }
1430
1431 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1432 {
1433     //TODO: non-4:2:0 support
1434     HEVCLocalContext *lc = &s->HEVClc;
1435     GetBitContext gb;
1436     int cb_size   = 1 << log2_cb_size;
1437     int stride0   = s->frame->linesize[0];
1438     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1439     int   stride1 = s->frame->linesize[1];
1440     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1441     int   stride2 = s->frame->linesize[2];
1442     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1443
1444     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1445     const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1446     int ret;
1447
1448     if (!s->sh.disable_deblocking_filter_flag)
1449         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
1450
1451     ret = init_get_bits(&gb, pcm, length);
1452     if (ret < 0)
1453         return ret;
1454
1455     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1456     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1457     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1458     return 0;
1459 }
1460
1461 static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
1462 {
1463     HEVCLocalContext *lc = &s->HEVClc;
1464     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
1465     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
1466
1467     if (x)
1468         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
1469     if (y)
1470         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
1471
1472     switch (x) {
1473     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
1474     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
1475     case 0: lc->pu.mvd.x = 0;                               break;
1476     }
1477
1478     switch (y) {
1479     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
1480     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
1481     case 0: lc->pu.mvd.y = 0;                               break;
1482     }
1483 }
1484
1485 /**
1486  * 8.5.3.2.2.1 Luma sample interpolation process
1487  *
1488  * @param s HEVC decoding context
1489  * @param dst target buffer for block data at block position
1490  * @param dststride stride of the dst buffer
1491  * @param ref reference picture buffer at origin (0, 0)
1492  * @param mv motion vector (relative to block position) to get pixel data from
1493  * @param x_off horizontal position of block from origin (0, 0)
1494  * @param y_off vertical position of block from origin (0, 0)
1495  * @param block_w width of block
1496  * @param block_h height of block
1497  */
1498 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1499                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1500                     int block_w, int block_h)
1501 {
1502     HEVCLocalContext *lc = &s->HEVClc;
1503     uint8_t *src         = ref->data[0];
1504     ptrdiff_t srcstride  = ref->linesize[0];
1505     int pic_width        = s->sps->width;
1506     int pic_height       = s->sps->height;
1507
1508     int mx         = mv->x & 3;
1509     int my         = mv->y & 3;
1510     int extra_left = ff_hevc_qpel_extra_before[mx];
1511     int extra_top  = ff_hevc_qpel_extra_before[my];
1512
1513     x_off += mv->x >> 2;
1514     y_off += mv->y >> 2;
1515     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1516
1517     if (x_off < extra_left || y_off < extra_top ||
1518         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1519         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1520         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1521         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1522         int buf_offset = extra_top *
1523                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1524
1525         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1526                                  edge_emu_stride, srcstride,
1527                                  block_w + ff_hevc_qpel_extra[mx],
1528                                  block_h + ff_hevc_qpel_extra[my],
1529                                  x_off - extra_left, y_off - extra_top,
1530                                  pic_width, pic_height);
1531         src = lc->edge_emu_buffer + buf_offset;
1532         srcstride = edge_emu_stride;
1533     }
1534     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1535                                      block_h, lc->mc_buffer);
1536 }
1537
1538 /**
1539  * 8.5.3.2.2.2 Chroma sample interpolation process
1540  *
1541  * @param s HEVC decoding context
1542  * @param dst1 target buffer for block data at block position (U plane)
1543  * @param dst2 target buffer for block data at block position (V plane)
1544  * @param dststride stride of the dst1 and dst2 buffers
1545  * @param ref reference picture buffer at origin (0, 0)
1546  * @param mv motion vector (relative to block position) to get pixel data from
1547  * @param x_off horizontal position of block from origin (0, 0)
1548  * @param y_off vertical position of block from origin (0, 0)
1549  * @param block_w width of block
1550  * @param block_h height of block
1551  */
1552 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1553                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1554                       int x_off, int y_off, int block_w, int block_h)
1555 {
1556     HEVCLocalContext *lc = &s->HEVClc;
1557     uint8_t *src1        = ref->data[1];
1558     uint8_t *src2        = ref->data[2];
1559     ptrdiff_t src1stride = ref->linesize[1];
1560     ptrdiff_t src2stride = ref->linesize[2];
1561     int pic_width        = s->sps->width >> 1;
1562     int pic_height       = s->sps->height >> 1;
1563
1564     int mx = mv->x & 7;
1565     int my = mv->y & 7;
1566
1567     x_off += mv->x >> 3;
1568     y_off += mv->y >> 3;
1569     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1570     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1571
1572     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1573         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1574         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1575         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1576         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1577         int buf_offset1 = EPEL_EXTRA_BEFORE *
1578                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1579         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1580         int buf_offset2 = EPEL_EXTRA_BEFORE *
1581                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1582
1583         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1584                                  edge_emu_stride, src1stride,
1585                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1586                                  x_off - EPEL_EXTRA_BEFORE,
1587                                  y_off - EPEL_EXTRA_BEFORE,
1588                                  pic_width, pic_height);
1589
1590         src1 = lc->edge_emu_buffer + buf_offset1;
1591         src1stride = edge_emu_stride;
1592         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1593                                              block_w, block_h, mx, my, lc->mc_buffer);
1594
1595         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1596                                  edge_emu_stride, src2stride,
1597                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1598                                  x_off - EPEL_EXTRA_BEFORE,
1599                                  y_off - EPEL_EXTRA_BEFORE,
1600                                  pic_width, pic_height);
1601         src2 = lc->edge_emu_buffer + buf_offset2;
1602         src2stride = edge_emu_stride;
1603
1604         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1605                                              block_w, block_h, mx, my,
1606                                              lc->mc_buffer);
1607     } else {
1608         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1609                                              block_w, block_h, mx, my,
1610                                              lc->mc_buffer);
1611         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1612                                              block_w, block_h, mx, my,
1613                                              lc->mc_buffer);
1614     }
1615 }
1616
1617 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1618                                 const Mv *mv, int y0, int height)
1619 {
1620     int y = (mv->y >> 2) + y0 + height + 9;
1621     ff_thread_await_progress(&ref->tf, y, 0);
1622 }
1623
1624 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1625                                 int nPbW, int nPbH,
1626                                 int log2_cb_size, int partIdx)
1627 {
1628 #define POS(c_idx, x, y)                                                              \
1629     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1630                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1631     HEVCLocalContext *lc = &s->HEVClc;
1632     int merge_idx = 0;
1633     struct MvField current_mv = {{{ 0 }}};
1634
1635     int min_pu_width = s->sps->min_pu_width;
1636
1637     MvField *tab_mvf = s->ref->tab_mvf;
1638     RefPicList  *refPicList = s->ref->refPicList;
1639     HEVCFrame *ref0, *ref1;
1640
1641     int tmpstride = MAX_PB_SIZE;
1642
1643     uint8_t *dst0 = POS(0, x0, y0);
1644     uint8_t *dst1 = POS(1, x0, y0);
1645     uint8_t *dst2 = POS(2, x0, y0);
1646     int log2_min_cb_size = s->sps->log2_min_cb_size;
1647     int min_cb_width     = s->sps->min_cb_width;
1648     int x_cb             = x0 >> log2_min_cb_size;
1649     int y_cb             = y0 >> log2_min_cb_size;
1650     int ref_idx[2];
1651     int mvp_flag[2];
1652     int x_pu, y_pu;
1653     int i, j;
1654
1655     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1656         if (s->sh.max_num_merge_cand > 1)
1657             merge_idx = ff_hevc_merge_idx_decode(s);
1658         else
1659             merge_idx = 0;
1660
1661         ff_hevc_luma_mv_merge_mode(s, x0, y0,
1662                                    1 << log2_cb_size,
1663                                    1 << log2_cb_size,
1664                                    log2_cb_size, partIdx,
1665                                    merge_idx, &current_mv);
1666         x_pu = x0 >> s->sps->log2_min_pu_size;
1667         y_pu = y0 >> s->sps->log2_min_pu_size;
1668
1669         for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1670             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1671                 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1672     } else { /* MODE_INTER */
1673         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1674         if (lc->pu.merge_flag) {
1675             if (s->sh.max_num_merge_cand > 1)
1676                 merge_idx = ff_hevc_merge_idx_decode(s);
1677             else
1678                 merge_idx = 0;
1679
1680             ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1681                                        partIdx, merge_idx, &current_mv);
1682             x_pu = x0 >> s->sps->log2_min_pu_size;
1683             y_pu = y0 >> s->sps->log2_min_pu_size;
1684
1685             for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1686                 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1687                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1688         } else {
1689             enum InterPredIdc inter_pred_idc = PRED_L0;
1690             ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1691             if (s->sh.slice_type == B_SLICE)
1692                 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1693
1694             if (inter_pred_idc != PRED_L1) {
1695                 if (s->sh.nb_refs[L0]) {
1696                     ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1697                     current_mv.ref_idx[0] = ref_idx[0];
1698                 }
1699                 current_mv.pred_flag[0] = 1;
1700                 hls_mvd_coding(s, x0, y0, 0);
1701                 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
1702                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1703                                          partIdx, merge_idx, &current_mv,
1704                                          mvp_flag[0], 0);
1705                 current_mv.mv[0].x += lc->pu.mvd.x;
1706                 current_mv.mv[0].y += lc->pu.mvd.y;
1707             }
1708
1709             if (inter_pred_idc != PRED_L0) {
1710                 if (s->sh.nb_refs[L1]) {
1711                     ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1712                     current_mv.ref_idx[1] = ref_idx[1];
1713                 }
1714
1715                 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1716                     AV_ZERO32(&lc->pu.mvd);
1717                 } else {
1718                     hls_mvd_coding(s, x0, y0, 1);
1719                 }
1720
1721                 current_mv.pred_flag[1] = 1;
1722                 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
1723                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1724                                          partIdx, merge_idx, &current_mv,
1725                                          mvp_flag[1], 1);
1726                 current_mv.mv[1].x += lc->pu.mvd.x;
1727                 current_mv.mv[1].y += lc->pu.mvd.y;
1728             }
1729
1730             x_pu = x0 >> s->sps->log2_min_pu_size;
1731             y_pu = y0 >> s->sps->log2_min_pu_size;
1732
1733             for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1734                 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1735                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1736         }
1737     }
1738
1739     if (current_mv.pred_flag[0]) {
1740         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1741         if (!ref0)
1742             return;
1743         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1744     }
1745     if (current_mv.pred_flag[1]) {
1746         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1747         if (!ref1)
1748             return;
1749         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1750     }
1751
1752     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1753         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1754         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1755
1756         luma_mc(s, tmp, tmpstride, ref0->frame,
1757                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1758
1759         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1760             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1761             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1762                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1763                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1764                                      dst0, s->frame->linesize[0], tmp,
1765                                      tmpstride, nPbW, nPbH);
1766         } else {
1767             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1768         }
1769         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1770                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1771
1772         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1773             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1774             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1775                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1776                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1777                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1778                                      nPbW / 2, nPbH / 2);
1779             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1780                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1781                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1782                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1783                                      nPbW / 2, nPbH / 2);
1784         } else {
1785             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1786             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1787         }
1788     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1789         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1790         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1791
1792         if (!ref1)
1793             return;
1794
1795         luma_mc(s, tmp, tmpstride, ref1->frame,
1796                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1797
1798         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1799             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1800             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1801                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1802                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1803                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1804                                       nPbW, nPbH);
1805         } else {
1806             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1807         }
1808
1809         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1810                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1811
1812         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1813             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1814             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1815                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1816                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1817                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1818             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1819                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1820                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1821                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1822         } else {
1823             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1824             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1825         }
1826     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1827         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1828         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1829         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1830         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1831         HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1832         HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1833
1834         if (!ref0 || !ref1)
1835             return;
1836
1837         luma_mc(s, tmp, tmpstride, ref0->frame,
1838                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1839         luma_mc(s, tmp2, tmpstride, ref1->frame,
1840                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1841
1842         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1843             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1844             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1845                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1846                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1847                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1848                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1849                                          dst0, s->frame->linesize[0],
1850                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1851         } else {
1852             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1853                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1854         }
1855
1856         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1857                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1858         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1859                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1860
1861         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1862             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1863             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1864                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1865                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1866                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1867                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1868                                          dst1, s->frame->linesize[1], tmp, tmp3,
1869                                          tmpstride, nPbW / 2, nPbH / 2);
1870             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1871                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1872                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1873                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1874                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1875                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1876                                          tmpstride, nPbW / 2, nPbH / 2);
1877         } else {
1878             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1879             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1880         }
1881     }
1882 }
1883
1884 /**
1885  * 8.4.1
1886  */
1887 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1888                                 int prev_intra_luma_pred_flag)
1889 {
1890     HEVCLocalContext *lc = &s->HEVClc;
1891     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1892     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1893     int min_pu_width     = s->sps->min_pu_width;
1894     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1895     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1896     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1897
1898     int cand_up   = (lc->ctb_up_flag || y0b) ?
1899                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1900     int cand_left = (lc->ctb_left_flag || x0b) ?
1901                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1902
1903     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1904
1905     MvField *tab_mvf = s->ref->tab_mvf;
1906     int intra_pred_mode;
1907     int candidate[3];
1908     int i, j;
1909
1910     // intra_pred_mode prediction does not cross vertical CTB boundaries
1911     if ((y0 - 1) < y_ctb)
1912         cand_up = INTRA_DC;
1913
1914     if (cand_left == cand_up) {
1915         if (cand_left < 2) {
1916             candidate[0] = INTRA_PLANAR;
1917             candidate[1] = INTRA_DC;
1918             candidate[2] = INTRA_ANGULAR_26;
1919         } else {
1920             candidate[0] = cand_left;
1921             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1922             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1923         }
1924     } else {
1925         candidate[0] = cand_left;
1926         candidate[1] = cand_up;
1927         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1928             candidate[2] = INTRA_PLANAR;
1929         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1930             candidate[2] = INTRA_DC;
1931         } else {
1932             candidate[2] = INTRA_ANGULAR_26;
1933         }
1934     }
1935
1936     if (prev_intra_luma_pred_flag) {
1937         intra_pred_mode = candidate[lc->pu.mpm_idx];
1938     } else {
1939         if (candidate[0] > candidate[1])
1940             FFSWAP(uint8_t, candidate[0], candidate[1]);
1941         if (candidate[0] > candidate[2])
1942             FFSWAP(uint8_t, candidate[0], candidate[2]);
1943         if (candidate[1] > candidate[2])
1944             FFSWAP(uint8_t, candidate[1], candidate[2]);
1945
1946         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1947         for (i = 0; i < 3; i++)
1948             if (intra_pred_mode >= candidate[i])
1949                 intra_pred_mode++;
1950     }
1951
1952     /* write the intra prediction units into the mv array */
1953     if (!size_in_pus)
1954         size_in_pus = 1;
1955     for (i = 0; i < size_in_pus; i++) {
1956         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1957                intra_pred_mode, size_in_pus);
1958
1959         for (j = 0; j < size_in_pus; j++) {
1960             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1961             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1962             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1963             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1964             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1965             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1966             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1967             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1968             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1969         }
1970     }
1971
1972     return intra_pred_mode;
1973 }
1974
1975 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1976                                           int log2_cb_size, int ct_depth)
1977 {
1978     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1979     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1980     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1981     int y;
1982
1983     for (y = 0; y < length; y++)
1984         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1985                ct_depth, length);
1986 }
1987
1988 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1989                                   int log2_cb_size)
1990 {
1991     HEVCLocalContext *lc = &s->HEVClc;
1992     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1993     uint8_t prev_intra_luma_pred_flag[4];
1994     int split   = lc->cu.part_mode == PART_NxN;
1995     int pb_size = (1 << log2_cb_size) >> split;
1996     int side    = split + 1;
1997     int chroma_mode;
1998     int i, j;
1999
2000     for (i = 0; i < side; i++)
2001         for (j = 0; j < side; j++)
2002             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
2003
2004     for (i = 0; i < side; i++) {
2005         for (j = 0; j < side; j++) {
2006             if (prev_intra_luma_pred_flag[2 * i + j])
2007                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
2008             else
2009                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
2010
2011             lc->pu.intra_pred_mode[2 * i + j] =
2012                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
2013                                      prev_intra_luma_pred_flag[2 * i + j]);
2014         }
2015     }
2016
2017     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
2018     if (chroma_mode != 4) {
2019         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
2020             lc->pu.intra_pred_mode_c = 34;
2021         else
2022             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
2023     } else {
2024         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
2025     }
2026 }
2027
2028 static void intra_prediction_unit_default_value(HEVCContext *s,
2029                                                 int x0, int y0,
2030                                                 int log2_cb_size)
2031 {
2032     HEVCLocalContext *lc = &s->HEVClc;
2033     int pb_size          = 1 << log2_cb_size;
2034     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
2035     int min_pu_width     = s->sps->min_pu_width;
2036     MvField *tab_mvf     = s->ref->tab_mvf;
2037     int x_pu             = x0 >> s->sps->log2_min_pu_size;
2038     int y_pu             = y0 >> s->sps->log2_min_pu_size;
2039     int j, k;
2040
2041     if (size_in_pus == 0)
2042         size_in_pus = 1;
2043     for (j = 0; j < size_in_pus; j++) {
2044         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2045         for (k = 0; k < size_in_pus; k++)
2046             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
2047     }
2048 }
2049
2050 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
2051 {
2052     int cb_size          = 1 << log2_cb_size;
2053     HEVCLocalContext *lc = &s->HEVClc;
2054     int log2_min_cb_size = s->sps->log2_min_cb_size;
2055     int length           = cb_size >> log2_min_cb_size;
2056     int min_cb_width     = s->sps->min_cb_width;
2057     int x_cb             = x0 >> log2_min_cb_size;
2058     int y_cb             = y0 >> log2_min_cb_size;
2059     int x, y, ret;
2060
2061     lc->cu.x                = x0;
2062     lc->cu.y                = y0;
2063     lc->cu.pred_mode        = MODE_INTRA;
2064     lc->cu.part_mode        = PART_2Nx2N;
2065     lc->cu.intra_split_flag = 0;
2066
2067     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
2068     for (x = 0; x < 4; x++)
2069         lc->pu.intra_pred_mode[x] = 1;
2070     if (s->pps->transquant_bypass_enable_flag) {
2071         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
2072         if (lc->cu.cu_transquant_bypass_flag)
2073             set_deblocking_bypass(s, x0, y0, log2_cb_size);
2074     } else
2075         lc->cu.cu_transquant_bypass_flag = 0;
2076
2077     if (s->sh.slice_type != I_SLICE) {
2078         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
2079
2080         x = y_cb * min_cb_width + x_cb;
2081         for (y = 0; y < length; y++) {
2082             memset(&s->skip_flag[x], skip_flag, length);
2083             x += min_cb_width;
2084         }
2085         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2086     }
2087
2088     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
2089         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2090         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2091
2092         if (!s->sh.disable_deblocking_filter_flag)
2093             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2094     } else {
2095         int pcm_flag = 0;
2096
2097         if (s->sh.slice_type != I_SLICE)
2098             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
2099         if (lc->cu.pred_mode != MODE_INTRA ||
2100             log2_cb_size == s->sps->log2_min_cb_size) {
2101             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
2102             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2103                                       lc->cu.pred_mode == MODE_INTRA;
2104         }
2105
2106         if (lc->cu.pred_mode == MODE_INTRA) {
2107             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
2108                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
2109                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2110                 pcm_flag = ff_hevc_pcm_flag_decode(s);
2111             }
2112             if (pcm_flag) {
2113                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2114                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
2115                 if (s->sps->pcm.loop_filter_disable_flag)
2116                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
2117
2118                 if (ret < 0)
2119                     return ret;
2120             } else {
2121                 intra_prediction_unit(s, x0, y0, log2_cb_size);
2122             }
2123         } else {
2124             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2125             switch (lc->cu.part_mode) {
2126             case PART_2Nx2N:
2127                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2128                 break;
2129             case PART_2NxN:
2130                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
2131                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
2132                 break;
2133             case PART_Nx2N:
2134                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
2135                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
2136                 break;
2137             case PART_2NxnU:
2138                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
2139                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
2140                 break;
2141             case PART_2NxnD:
2142                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
2143                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
2144                 break;
2145             case PART_nLx2N:
2146                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
2147                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
2148                 break;
2149             case PART_nRx2N:
2150                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
2151                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
2152                 break;
2153             case PART_NxN:
2154                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
2155                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
2156                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
2157                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2158                 break;
2159             }
2160         }
2161
2162         if (!pcm_flag) {
2163             int rqt_root_cbf = 1;
2164
2165             if (lc->cu.pred_mode != MODE_INTRA &&
2166                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2167                 rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
2168             }
2169             if (rqt_root_cbf) {
2170                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2171                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2172                                          s->sps->max_transform_hierarchy_depth_inter;
2173                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
2174                                          log2_cb_size,
2175                                          log2_cb_size, 0, 0, 0, 0);
2176                 if (ret < 0)
2177                     return ret;
2178             } else {
2179                 if (!s->sh.disable_deblocking_filter_flag)
2180                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2181             }
2182         }
2183     }
2184
2185     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2186         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
2187
2188     x = y_cb * min_cb_width + x_cb;
2189     for (y = 0; y < length; y++) {
2190         memset(&s->qp_y_tab[x], lc->qp_y, length);
2191         x += min_cb_width;
2192     }
2193
2194     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
2195
2196     return 0;
2197 }
2198
2199 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
2200                                int log2_cb_size, int cb_depth)
2201 {
2202     HEVCLocalContext *lc = &s->HEVClc;
2203     const int cb_size    = 1 << log2_cb_size;
2204     int split_cu;
2205
2206     lc->ct.depth = cb_depth;
2207     if (x0 + cb_size <= s->sps->width  &&
2208         y0 + cb_size <= s->sps->height &&
2209         log2_cb_size > s->sps->log2_min_cb_size) {
2210         split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
2211     } else {
2212         split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
2213     }
2214     if (s->pps->cu_qp_delta_enabled_flag &&
2215         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
2216         lc->tu.is_cu_qp_delta_coded = 0;
2217         lc->tu.cu_qp_delta          = 0;
2218     }
2219
2220     if (split_cu) {
2221         const int cb_size_split = cb_size >> 1;
2222         const int x1 = x0 + cb_size_split;
2223         const int y1 = y0 + cb_size_split;
2224
2225         log2_cb_size--;
2226         cb_depth++;
2227
2228 #define SUBDIVIDE(x, y)                                                \
2229 do {                                                                   \
2230     if (x < s->sps->width && y < s->sps->height) {                     \
2231         int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2232         if (ret < 0)                                                   \
2233             return ret;                                                \
2234     }                                                                  \
2235 } while (0)
2236
2237         SUBDIVIDE(x0, y0);
2238         SUBDIVIDE(x1, y0);
2239         SUBDIVIDE(x0, y1);
2240         SUBDIVIDE(x1, y1);
2241     } else {
2242         int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
2243         if (ret < 0)
2244             return ret;
2245     }
2246
2247     return 0;
2248 }
2249
2250 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
2251                                  int ctb_addr_ts)
2252 {
2253     HEVCLocalContext *lc  = &s->HEVClc;
2254     int ctb_size          = 1 << s->sps->log2_ctb_size;
2255     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2256     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2257
2258     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2259
2260     if (s->pps->entropy_coding_sync_enabled_flag) {
2261         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2262             lc->first_qp_group = 1;
2263         lc->end_of_tiles_x = s->sps->width;
2264     } else if (s->pps->tiles_enabled_flag) {
2265         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
2266             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
2267             lc->start_of_tiles_x = x_ctb;
2268             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
2269             lc->first_qp_group   = 1;
2270         }
2271     } else {
2272         lc->end_of_tiles_x = s->sps->width;
2273     }
2274
2275     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
2276
2277     lc->boundary_flags = 0;
2278     if (s->pps->tiles_enabled_flag) {
2279         if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2280             lc->boundary_flags |= BOUNDARY_LEFT_TILE;
2281         if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
2282             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2283         if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
2284             lc->boundary_flags |= BOUNDARY_UPPER_TILE;
2285         if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
2286             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2287     } else {
2288         if (!ctb_addr_in_slice > 0)
2289             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2290         if (ctb_addr_in_slice < s->sps->ctb_width)
2291             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2292     }
2293
2294     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2295     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2296     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
2297     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
2298 }
2299
2300 static int hls_slice_data(HEVCContext *s)
2301 {
2302     int ctb_size    = 1 << s->sps->log2_ctb_size;
2303     int more_data   = 1;
2304     int x_ctb       = 0;
2305     int y_ctb       = 0;
2306     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2307     int ret;
2308
2309     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2310         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2311
2312         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2313         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2314         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
2315
2316         ff_hevc_cabac_init(s, ctb_addr_ts);
2317
2318         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2319
2320         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2321         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
2322         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
2323
2324         ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2325         if (ret < 0)
2326             return ret;
2327         more_data = !ff_hevc_end_of_slice_flag_decode(s);
2328
2329         ctb_addr_ts++;
2330         ff_hevc_save_states(s, ctb_addr_ts);
2331         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2332     }
2333
2334     if (x_ctb + ctb_size >= s->sps->width &&
2335         y_ctb + ctb_size >= s->sps->height)
2336         ff_hevc_hls_filter(s, x_ctb, y_ctb);
2337
2338     return ctb_addr_ts;
2339 }
2340
2341 /**
2342  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2343  * 0 if the unit should be skipped, 1 otherwise
2344  */
2345 static int hls_nal_unit(HEVCContext *s)
2346 {
2347     GetBitContext *gb = &s->HEVClc.gb;
2348     int nuh_layer_id;
2349
2350     if (get_bits1(gb) != 0)
2351         return AVERROR_INVALIDDATA;
2352
2353     s->nal_unit_type = get_bits(gb, 6);
2354
2355     nuh_layer_id   = get_bits(gb, 6);
2356     s->temporal_id = get_bits(gb, 3) - 1;
2357     if (s->temporal_id < 0)
2358         return AVERROR_INVALIDDATA;
2359
2360     av_log(s->avctx, AV_LOG_DEBUG,
2361            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2362            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2363
2364     return nuh_layer_id == 0;
2365 }
2366
2367 static void restore_tqb_pixels(HEVCContext *s)
2368 {
2369     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2370     int x, y, c_idx;
2371
2372     for (c_idx = 0; c_idx < 3; c_idx++) {
2373         ptrdiff_t stride = s->frame->linesize[c_idx];
2374         int hshift       = s->sps->hshift[c_idx];
2375         int vshift       = s->sps->vshift[c_idx];
2376         for (y = 0; y < s->sps->min_pu_height; y++) {
2377             for (x = 0; x < s->sps->min_pu_width; x++) {
2378                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2379                     int n;
2380                     int len      = min_pu_size >> hshift;
2381                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2382                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2383                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2384                         memcpy(dst, src, len);
2385                         src += stride;
2386                         dst += stride;
2387                     }
2388                 }
2389             }
2390         }
2391     }
2392 }
2393
2394 static int set_side_data(HEVCContext *s)
2395 {
2396     AVFrame *out = s->ref->frame;
2397
2398     if (s->sei_frame_packing_present &&
2399         s->frame_packing_arrangement_type >= 3 &&
2400         s->frame_packing_arrangement_type <= 5 &&
2401         s->content_interpretation_type > 0 &&
2402         s->content_interpretation_type < 3) {
2403         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2404         if (!stereo)
2405             return AVERROR(ENOMEM);
2406
2407         switch (s->frame_packing_arrangement_type) {
2408         case 3:
2409             if (s->quincunx_subsampling)
2410                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2411             else
2412                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2413             break;
2414         case 4:
2415             stereo->type = AV_STEREO3D_TOPBOTTOM;
2416             break;
2417         case 5:
2418             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2419             break;
2420         }
2421
2422         if (s->content_interpretation_type == 2)
2423             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2424     }
2425
2426     if (s->sei_display_orientation_present &&
2427         (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
2428         double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
2429         AVFrameSideData *rotation = av_frame_new_side_data(out,
2430                                                            AV_FRAME_DATA_DISPLAYMATRIX,
2431                                                            sizeof(int32_t) * 9);
2432         if (!rotation)
2433             return AVERROR(ENOMEM);
2434
2435         av_display_rotation_set((int32_t *)rotation->data, angle);
2436         av_display_matrix_flip((int32_t *)rotation->data,
2437                                s->sei_hflip, s->sei_vflip);
2438     }
2439
2440     return 0;
2441 }
2442
2443 static int hevc_frame_start(HEVCContext *s)
2444 {
2445     HEVCLocalContext *lc = &s->HEVClc;
2446     int ret;
2447
2448     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2449     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2450     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2451     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2452
2453     lc->start_of_tiles_x = 0;
2454     s->is_decoded        = 0;
2455     s->first_nal_type    = s->nal_unit_type;
2456
2457     if (s->pps->tiles_enabled_flag)
2458         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2459
2460     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2461                               s->poc);
2462     if (ret < 0)
2463         goto fail;
2464
2465     ret = ff_hevc_frame_rps(s);
2466     if (ret < 0) {
2467         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2468         goto fail;
2469     }
2470
2471     s->ref->frame->key_frame = IS_IRAP(s);
2472
2473     ret = set_side_data(s);
2474     if (ret < 0)
2475         goto fail;
2476
2477     av_frame_unref(s->output_frame);
2478     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2479     if (ret < 0)
2480         goto fail;
2481
2482     ff_thread_finish_setup(s->avctx);
2483
2484     return 0;
2485
2486 fail:
2487     if (s->ref)
2488         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2489     s->ref = NULL;
2490     return ret;
2491 }
2492
2493 static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2494 {
2495     HEVCLocalContext *lc = &s->HEVClc;
2496     GetBitContext *gb    = &lc->gb;
2497     int ctb_addr_ts, ret;
2498
2499     ret = init_get_bits8(gb, nal, length);
2500     if (ret < 0)
2501         return ret;
2502
2503     ret = hls_nal_unit(s);
2504     if (ret < 0) {
2505         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2506                s->nal_unit_type);
2507         goto fail;
2508     } else if (!ret)
2509         return 0;
2510
2511     switch (s->nal_unit_type) {
2512     case NAL_VPS:
2513         ret = ff_hevc_decode_nal_vps(s);
2514         if (ret < 0)
2515             goto fail;
2516         break;
2517     case NAL_SPS:
2518         ret = ff_hevc_decode_nal_sps(s);
2519         if (ret < 0)
2520             goto fail;
2521         break;
2522     case NAL_PPS:
2523         ret = ff_hevc_decode_nal_pps(s);
2524         if (ret < 0)
2525             goto fail;
2526         break;
2527     case NAL_SEI_PREFIX:
2528     case NAL_SEI_SUFFIX:
2529         ret = ff_hevc_decode_nal_sei(s);
2530         if (ret < 0)
2531             goto fail;
2532         break;
2533     case NAL_TRAIL_R:
2534     case NAL_TRAIL_N:
2535     case NAL_TSA_N:
2536     case NAL_TSA_R:
2537     case NAL_STSA_N:
2538     case NAL_STSA_R:
2539     case NAL_BLA_W_LP:
2540     case NAL_BLA_W_RADL:
2541     case NAL_BLA_N_LP:
2542     case NAL_IDR_W_RADL:
2543     case NAL_IDR_N_LP:
2544     case NAL_CRA_NUT:
2545     case NAL_RADL_N:
2546     case NAL_RADL_R:
2547     case NAL_RASL_N:
2548     case NAL_RASL_R:
2549         ret = hls_slice_header(s);
2550         if (ret < 0)
2551             return ret;
2552
2553         if (s->max_ra == INT_MAX) {
2554             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2555                 s->max_ra = s->poc;
2556             } else {
2557                 if (IS_IDR(s))
2558                     s->max_ra = INT_MIN;
2559             }
2560         }
2561
2562         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2563             s->poc <= s->max_ra) {
2564             s->is_decoded = 0;
2565             break;
2566         } else {
2567             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2568                 s->max_ra = INT_MIN;
2569         }
2570
2571         if (s->sh.first_slice_in_pic_flag) {
2572             ret = hevc_frame_start(s);
2573             if (ret < 0)
2574                 return ret;
2575         } else if (!s->ref) {
2576             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2577             goto fail;
2578         }
2579
2580         if (s->nal_unit_type != s->first_nal_type) {
2581             av_log(s->avctx, AV_LOG_ERROR,
2582                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2583                    s->first_nal_type, s->nal_unit_type);
2584             return AVERROR_INVALIDDATA;
2585         }
2586
2587         if (!s->sh.dependent_slice_segment_flag &&
2588             s->sh.slice_type != I_SLICE) {
2589             ret = ff_hevc_slice_rpl(s);
2590             if (ret < 0) {
2591                 av_log(s->avctx, AV_LOG_WARNING,
2592                        "Error constructing the reference lists for the current slice.\n");
2593                 goto fail;
2594             }
2595         }
2596
2597         ctb_addr_ts = hls_slice_data(s);
2598         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2599             s->is_decoded = 1;
2600             if ((s->pps->transquant_bypass_enable_flag ||
2601                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2602                 s->sps->sao_enabled)
2603                 restore_tqb_pixels(s);
2604         }
2605
2606         if (ctb_addr_ts < 0) {
2607             ret = ctb_addr_ts;
2608             goto fail;
2609         }
2610         break;
2611     case NAL_EOS_NUT:
2612     case NAL_EOB_NUT:
2613         s->seq_decode = (s->seq_decode + 1) & 0xff;
2614         s->max_ra     = INT_MAX;
2615         break;
2616     case NAL_AUD:
2617     case NAL_FD_NUT:
2618         break;
2619     default:
2620         av_log(s->avctx, AV_LOG_INFO,
2621                "Skipping NAL unit %d\n", s->nal_unit_type);
2622     }
2623
2624     return 0;
2625 fail:
2626     if (s->avctx->err_recognition & AV_EF_EXPLODE)
2627         return ret;
2628     return 0;
2629 }
2630
2631 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2632  * between these functions would be nice. */
2633 static int extract_rbsp(const uint8_t *src, int length,
2634                         HEVCNAL *nal)
2635 {
2636     int i, si, di;
2637     uint8_t *dst;
2638
2639 #define STARTCODE_TEST                                                  \
2640         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2641             if (src[i + 2] != 3) {                                      \
2642                 /* startcode, so we must be past the end */             \
2643                 length = i;                                             \
2644             }                                                           \
2645             break;                                                      \
2646         }
2647 #if HAVE_FAST_UNALIGNED
2648 #define FIND_FIRST_ZERO                                                 \
2649         if (i > 0 && !src[i])                                           \
2650             i--;                                                        \
2651         while (src[i])                                                  \
2652             i++
2653 #if HAVE_FAST_64BIT
2654     for (i = 0; i + 1 < length; i += 9) {
2655         if (!((~AV_RN64A(src + i) &
2656                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2657               0x8000800080008080ULL))
2658             continue;
2659         FIND_FIRST_ZERO;
2660         STARTCODE_TEST;
2661         i -= 7;
2662     }
2663 #else
2664     for (i = 0; i + 1 < length; i += 5) {
2665         if (!((~AV_RN32A(src + i) &
2666                (AV_RN32A(src + i) - 0x01000101U)) &
2667               0x80008080U))
2668             continue;
2669         FIND_FIRST_ZERO;
2670         STARTCODE_TEST;
2671         i -= 3;
2672     }
2673 #endif /* HAVE_FAST_64BIT */
2674 #else
2675     for (i = 0; i + 1 < length; i += 2) {
2676         if (src[i])
2677             continue;
2678         if (i > 0 && src[i - 1] == 0)
2679             i--;
2680         STARTCODE_TEST;
2681     }
2682 #endif /* HAVE_FAST_UNALIGNED */
2683
2684     if (i >= length - 1) { // no escaped 0
2685         nal->data = src;
2686         nal->size = length;
2687         return length;
2688     }
2689
2690     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2691                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2692     if (!nal->rbsp_buffer)
2693         return AVERROR(ENOMEM);
2694
2695     dst = nal->rbsp_buffer;
2696
2697     memcpy(dst, src, i);
2698     si = di = i;
2699     while (si + 2 < length) {
2700         // remove escapes (very rare 1:2^22)
2701         if (src[si + 2] > 3) {
2702             dst[di++] = src[si++];
2703             dst[di++] = src[si++];
2704         } else if (src[si] == 0 && src[si + 1] == 0) {
2705             if (src[si + 2] == 3) { // escape
2706                 dst[di++] = 0;
2707                 dst[di++] = 0;
2708                 si       += 3;
2709
2710                 continue;
2711             } else // next start code
2712                 goto nsc;
2713         }
2714
2715         dst[di++] = src[si++];
2716     }
2717     while (si < length)
2718         dst[di++] = src[si++];
2719
2720 nsc:
2721     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2722
2723     nal->data = dst;
2724     nal->size = di;
2725     return si;
2726 }
2727
2728 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2729 {
2730     int i, consumed, ret = 0;
2731
2732     s->ref = NULL;
2733     s->eos = 0;
2734
2735     /* split the input packet into NAL units, so we know the upper bound on the
2736      * number of slices in the frame */
2737     s->nb_nals = 0;
2738     while (length >= 4) {
2739         HEVCNAL *nal;
2740         int extract_length = 0;
2741
2742         if (s->is_nalff) {
2743             int i;
2744             for (i = 0; i < s->nal_length_size; i++)
2745                 extract_length = (extract_length << 8) | buf[i];
2746             buf    += s->nal_length_size;
2747             length -= s->nal_length_size;
2748
2749             if (extract_length > length) {
2750                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2751                 ret = AVERROR_INVALIDDATA;
2752                 goto fail;
2753             }
2754         } else {
2755             if (buf[2] == 0) {
2756                 length--;
2757                 buf++;
2758                 continue;
2759             }
2760             if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2761                 ret = AVERROR_INVALIDDATA;
2762                 goto fail;
2763             }
2764
2765             buf           += 3;
2766             length        -= 3;
2767             extract_length = length;
2768         }
2769
2770         if (s->nals_allocated < s->nb_nals + 1) {
2771             int new_size = s->nals_allocated + 1;
2772             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2773             if (!tmp) {
2774                 ret = AVERROR(ENOMEM);
2775                 goto fail;
2776             }
2777             s->nals = tmp;
2778             memset(s->nals + s->nals_allocated, 0,
2779                    (new_size - s->nals_allocated) * sizeof(*tmp));
2780             s->nals_allocated = new_size;
2781         }
2782         nal = &s->nals[s->nb_nals++];
2783
2784         consumed = extract_rbsp(buf, extract_length, nal);
2785         if (consumed < 0) {
2786             ret = consumed;
2787             goto fail;
2788         }
2789
2790         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
2791         if (ret < 0)
2792             goto fail;
2793         hls_nal_unit(s);
2794
2795         if (s->nal_unit_type == NAL_EOB_NUT ||
2796             s->nal_unit_type == NAL_EOS_NUT)
2797             s->eos = 1;
2798
2799         buf    += consumed;
2800         length -= consumed;
2801     }
2802
2803     /* parse the NAL units */
2804     for (i = 0; i < s->nb_nals; i++) {
2805         int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2806         if (ret < 0) {
2807             av_log(s->avctx, AV_LOG_WARNING,
2808                    "Error parsing NAL unit #%d.\n", i);
2809             goto fail;
2810         }
2811     }
2812
2813 fail:
2814     if (s->ref)
2815         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2816
2817     return ret;
2818 }
2819
2820 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2821 {
2822     int i;
2823     for (i = 0; i < 16; i++)
2824         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2825 }
2826
2827 static int verify_md5(HEVCContext *s, AVFrame *frame)
2828 {
2829     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2830     int pixel_shift;
2831     int i, j;
2832
2833     if (!desc)
2834         return AVERROR(EINVAL);
2835
2836     pixel_shift = desc->comp[0].depth_minus1 > 7;
2837
2838     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2839            s->poc);
2840
2841     /* the checksums are LE, so we have to byteswap for >8bpp formats
2842      * on BE arches */
2843 #if HAVE_BIGENDIAN
2844     if (pixel_shift && !s->checksum_buf) {
2845         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2846                        FFMAX3(frame->linesize[0], frame->linesize[1],
2847                               frame->linesize[2]));
2848         if (!s->checksum_buf)
2849             return AVERROR(ENOMEM);
2850     }
2851 #endif
2852
2853     for (i = 0; frame->data[i]; i++) {
2854         int width  = s->avctx->coded_width;
2855         int height = s->avctx->coded_height;
2856         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2857         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2858         uint8_t md5[16];
2859
2860         av_md5_init(s->md5_ctx);
2861         for (j = 0; j < h; j++) {
2862             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2863 #if HAVE_BIGENDIAN
2864             if (pixel_shift) {
2865                 s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
2866                                     (const uint16_t *) src, w);
2867                 src = s->checksum_buf;
2868             }
2869 #endif
2870             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2871         }
2872         av_md5_final(s->md5_ctx, md5);
2873
2874         if (!memcmp(md5, s->md5[i], 16)) {
2875             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2876             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2877             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2878         } else {
2879             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2880             print_md5(s->avctx, AV_LOG_ERROR, md5);
2881             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2882             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2883             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2884             return AVERROR_INVALIDDATA;
2885         }
2886     }
2887
2888     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2889
2890     return 0;
2891 }
2892
2893 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2894                              AVPacket *avpkt)
2895 {
2896     int ret;
2897     HEVCContext *s = avctx->priv_data;
2898
2899     if (!avpkt->size) {
2900         ret = ff_hevc_output_frame(s, data, 1);
2901         if (ret < 0)
2902             return ret;
2903
2904         *got_output = ret;
2905         return 0;
2906     }
2907
2908     s->ref = NULL;
2909     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2910     if (ret < 0)
2911         return ret;
2912
2913     /* verify the SEI checksum */
2914     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2915         s->is_md5) {
2916         ret = verify_md5(s, s->ref->frame);
2917         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2918             ff_hevc_unref_frame(s, s->ref, ~0);
2919             return ret;
2920         }
2921     }
2922     s->is_md5 = 0;
2923
2924     if (s->is_decoded) {
2925         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2926         s->is_decoded = 0;
2927     }
2928
2929     if (s->output_frame->buf[0]) {
2930         av_frame_move_ref(data, s->output_frame);
2931         *got_output = 1;
2932     }
2933
2934     return avpkt->size;
2935 }
2936
2937 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2938 {
2939     int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2940     if (ret < 0)
2941         return ret;
2942
2943     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2944     if (!dst->tab_mvf_buf)
2945         goto fail;
2946     dst->tab_mvf = src->tab_mvf;
2947
2948     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2949     if (!dst->rpl_tab_buf)
2950         goto fail;
2951     dst->rpl_tab = src->rpl_tab;
2952
2953     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2954     if (!dst->rpl_buf)
2955         goto fail;
2956
2957     dst->poc        = src->poc;
2958     dst->ctb_count  = src->ctb_count;
2959     dst->window     = src->window;
2960     dst->flags      = src->flags;
2961     dst->sequence   = src->sequence;
2962
2963     return 0;
2964 fail:
2965     ff_hevc_unref_frame(s, dst, ~0);
2966     return AVERROR(ENOMEM);
2967 }
2968
2969 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2970 {
2971     HEVCContext       *s = avctx->priv_data;
2972     int i;
2973
2974     pic_arrays_free(s);
2975
2976     av_freep(&s->md5_ctx);
2977
2978     av_frame_free(&s->tmp_frame);
2979     av_frame_free(&s->output_frame);
2980
2981     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2982         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2983         av_frame_free(&s->DPB[i].frame);
2984     }
2985
2986     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2987         av_buffer_unref(&s->vps_list[i]);
2988     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2989         av_buffer_unref(&s->sps_list[i]);
2990     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2991         av_buffer_unref(&s->pps_list[i]);
2992
2993     for (i = 0; i < s->nals_allocated; i++)
2994         av_freep(&s->nals[i].rbsp_buffer);
2995     av_freep(&s->nals);
2996     s->nals_allocated = 0;
2997
2998     return 0;
2999 }
3000
3001 static av_cold int hevc_init_context(AVCodecContext *avctx)
3002 {
3003     HEVCContext *s = avctx->priv_data;
3004     int i;
3005
3006     s->avctx = avctx;
3007
3008     s->tmp_frame = av_frame_alloc();
3009     if (!s->tmp_frame)
3010         goto fail;
3011
3012     s->output_frame = av_frame_alloc();
3013     if (!s->output_frame)
3014         goto fail;
3015
3016     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3017         s->DPB[i].frame = av_frame_alloc();
3018         if (!s->DPB[i].frame)
3019             goto fail;
3020         s->DPB[i].tf.f = s->DPB[i].frame;
3021     }
3022
3023     s->max_ra = INT_MAX;
3024
3025     s->md5_ctx = av_md5_alloc();
3026     if (!s->md5_ctx)
3027         goto fail;
3028
3029     ff_bswapdsp_init(&s->bdsp);
3030
3031     s->context_initialized = 1;
3032
3033     return 0;
3034
3035 fail:
3036     hevc_decode_free(avctx);
3037     return AVERROR(ENOMEM);
3038 }
3039
3040 static int hevc_update_thread_context(AVCodecContext *dst,
3041                                       const AVCodecContext *src)
3042 {
3043     HEVCContext *s  = dst->priv_data;
3044     HEVCContext *s0 = src->priv_data;
3045     int i, ret;
3046
3047     if (!s->context_initialized) {
3048         ret = hevc_init_context(dst);
3049         if (ret < 0)
3050             return ret;
3051     }
3052
3053     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3054         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
3055         if (s0->DPB[i].frame->buf[0]) {
3056             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
3057             if (ret < 0)
3058                 return ret;
3059         }
3060     }
3061
3062     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
3063         av_buffer_unref(&s->vps_list[i]);
3064         if (s0->vps_list[i]) {
3065             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
3066             if (!s->vps_list[i])
3067                 return AVERROR(ENOMEM);
3068         }
3069     }
3070
3071     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
3072         av_buffer_unref(&s->sps_list[i]);
3073         if (s0->sps_list[i]) {
3074             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
3075             if (!s->sps_list[i])
3076                 return AVERROR(ENOMEM);
3077         }
3078     }
3079
3080     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
3081         av_buffer_unref(&s->pps_list[i]);
3082         if (s0->pps_list[i]) {
3083             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
3084             if (!s->pps_list[i])
3085                 return AVERROR(ENOMEM);
3086         }
3087     }
3088
3089     if (s->sps != s0->sps)
3090         ret = set_sps(s, s0->sps);
3091
3092     s->seq_decode = s0->seq_decode;
3093     s->seq_output = s0->seq_output;
3094     s->pocTid0    = s0->pocTid0;
3095     s->max_ra     = s0->max_ra;
3096
3097     s->is_nalff        = s0->is_nalff;
3098     s->nal_length_size = s0->nal_length_size;
3099
3100     if (s0->eos) {
3101         s->seq_decode = (s->seq_decode + 1) & 0xff;
3102         s->max_ra = INT_MAX;
3103     }
3104
3105     return 0;
3106 }
3107
3108 static int hevc_decode_extradata(HEVCContext *s)
3109 {
3110     AVCodecContext *avctx = s->avctx;
3111     GetByteContext gb;
3112     int ret;
3113
3114     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
3115
3116     if (avctx->extradata_size > 3 &&
3117         (avctx->extradata[0] || avctx->extradata[1] ||
3118          avctx->extradata[2] > 1)) {
3119         /* It seems the extradata is encoded as hvcC format.
3120          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
3121          * is finalized. When finalized, configurationVersion will be 1 and we
3122          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
3123         int i, j, num_arrays, nal_len_size;
3124
3125         s->is_nalff = 1;
3126
3127         bytestream2_skip(&gb, 21);
3128         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3129         num_arrays   = bytestream2_get_byte(&gb);
3130
3131         /* nal units in the hvcC always have length coded with 2 bytes,
3132          * so put a fake nal_length_size = 2 while parsing them */
3133         s->nal_length_size = 2;
3134
3135         /* Decode nal units from hvcC. */
3136         for (i = 0; i < num_arrays; i++) {
3137             int type = bytestream2_get_byte(&gb) & 0x3f;
3138             int cnt  = bytestream2_get_be16(&gb);
3139
3140             for (j = 0; j < cnt; j++) {
3141                 // +2 for the nal size field
3142                 int nalsize = bytestream2_peek_be16(&gb) + 2;
3143                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
3144                     av_log(s->avctx, AV_LOG_ERROR,
3145                            "Invalid NAL unit size in extradata.\n");
3146                     return AVERROR_INVALIDDATA;
3147                 }
3148
3149                 ret = decode_nal_units(s, gb.buffer, nalsize);
3150                 if (ret < 0) {
3151                     av_log(avctx, AV_LOG_ERROR,
3152                            "Decoding nal unit %d %d from hvcC failed\n",
3153                            type, i);
3154                     return ret;
3155                 }
3156                 bytestream2_skip(&gb, nalsize);
3157             }
3158         }
3159
3160         /* Now store right nal length size, that will be used to parse
3161          * all other nals */
3162         s->nal_length_size = nal_len_size;
3163     } else {
3164         s->is_nalff = 0;
3165         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
3166         if (ret < 0)
3167             return ret;
3168     }
3169     return 0;
3170 }
3171
3172 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3173 {
3174     HEVCContext *s = avctx->priv_data;
3175     int ret;
3176
3177     ff_init_cabac_states();
3178
3179     avctx->internal->allocate_progress = 1;
3180
3181     ret = hevc_init_context(avctx);
3182     if (ret < 0)
3183         return ret;
3184
3185     if (avctx->extradata_size > 0 && avctx->extradata) {
3186         ret = hevc_decode_extradata(s);
3187         if (ret < 0) {
3188             hevc_decode_free(avctx);
3189             return ret;
3190         }
3191     }
3192
3193     return 0;
3194 }
3195
3196 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3197 {
3198     HEVCContext *s = avctx->priv_data;
3199     int ret;
3200
3201     memset(s, 0, sizeof(*s));
3202
3203     ret = hevc_init_context(avctx);
3204     if (ret < 0)
3205         return ret;
3206
3207     return 0;
3208 }
3209
3210 static void hevc_decode_flush(AVCodecContext *avctx)
3211 {
3212     HEVCContext *s = avctx->priv_data;
3213     ff_hevc_flush_dpb(s);
3214     s->max_ra = INT_MAX;
3215 }
3216
3217 #define OFFSET(x) offsetof(HEVCContext, x)
3218 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3219
3220 static const AVProfile profiles[] = {
3221     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3222     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3223     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3224     { FF_PROFILE_UNKNOWN },
3225 };
3226
3227 static const AVOption options[] = {
3228     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3229         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3230     { NULL },
3231 };
3232
3233 static const AVClass hevc_decoder_class = {
3234     .class_name = "HEVC decoder",
3235     .item_name  = av_default_item_name,
3236     .option     = options,
3237     .version    = LIBAVUTIL_VERSION_INT,
3238 };
3239
3240 AVCodec ff_hevc_decoder = {
3241     .name                  = "hevc",
3242     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3243     .type                  = AVMEDIA_TYPE_VIDEO,
3244     .id                    = AV_CODEC_ID_HEVC,
3245     .priv_data_size        = sizeof(HEVCContext),
3246     .priv_class            = &hevc_decoder_class,
3247     .init                  = hevc_decode_init,
3248     .close                 = hevc_decode_free,
3249     .decode                = hevc_decode_frame,
3250     .flush                 = hevc_decode_flush,
3251     .update_thread_context = hevc_update_thread_context,
3252     .init_thread_copy      = hevc_init_thread_copy,
3253     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3254                              CODEC_CAP_FRAME_THREADS,
3255     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3256 };