]> git.sesse.net Git - ffmpeg/blob - libavcodec/hevc.c
hevc: remove superfluous assignments and checks
[ffmpeg] / libavcodec / hevc.c
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/common.h"
28 #include "libavutil/display.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bswapdsp.h"
36 #include "bytestream.h"
37 #include "cabac_functions.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 static const uint8_t scan_1x1[1] = { 0 };
46
47 static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
48
49 static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
50
51 static const uint8_t horiz_scan4x4_x[16] = {
52     0, 1, 2, 3,
53     0, 1, 2, 3,
54     0, 1, 2, 3,
55     0, 1, 2, 3,
56 };
57
58 static const uint8_t horiz_scan4x4_y[16] = {
59     0, 0, 0, 0,
60     1, 1, 1, 1,
61     2, 2, 2, 2,
62     3, 3, 3, 3,
63 };
64
65 static const uint8_t horiz_scan8x8_inv[8][8] = {
66     {  0,  1,  2,  3, 16, 17, 18, 19, },
67     {  4,  5,  6,  7, 20, 21, 22, 23, },
68     {  8,  9, 10, 11, 24, 25, 26, 27, },
69     { 12, 13, 14, 15, 28, 29, 30, 31, },
70     { 32, 33, 34, 35, 48, 49, 50, 51, },
71     { 36, 37, 38, 39, 52, 53, 54, 55, },
72     { 40, 41, 42, 43, 56, 57, 58, 59, },
73     { 44, 45, 46, 47, 60, 61, 62, 63, },
74 };
75
76 static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
77
78 static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
79
80 static const uint8_t diag_scan2x2_inv[2][2] = {
81     { 0, 2, },
82     { 1, 3, },
83 };
84
85 const uint8_t ff_hevc_diag_scan4x4_x[16] = {
86     0, 0, 1, 0,
87     1, 2, 0, 1,
88     2, 3, 1, 2,
89     3, 2, 3, 3,
90 };
91
92 const uint8_t ff_hevc_diag_scan4x4_y[16] = {
93     0, 1, 0, 2,
94     1, 0, 3, 2,
95     1, 0, 3, 2,
96     1, 3, 2, 3,
97 };
98
99 static const uint8_t diag_scan4x4_inv[4][4] = {
100     { 0,  2,  5,  9, },
101     { 1,  4,  8, 12, },
102     { 3,  7, 11, 14, },
103     { 6, 10, 13, 15, },
104 };
105
106 const uint8_t ff_hevc_diag_scan8x8_x[64] = {
107     0, 0, 1, 0,
108     1, 2, 0, 1,
109     2, 3, 0, 1,
110     2, 3, 4, 0,
111     1, 2, 3, 4,
112     5, 0, 1, 2,
113     3, 4, 5, 6,
114     0, 1, 2, 3,
115     4, 5, 6, 7,
116     1, 2, 3, 4,
117     5, 6, 7, 2,
118     3, 4, 5, 6,
119     7, 3, 4, 5,
120     6, 7, 4, 5,
121     6, 7, 5, 6,
122     7, 6, 7, 7,
123 };
124
125 const uint8_t ff_hevc_diag_scan8x8_y[64] = {
126     0, 1, 0, 2,
127     1, 0, 3, 2,
128     1, 0, 4, 3,
129     2, 1, 0, 5,
130     4, 3, 2, 1,
131     0, 6, 5, 4,
132     3, 2, 1, 0,
133     7, 6, 5, 4,
134     3, 2, 1, 0,
135     7, 6, 5, 4,
136     3, 2, 1, 7,
137     6, 5, 4, 3,
138     2, 7, 6, 5,
139     4, 3, 7, 6,
140     5, 4, 7, 6,
141     5, 7, 6, 7,
142 };
143
144 static const uint8_t diag_scan8x8_inv[8][8] = {
145     {  0,  2,  5,  9, 14, 20, 27, 35, },
146     {  1,  4,  8, 13, 19, 26, 34, 42, },
147     {  3,  7, 12, 18, 25, 33, 41, 48, },
148     {  6, 11, 17, 24, 32, 40, 47, 53, },
149     { 10, 16, 23, 31, 39, 46, 52, 57, },
150     { 15, 22, 30, 38, 45, 51, 56, 60, },
151     { 21, 29, 37, 44, 50, 55, 59, 62, },
152     { 28, 36, 43, 49, 54, 58, 61, 63, },
153 };
154
155 /**
156  * NOTE: Each function hls_foo correspond to the function foo in the
157  * specification (HLS stands for High Level Syntax).
158  */
159
160 /**
161  * Section 5.7
162  */
163
164 /* free everything allocated  by pic_arrays_init() */
165 static void pic_arrays_free(HEVCContext *s)
166 {
167     av_freep(&s->sao);
168     av_freep(&s->deblock);
169
170     av_freep(&s->skip_flag);
171     av_freep(&s->tab_ct_depth);
172
173     av_freep(&s->tab_ipm);
174     av_freep(&s->cbf_luma);
175     av_freep(&s->is_pcm);
176
177     av_freep(&s->qp_y_tab);
178     av_freep(&s->tab_slice_address);
179     av_freep(&s->filter_slice_edges);
180
181     av_freep(&s->horizontal_bs);
182     av_freep(&s->vertical_bs);
183
184     av_buffer_pool_uninit(&s->tab_mvf_pool);
185     av_buffer_pool_uninit(&s->rpl_tab_pool);
186 }
187
188 /* allocate arrays that depend on frame dimensions */
189 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
190 {
191     int log2_min_cb_size = sps->log2_min_cb_size;
192     int width            = sps->width;
193     int height           = sps->height;
194     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
195                            ((height >> log2_min_cb_size) + 1);
196     int ctb_count        = sps->ctb_width * sps->ctb_height;
197     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
198
199     s->bs_width  = width  >> 3;
200     s->bs_height = height >> 3;
201
202     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
203     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
204     if (!s->sao || !s->deblock)
205         goto fail;
206
207     s->skip_flag    = av_malloc(pic_size_in_ctb);
208     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
209     if (!s->skip_flag || !s->tab_ct_depth)
210         goto fail;
211
212     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
213     s->tab_ipm  = av_mallocz(min_pu_size);
214     s->is_pcm   = av_malloc(min_pu_size);
215     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
216         goto fail;
217
218     s->filter_slice_edges = av_malloc(ctb_count);
219     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
220                                       sizeof(*s->tab_slice_address));
221     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
222                                       sizeof(*s->qp_y_tab));
223     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
224         goto fail;
225
226     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
227     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
228     if (!s->horizontal_bs || !s->vertical_bs)
229         goto fail;
230
231     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
232                                           av_buffer_alloc);
233     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
234                                           av_buffer_allocz);
235     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
236         goto fail;
237
238     return 0;
239
240 fail:
241     pic_arrays_free(s);
242     return AVERROR(ENOMEM);
243 }
244
245 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
246 {
247     int i = 0;
248     int j = 0;
249     uint8_t luma_weight_l0_flag[16];
250     uint8_t chroma_weight_l0_flag[16];
251     uint8_t luma_weight_l1_flag[16];
252     uint8_t chroma_weight_l1_flag[16];
253
254     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
255     if (s->sps->chroma_format_idc != 0) {
256         int delta = get_se_golomb(gb);
257         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
258     }
259
260     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
261         luma_weight_l0_flag[i] = get_bits1(gb);
262         if (!luma_weight_l0_flag[i]) {
263             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
264             s->sh.luma_offset_l0[i] = 0;
265         }
266     }
267     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
268         for (i = 0; i < s->sh.nb_refs[L0]; i++)
269             chroma_weight_l0_flag[i] = get_bits1(gb);
270     } else {
271         for (i = 0; i < s->sh.nb_refs[L0]; i++)
272             chroma_weight_l0_flag[i] = 0;
273     }
274     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
275         if (luma_weight_l0_flag[i]) {
276             int delta_luma_weight_l0 = get_se_golomb(gb);
277             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
278             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
279         }
280         if (chroma_weight_l0_flag[i]) {
281             for (j = 0; j < 2; j++) {
282                 int delta_chroma_weight_l0 = get_se_golomb(gb);
283                 int delta_chroma_offset_l0 = get_se_golomb(gb);
284                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
285                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
286                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
287             }
288         } else {
289             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
290             s->sh.chroma_offset_l0[i][0] = 0;
291             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
292             s->sh.chroma_offset_l0[i][1] = 0;
293         }
294     }
295     if (s->sh.slice_type == B_SLICE) {
296         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
297             luma_weight_l1_flag[i] = get_bits1(gb);
298             if (!luma_weight_l1_flag[i]) {
299                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
300                 s->sh.luma_offset_l1[i] = 0;
301             }
302         }
303         if (s->sps->chroma_format_idc != 0) {
304             for (i = 0; i < s->sh.nb_refs[L1]; i++)
305                 chroma_weight_l1_flag[i] = get_bits1(gb);
306         } else {
307             for (i = 0; i < s->sh.nb_refs[L1]; i++)
308                 chroma_weight_l1_flag[i] = 0;
309         }
310         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
311             if (luma_weight_l1_flag[i]) {
312                 int delta_luma_weight_l1 = get_se_golomb(gb);
313                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
314                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
315             }
316             if (chroma_weight_l1_flag[i]) {
317                 for (j = 0; j < 2; j++) {
318                     int delta_chroma_weight_l1 = get_se_golomb(gb);
319                     int delta_chroma_offset_l1 = get_se_golomb(gb);
320                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
321                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
322                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
323                 }
324             } else {
325                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
326                 s->sh.chroma_offset_l1[i][0] = 0;
327                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
328                 s->sh.chroma_offset_l1[i][1] = 0;
329             }
330         }
331     }
332 }
333
334 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
335 {
336     const HEVCSPS *sps = s->sps;
337     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
338     int prev_delta_msb = 0;
339     unsigned int nb_sps = 0, nb_sh;
340     int i;
341
342     rps->nb_refs = 0;
343     if (!sps->long_term_ref_pics_present_flag)
344         return 0;
345
346     if (sps->num_long_term_ref_pics_sps > 0)
347         nb_sps = get_ue_golomb_long(gb);
348     nb_sh = get_ue_golomb_long(gb);
349
350     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
351         return AVERROR_INVALIDDATA;
352
353     rps->nb_refs = nb_sh + nb_sps;
354
355     for (i = 0; i < rps->nb_refs; i++) {
356         uint8_t delta_poc_msb_present;
357
358         if (i < nb_sps) {
359             uint8_t lt_idx_sps = 0;
360
361             if (sps->num_long_term_ref_pics_sps > 1)
362                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
363
364             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
365             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
366         } else {
367             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
368             rps->used[i] = get_bits1(gb);
369         }
370
371         delta_poc_msb_present = get_bits1(gb);
372         if (delta_poc_msb_present) {
373             int delta = get_ue_golomb_long(gb);
374
375             if (i && i != nb_sps)
376                 delta += prev_delta_msb;
377
378             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
379             prev_delta_msb = delta;
380         }
381     }
382
383     return 0;
384 }
385
386 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
387 {
388     int ret;
389     unsigned int num = 0, den = 0;
390
391     pic_arrays_free(s);
392     ret = pic_arrays_init(s, sps);
393     if (ret < 0)
394         goto fail;
395
396     s->avctx->coded_width         = sps->width;
397     s->avctx->coded_height        = sps->height;
398     s->avctx->width               = sps->output_width;
399     s->avctx->height              = sps->output_height;
400     s->avctx->pix_fmt             = sps->pix_fmt;
401     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
402
403     ff_set_sar(s->avctx, sps->vui.sar);
404
405     if (sps->vui.video_signal_type_present_flag)
406         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
407                                                                : AVCOL_RANGE_MPEG;
408     else
409         s->avctx->color_range = AVCOL_RANGE_MPEG;
410
411     if (sps->vui.colour_description_present_flag) {
412         s->avctx->color_primaries = sps->vui.colour_primaries;
413         s->avctx->color_trc       = sps->vui.transfer_characteristic;
414         s->avctx->colorspace      = sps->vui.matrix_coeffs;
415     } else {
416         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
417         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
418         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
419     }
420
421     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
422     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
423     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
424
425     if (sps->sao_enabled) {
426         av_frame_unref(s->tmp_frame);
427         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
428         if (ret < 0)
429             goto fail;
430         s->frame = s->tmp_frame;
431     }
432
433     s->sps = sps;
434     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
435
436     if (s->vps->vps_timing_info_present_flag) {
437         num = s->vps->vps_num_units_in_tick;
438         den = s->vps->vps_time_scale;
439     } else if (sps->vui.vui_timing_info_present_flag) {
440         num = sps->vui.vui_num_units_in_tick;
441         den = sps->vui.vui_time_scale;
442     }
443
444     if (num != 0 && den != 0)
445         av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
446                   num, den, 1 << 30);
447
448     return 0;
449
450 fail:
451     pic_arrays_free(s);
452     s->sps = NULL;
453     return ret;
454 }
455
456 static int hls_slice_header(HEVCContext *s)
457 {
458     GetBitContext *gb = &s->HEVClc.gb;
459     SliceHeader *sh   = &s->sh;
460     int i, ret;
461
462     // Coded parameters
463     sh->first_slice_in_pic_flag = get_bits1(gb);
464     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
465         s->seq_decode = (s->seq_decode + 1) & 0xff;
466         s->max_ra     = INT_MAX;
467         if (IS_IDR(s))
468             ff_hevc_clear_refs(s);
469     }
470     if (IS_IRAP(s))
471         sh->no_output_of_prior_pics_flag = get_bits1(gb);
472
473     sh->pps_id = get_ue_golomb_long(gb);
474     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
475         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
476         return AVERROR_INVALIDDATA;
477     }
478     if (!sh->first_slice_in_pic_flag &&
479         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
480         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
481         return AVERROR_INVALIDDATA;
482     }
483     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
484
485     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
486         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
487
488         ff_hevc_clear_refs(s);
489         ret = set_sps(s, s->sps);
490         if (ret < 0)
491             return ret;
492
493         s->seq_decode = (s->seq_decode + 1) & 0xff;
494         s->max_ra     = INT_MAX;
495     }
496
497     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
498     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
499
500     sh->dependent_slice_segment_flag = 0;
501     if (!sh->first_slice_in_pic_flag) {
502         int slice_address_length;
503
504         if (s->pps->dependent_slice_segments_enabled_flag)
505             sh->dependent_slice_segment_flag = get_bits1(gb);
506
507         slice_address_length = av_ceil_log2(s->sps->ctb_width *
508                                             s->sps->ctb_height);
509         sh->slice_segment_addr = get_bits(gb, slice_address_length);
510         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
511             av_log(s->avctx, AV_LOG_ERROR,
512                    "Invalid slice segment address: %u.\n",
513                    sh->slice_segment_addr);
514             return AVERROR_INVALIDDATA;
515         }
516
517         if (!sh->dependent_slice_segment_flag) {
518             sh->slice_addr = sh->slice_segment_addr;
519             s->slice_idx++;
520         }
521     } else {
522         sh->slice_segment_addr = sh->slice_addr = 0;
523         s->slice_idx           = 0;
524         s->slice_initialized   = 0;
525     }
526
527     if (!sh->dependent_slice_segment_flag) {
528         s->slice_initialized = 0;
529
530         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
531             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
532
533         sh->slice_type = get_ue_golomb_long(gb);
534         if (!(sh->slice_type == I_SLICE ||
535               sh->slice_type == P_SLICE ||
536               sh->slice_type == B_SLICE)) {
537             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
538                    sh->slice_type);
539             return AVERROR_INVALIDDATA;
540         }
541         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
542             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
543             return AVERROR_INVALIDDATA;
544         }
545
546         // when flag is not present, picture is inferred to be output
547         sh->pic_output_flag = 1;
548         if (s->pps->output_flag_present_flag)
549             sh->pic_output_flag = get_bits1(gb);
550
551         if (s->sps->separate_colour_plane_flag)
552             sh->colour_plane_id = get_bits(gb, 2);
553
554         if (!IS_IDR(s)) {
555             int short_term_ref_pic_set_sps_flag, poc;
556
557             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
558             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
559             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
560                 av_log(s->avctx, AV_LOG_WARNING,
561                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
562                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
563                     return AVERROR_INVALIDDATA;
564                 poc = s->poc;
565             }
566             s->poc = poc;
567
568             short_term_ref_pic_set_sps_flag = get_bits1(gb);
569             if (!short_term_ref_pic_set_sps_flag) {
570                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
571                 if (ret < 0)
572                     return ret;
573
574                 sh->short_term_rps = &sh->slice_rps;
575             } else {
576                 int numbits, rps_idx;
577
578                 if (!s->sps->nb_st_rps) {
579                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
580                     return AVERROR_INVALIDDATA;
581                 }
582
583                 numbits = av_ceil_log2(s->sps->nb_st_rps);
584                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
585                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
586             }
587
588             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
589             if (ret < 0) {
590                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
591                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
592                     return AVERROR_INVALIDDATA;
593             }
594
595             if (s->sps->sps_temporal_mvp_enabled_flag)
596                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
597             else
598                 sh->slice_temporal_mvp_enabled_flag = 0;
599         } else {
600             s->sh.short_term_rps = NULL;
601             s->poc               = 0;
602         }
603
604         /* 8.3.1 */
605         if (s->temporal_id == 0 &&
606             s->nal_unit_type != NAL_TRAIL_N &&
607             s->nal_unit_type != NAL_TSA_N   &&
608             s->nal_unit_type != NAL_STSA_N  &&
609             s->nal_unit_type != NAL_RADL_N  &&
610             s->nal_unit_type != NAL_RADL_R  &&
611             s->nal_unit_type != NAL_RASL_N  &&
612             s->nal_unit_type != NAL_RASL_R)
613             s->pocTid0 = s->poc;
614
615         if (s->sps->sao_enabled) {
616             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
617             sh->slice_sample_adaptive_offset_flag[1] =
618             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
619         } else {
620             sh->slice_sample_adaptive_offset_flag[0] = 0;
621             sh->slice_sample_adaptive_offset_flag[1] = 0;
622             sh->slice_sample_adaptive_offset_flag[2] = 0;
623         }
624
625         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
626         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
627             int nb_refs;
628
629             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
630             if (sh->slice_type == B_SLICE)
631                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
632
633             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
634                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
635                 if (sh->slice_type == B_SLICE)
636                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
637             }
638             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
639                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
640                        sh->nb_refs[L0], sh->nb_refs[L1]);
641                 return AVERROR_INVALIDDATA;
642             }
643
644             sh->rpl_modification_flag[0] = 0;
645             sh->rpl_modification_flag[1] = 0;
646             nb_refs = ff_hevc_frame_nb_refs(s);
647             if (!nb_refs) {
648                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
649                 return AVERROR_INVALIDDATA;
650             }
651
652             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
653                 sh->rpl_modification_flag[0] = get_bits1(gb);
654                 if (sh->rpl_modification_flag[0]) {
655                     for (i = 0; i < sh->nb_refs[L0]; i++)
656                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
657                 }
658
659                 if (sh->slice_type == B_SLICE) {
660                     sh->rpl_modification_flag[1] = get_bits1(gb);
661                     if (sh->rpl_modification_flag[1] == 1)
662                         for (i = 0; i < sh->nb_refs[L1]; i++)
663                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
664                 }
665             }
666
667             if (sh->slice_type == B_SLICE)
668                 sh->mvd_l1_zero_flag = get_bits1(gb);
669
670             if (s->pps->cabac_init_present_flag)
671                 sh->cabac_init_flag = get_bits1(gb);
672             else
673                 sh->cabac_init_flag = 0;
674
675             sh->collocated_ref_idx = 0;
676             if (sh->slice_temporal_mvp_enabled_flag) {
677                 sh->collocated_list = L0;
678                 if (sh->slice_type == B_SLICE)
679                     sh->collocated_list = !get_bits1(gb);
680
681                 if (sh->nb_refs[sh->collocated_list] > 1) {
682                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
683                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
684                         av_log(s->avctx, AV_LOG_ERROR,
685                                "Invalid collocated_ref_idx: %d.\n",
686                                sh->collocated_ref_idx);
687                         return AVERROR_INVALIDDATA;
688                     }
689                 }
690             }
691
692             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
693                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
694                 pred_weight_table(s, gb);
695             }
696
697             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
698             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
699                 av_log(s->avctx, AV_LOG_ERROR,
700                        "Invalid number of merging MVP candidates: %d.\n",
701                        sh->max_num_merge_cand);
702                 return AVERROR_INVALIDDATA;
703             }
704         }
705
706         sh->slice_qp_delta = get_se_golomb(gb);
707
708         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
709             sh->slice_cb_qp_offset = get_se_golomb(gb);
710             sh->slice_cr_qp_offset = get_se_golomb(gb);
711         } else {
712             sh->slice_cb_qp_offset = 0;
713             sh->slice_cr_qp_offset = 0;
714         }
715
716         if (s->pps->deblocking_filter_control_present_flag) {
717             int deblocking_filter_override_flag = 0;
718
719             if (s->pps->deblocking_filter_override_enabled_flag)
720                 deblocking_filter_override_flag = get_bits1(gb);
721
722             if (deblocking_filter_override_flag) {
723                 sh->disable_deblocking_filter_flag = get_bits1(gb);
724                 if (!sh->disable_deblocking_filter_flag) {
725                     sh->beta_offset = get_se_golomb(gb) * 2;
726                     sh->tc_offset   = get_se_golomb(gb) * 2;
727                 }
728             } else {
729                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
730                 sh->beta_offset                    = s->pps->beta_offset;
731                 sh->tc_offset                      = s->pps->tc_offset;
732             }
733         } else {
734             sh->disable_deblocking_filter_flag = 0;
735             sh->beta_offset                    = 0;
736             sh->tc_offset                      = 0;
737         }
738
739         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
740             (sh->slice_sample_adaptive_offset_flag[0] ||
741              sh->slice_sample_adaptive_offset_flag[1] ||
742              !sh->disable_deblocking_filter_flag)) {
743             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
744         } else {
745             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
746         }
747     } else if (!s->slice_initialized) {
748         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
749         return AVERROR_INVALIDDATA;
750     }
751
752     sh->num_entry_point_offsets = 0;
753     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
754         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
755         if (sh->num_entry_point_offsets > 0) {
756             int offset_len = get_ue_golomb_long(gb) + 1;
757
758             for (i = 0; i < sh->num_entry_point_offsets; i++)
759                 skip_bits(gb, offset_len);
760         }
761     }
762
763     if (s->pps->slice_header_extension_present_flag) {
764         unsigned int length = get_ue_golomb_long(gb);
765         for (i = 0; i < length; i++)
766             skip_bits(gb, 8);  // slice_header_extension_data_byte
767     }
768
769     // Inferred parameters
770     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
771     if (sh->slice_qp > 51 ||
772         sh->slice_qp < -s->sps->qp_bd_offset) {
773         av_log(s->avctx, AV_LOG_ERROR,
774                "The slice_qp %d is outside the valid range "
775                "[%d, 51].\n",
776                sh->slice_qp,
777                -s->sps->qp_bd_offset);
778         return AVERROR_INVALIDDATA;
779     }
780
781     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
782
783     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
784         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
785         return AVERROR_INVALIDDATA;
786     }
787
788     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
789
790     if (!s->pps->cu_qp_delta_enabled_flag)
791         s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
792                                 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
793
794     s->slice_initialized = 1;
795
796     return 0;
797 }
798
799 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
800
801 #define SET_SAO(elem, value)                            \
802 do {                                                    \
803     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
804         sao->elem = value;                              \
805     else if (sao_merge_left_flag)                       \
806         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
807     else if (sao_merge_up_flag)                         \
808         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
809     else                                                \
810         sao->elem = 0;                                  \
811 } while (0)
812
813 static void hls_sao_param(HEVCContext *s, int rx, int ry)
814 {
815     HEVCLocalContext *lc    = &s->HEVClc;
816     int sao_merge_left_flag = 0;
817     int sao_merge_up_flag   = 0;
818     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
819     SAOParams *sao          = &CTB(s->sao, rx, ry);
820     int c_idx, i;
821
822     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
823         s->sh.slice_sample_adaptive_offset_flag[1]) {
824         if (rx > 0) {
825             if (lc->ctb_left_flag)
826                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
827         }
828         if (ry > 0 && !sao_merge_left_flag) {
829             if (lc->ctb_up_flag)
830                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
831         }
832     }
833
834     for (c_idx = 0; c_idx < 3; c_idx++) {
835         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
836             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
837             continue;
838         }
839
840         if (c_idx == 2) {
841             sao->type_idx[2] = sao->type_idx[1];
842             sao->eo_class[2] = sao->eo_class[1];
843         } else {
844             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
845         }
846
847         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
848             continue;
849
850         for (i = 0; i < 4; i++)
851             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
852
853         if (sao->type_idx[c_idx] == SAO_BAND) {
854             for (i = 0; i < 4; i++) {
855                 if (sao->offset_abs[c_idx][i]) {
856                     SET_SAO(offset_sign[c_idx][i],
857                             ff_hevc_sao_offset_sign_decode(s));
858                 } else {
859                     sao->offset_sign[c_idx][i] = 0;
860                 }
861             }
862             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
863         } else if (c_idx != 2) {
864             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
865         }
866
867         // Inferred parameters
868         sao->offset_val[c_idx][0] = 0;
869         for (i = 0; i < 4; i++) {
870             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
871             if (sao->type_idx[c_idx] == SAO_EDGE) {
872                 if (i > 1)
873                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
874             } else if (sao->offset_sign[c_idx][i]) {
875                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
876             }
877         }
878     }
879 }
880
881 #undef SET_SAO
882 #undef CTB
883
884 static void hls_residual_coding(HEVCContext *s, int x0, int y0,
885                                 int log2_trafo_size, enum ScanType scan_idx,
886                                 int c_idx)
887 {
888 #define GET_COORD(offset, n)                                    \
889     do {                                                        \
890         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
891         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
892     } while (0)
893     HEVCLocalContext *lc    = &s->HEVClc;
894     int transform_skip_flag = 0;
895
896     int last_significant_coeff_x, last_significant_coeff_y;
897     int last_scan_pos;
898     int n_end;
899     int num_coeff    = 0;
900     int greater1_ctx = 1;
901
902     int num_last_subset;
903     int x_cg_last_sig, y_cg_last_sig;
904
905     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
906
907     ptrdiff_t stride = s->frame->linesize[c_idx];
908     int hshift       = s->sps->hshift[c_idx];
909     int vshift       = s->sps->vshift[c_idx];
910     uint8_t *dst     = &s->frame->data[c_idx][(y0 >> vshift) * stride +
911                                               ((x0 >> hshift) << s->sps->pixel_shift)];
912     DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
913     DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
914
915     int trafo_size = 1 << log2_trafo_size;
916     int i, qp, shift, add, scale, scale_m;
917     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
918     const uint8_t *scale_matrix;
919     uint8_t dc_scale;
920
921     // Derive QP for dequant
922     if (!lc->cu.cu_transquant_bypass_flag) {
923         static const int qp_c[] = {
924             29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
925         };
926
927         static const uint8_t rem6[51 + 2 * 6 + 1] = {
928             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
929             3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
930             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
931         };
932
933         static const uint8_t div6[51 + 2 * 6 + 1] = {
934             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,  3,  3,  3,
935             3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6,  6,  6,  6,
936             7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
937         };
938         int qp_y = lc->qp_y;
939
940         if (c_idx == 0) {
941             qp = qp_y + s->sps->qp_bd_offset;
942         } else {
943             int qp_i, offset;
944
945             if (c_idx == 1)
946                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
947             else
948                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
949
950             qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
951             if (qp_i < 30)
952                 qp = qp_i;
953             else if (qp_i > 43)
954                 qp = qp_i - 6;
955             else
956                 qp = qp_c[qp_i - 30];
957
958             qp += s->sps->qp_bd_offset;
959         }
960
961         shift    = s->sps->bit_depth + log2_trafo_size - 5;
962         add      = 1 << (shift - 1);
963         scale    = level_scale[rem6[qp]] << (div6[qp]);
964         scale_m  = 16; // default when no custom scaling lists.
965         dc_scale = 16;
966
967         if (s->sps->scaling_list_enable_flag) {
968             const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
969                                     &s->pps->scaling_list : &s->sps->scaling_list;
970             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
971
972             if (log2_trafo_size != 5)
973                 matrix_id = 3 * matrix_id + c_idx;
974
975             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
976             if (log2_trafo_size >= 4)
977                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
978         }
979     }
980
981     if (s->pps->transform_skip_enabled_flag &&
982         !lc->cu.cu_transquant_bypass_flag   &&
983         log2_trafo_size == 2) {
984         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
985     }
986
987     last_significant_coeff_x =
988         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
989     last_significant_coeff_y =
990         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
991
992     if (last_significant_coeff_x > 3) {
993         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
994         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
995                                    (2 + (last_significant_coeff_x & 1)) +
996                                    suffix;
997     }
998
999     if (last_significant_coeff_y > 3) {
1000         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
1001         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1002                                    (2 + (last_significant_coeff_y & 1)) +
1003                                    suffix;
1004     }
1005
1006     if (scan_idx == SCAN_VERT)
1007         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
1008
1009     x_cg_last_sig = last_significant_coeff_x >> 2;
1010     y_cg_last_sig = last_significant_coeff_y >> 2;
1011
1012     switch (scan_idx) {
1013     case SCAN_DIAG: {
1014         int last_x_c = last_significant_coeff_x & 3;
1015         int last_y_c = last_significant_coeff_y & 3;
1016
1017         scan_x_off = ff_hevc_diag_scan4x4_x;
1018         scan_y_off = ff_hevc_diag_scan4x4_y;
1019         num_coeff  = diag_scan4x4_inv[last_y_c][last_x_c];
1020         if (trafo_size == 4) {
1021             scan_x_cg = scan_1x1;
1022             scan_y_cg = scan_1x1;
1023         } else if (trafo_size == 8) {
1024             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1025             scan_x_cg  = diag_scan2x2_x;
1026             scan_y_cg  = diag_scan2x2_y;
1027         } else if (trafo_size == 16) {
1028             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1029             scan_x_cg  = ff_hevc_diag_scan4x4_x;
1030             scan_y_cg  = ff_hevc_diag_scan4x4_y;
1031         } else { // trafo_size == 32
1032             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1033             scan_x_cg  = ff_hevc_diag_scan8x8_x;
1034             scan_y_cg  = ff_hevc_diag_scan8x8_y;
1035         }
1036         break;
1037     }
1038     case SCAN_HORIZ:
1039         scan_x_cg  = horiz_scan2x2_x;
1040         scan_y_cg  = horiz_scan2x2_y;
1041         scan_x_off = horiz_scan4x4_x;
1042         scan_y_off = horiz_scan4x4_y;
1043         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1044         break;
1045     default: //SCAN_VERT
1046         scan_x_cg  = horiz_scan2x2_y;
1047         scan_y_cg  = horiz_scan2x2_x;
1048         scan_x_off = horiz_scan4x4_y;
1049         scan_y_off = horiz_scan4x4_x;
1050         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1051         break;
1052     }
1053     num_coeff++;
1054     num_last_subset = (num_coeff - 1) >> 4;
1055
1056     for (i = num_last_subset; i >= 0; i--) {
1057         int n, m;
1058         int x_cg, y_cg, x_c, y_c;
1059         int implicit_non_zero_coeff = 0;
1060         int64_t trans_coeff_level;
1061         int prev_sig = 0;
1062         int offset   = i << 4;
1063
1064         uint8_t significant_coeff_flag_idx[16];
1065         uint8_t nb_significant_coeff_flag = 0;
1066
1067         x_cg = scan_x_cg[i];
1068         y_cg = scan_y_cg[i];
1069
1070         if (i < num_last_subset && i > 0) {
1071             int ctx_cg = 0;
1072             if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1073                 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1074             if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1075                 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1076
1077             significant_coeff_group_flag[x_cg][y_cg] =
1078                 ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
1079             implicit_non_zero_coeff = 1;
1080         } else {
1081             significant_coeff_group_flag[x_cg][y_cg] =
1082                 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1083                  (x_cg == 0 && y_cg == 0));
1084         }
1085
1086         last_scan_pos = num_coeff - offset - 1;
1087
1088         if (i == num_last_subset) {
1089             n_end                         = last_scan_pos - 1;
1090             significant_coeff_flag_idx[0] = last_scan_pos;
1091             nb_significant_coeff_flag     = 1;
1092         } else {
1093             n_end = 15;
1094         }
1095
1096         if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1097             prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1098         if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1099             prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1100
1101         for (n = n_end; n >= 0; n--) {
1102             GET_COORD(offset, n);
1103
1104             if (significant_coeff_group_flag[x_cg][y_cg] &&
1105                 (n > 0 || implicit_non_zero_coeff == 0)) {
1106                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
1107                                                           log2_trafo_size,
1108                                                           scan_idx,
1109                                                           prev_sig) == 1) {
1110                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1111                     nb_significant_coeff_flag++;
1112                     implicit_non_zero_coeff = 0;
1113                 }
1114             } else {
1115                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1116                 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1117                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1118                     nb_significant_coeff_flag++;
1119                 }
1120             }
1121         }
1122
1123         n_end = nb_significant_coeff_flag;
1124
1125         if (n_end) {
1126             int first_nz_pos_in_cg = 16;
1127             int last_nz_pos_in_cg = -1;
1128             int c_rice_param = 0;
1129             int first_greater1_coeff_idx = -1;
1130             uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1131             uint16_t coeff_sign_flag;
1132             int sum_abs = 0;
1133             int sign_hidden = 0;
1134
1135             // initialize first elem of coeff_bas_level_greater1_flag
1136             int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1137
1138             if (!(i == num_last_subset) && greater1_ctx == 0)
1139                 ctx_set++;
1140             greater1_ctx      = 1;
1141             last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1142
1143             for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1144                 int n_idx = significant_coeff_flag_idx[m];
1145                 int inc   = (ctx_set << 2) + greater1_ctx;
1146                 coeff_abs_level_greater1_flag[n_idx] =
1147                     ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
1148                 if (coeff_abs_level_greater1_flag[n_idx]) {
1149                     greater1_ctx = 0;
1150                 } else if (greater1_ctx > 0 && greater1_ctx < 3) {
1151                     greater1_ctx++;
1152                 }
1153
1154                 if (coeff_abs_level_greater1_flag[n_idx] &&
1155                     first_greater1_coeff_idx == -1)
1156                     first_greater1_coeff_idx = n_idx;
1157             }
1158             first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1159             sign_hidden        = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1160                                  !lc->cu.cu_transquant_bypass_flag;
1161
1162             if (first_greater1_coeff_idx != -1) {
1163                 coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
1164             }
1165             if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
1166                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
1167             } else {
1168                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1169             }
1170
1171             for (m = 0; m < n_end; m++) {
1172                 n = significant_coeff_flag_idx[m];
1173                 GET_COORD(offset, n);
1174                 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1175                 if (trans_coeff_level == ((m < 8) ?
1176                                           ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1177                     int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
1178
1179                     trans_coeff_level += last_coeff_abs_level_remaining;
1180                     if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1181                         c_rice_param = FFMIN(c_rice_param + 1, 4);
1182                 }
1183                 if (s->pps->sign_data_hiding_flag && sign_hidden) {
1184                     sum_abs += trans_coeff_level;
1185                     if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1186                         trans_coeff_level = -trans_coeff_level;
1187                 }
1188                 if (coeff_sign_flag >> 15)
1189                     trans_coeff_level = -trans_coeff_level;
1190                 coeff_sign_flag <<= 1;
1191                 if (!lc->cu.cu_transquant_bypass_flag) {
1192                     if (s->sps->scaling_list_enable_flag) {
1193                         if (y_c || x_c || log2_trafo_size < 4) {
1194                             int pos;
1195                             switch (log2_trafo_size) {
1196                             case 3:  pos = (y_c        << 3) +  x_c;       break;
1197                             case 4:  pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
1198                             case 5:  pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
1199                             default: pos = (y_c        << 2) +  x_c;
1200                             }
1201                             scale_m = scale_matrix[pos];
1202                         } else {
1203                             scale_m = dc_scale;
1204                         }
1205                     }
1206                     trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1207                     if(trans_coeff_level < 0) {
1208                         if((~trans_coeff_level) & 0xFffffffffff8000)
1209                             trans_coeff_level = -32768;
1210                     } else {
1211                         if (trans_coeff_level & 0xffffffffffff8000)
1212                             trans_coeff_level = 32767;
1213                     }
1214                 }
1215                 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1216             }
1217         }
1218     }
1219
1220     if (lc->cu.cu_transquant_bypass_flag) {
1221         s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
1222     } else {
1223         if (transform_skip_flag)
1224             s->hevcdsp.transform_skip(dst, coeffs, stride);
1225         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
1226                  log2_trafo_size == 2)
1227             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
1228         else
1229             s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
1230     }
1231 }
1232
1233 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
1234                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1235                               int log2_cb_size, int log2_trafo_size,
1236                               int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
1237 {
1238     HEVCLocalContext *lc = &s->HEVClc;
1239
1240     if (lc->cu.pred_mode == MODE_INTRA) {
1241         int trafo_size = 1 << log2_trafo_size;
1242         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1243
1244         s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
1245         if (log2_trafo_size > 2) {
1246             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
1247             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1248             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
1249             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
1250         } else if (blk_idx == 3) {
1251             trafo_size = trafo_size << s->sps->hshift[1];
1252             ff_hevc_set_neighbour_available(s, xBase, yBase,
1253                                             trafo_size, trafo_size);
1254             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
1255             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
1256         }
1257     }
1258
1259     if (cbf_luma || cbf_cb || cbf_cr) {
1260         int scan_idx   = SCAN_DIAG;
1261         int scan_idx_c = SCAN_DIAG;
1262
1263         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1264             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
1265             if (lc->tu.cu_qp_delta != 0)
1266                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
1267                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1268             lc->tu.is_cu_qp_delta_coded = 1;
1269
1270             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
1271                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
1272                 av_log(s->avctx, AV_LOG_ERROR,
1273                        "The cu_qp_delta %d is outside the valid range "
1274                        "[%d, %d].\n",
1275                        lc->tu.cu_qp_delta,
1276                        -(26 + s->sps->qp_bd_offset / 2),
1277                         (25 + s->sps->qp_bd_offset / 2));
1278                 return AVERROR_INVALIDDATA;
1279             }
1280
1281             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
1282         }
1283
1284         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1285             if (lc->tu.cur_intra_pred_mode >= 6 &&
1286                 lc->tu.cur_intra_pred_mode <= 14) {
1287                 scan_idx = SCAN_VERT;
1288             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
1289                        lc->tu.cur_intra_pred_mode <= 30) {
1290                 scan_idx = SCAN_HORIZ;
1291             }
1292
1293             if (lc->pu.intra_pred_mode_c >=  6 &&
1294                 lc->pu.intra_pred_mode_c <= 14) {
1295                 scan_idx_c = SCAN_VERT;
1296             } else if (lc->pu.intra_pred_mode_c >= 22 &&
1297                        lc->pu.intra_pred_mode_c <= 30) {
1298                 scan_idx_c = SCAN_HORIZ;
1299             }
1300         }
1301
1302         if (cbf_luma)
1303             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
1304         if (log2_trafo_size > 2) {
1305             if (cbf_cb)
1306                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
1307             if (cbf_cr)
1308                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
1309         } else if (blk_idx == 3) {
1310             if (cbf_cb)
1311                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
1312             if (cbf_cr)
1313                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
1314         }
1315     }
1316     return 0;
1317 }
1318
1319 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
1320 {
1321     int cb_size          = 1 << log2_cb_size;
1322     int log2_min_pu_size = s->sps->log2_min_pu_size;
1323
1324     int min_pu_width     = s->sps->min_pu_width;
1325     int x_end = FFMIN(x0 + cb_size, s->sps->width);
1326     int y_end = FFMIN(y0 + cb_size, s->sps->height);
1327     int i, j;
1328
1329     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1330         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1331             s->is_pcm[i + j * min_pu_width] = 2;
1332 }
1333
1334 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
1335                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1336                               int log2_cb_size, int log2_trafo_size,
1337                               int trafo_depth, int blk_idx,
1338                               int cbf_cb, int cbf_cr)
1339 {
1340     HEVCLocalContext *lc = &s->HEVClc;
1341     uint8_t split_transform_flag;
1342     int ret;
1343
1344     if (lc->cu.intra_split_flag) {
1345         if (trafo_depth == 1)
1346             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1347     } else {
1348         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
1349     }
1350
1351     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1352         log2_trafo_size >  s->sps->log2_min_tb_size    &&
1353         trafo_depth     < lc->cu.max_trafo_depth       &&
1354         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1355         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
1356     } else {
1357         int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
1358                           lc->cu.pred_mode == MODE_INTER &&
1359                           lc->cu.part_mode != PART_2Nx2N &&
1360                           trafo_depth == 0;
1361
1362         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
1363                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
1364                                inter_split;
1365     }
1366
1367     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1368         cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1369     else if (log2_trafo_size > 2 || trafo_depth == 0)
1370         cbf_cb = 0;
1371     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1372         cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1373     else if (log2_trafo_size > 2 || trafo_depth == 0)
1374         cbf_cr = 0;
1375
1376     if (split_transform_flag) {
1377         const int trafo_size_split = 1 << (log2_trafo_size - 1);
1378         const int x1 = x0 + trafo_size_split;
1379         const int y1 = y0 + trafo_size_split;
1380
1381 #define SUBDIVIDE(x, y, idx)                                                    \
1382 do {                                                                            \
1383     ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1384                              log2_trafo_size - 1, trafo_depth + 1, idx,         \
1385                              cbf_cb, cbf_cr);                                   \
1386     if (ret < 0)                                                                \
1387         return ret;                                                             \
1388 } while (0)
1389
1390         SUBDIVIDE(x0, y0, 0);
1391         SUBDIVIDE(x1, y0, 1);
1392         SUBDIVIDE(x0, y1, 2);
1393         SUBDIVIDE(x1, y1, 3);
1394
1395 #undef SUBDIVIDE
1396     } else {
1397         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
1398         int log2_min_tu_size = s->sps->log2_min_tb_size;
1399         int min_tu_width     = s->sps->min_tb_width;
1400         int cbf_luma         = 1;
1401
1402         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1403             cbf_cb || cbf_cr)
1404             cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
1405
1406         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1407                                  log2_cb_size, log2_trafo_size,
1408                                  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1409         if (ret < 0)
1410             return ret;
1411         // TODO: store cbf_luma somewhere else
1412         if (cbf_luma) {
1413             int i, j;
1414             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1415                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1416                     int x_tu = (x0 + j) >> log2_min_tu_size;
1417                     int y_tu = (y0 + i) >> log2_min_tu_size;
1418                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1419                 }
1420         }
1421         if (!s->sh.disable_deblocking_filter_flag) {
1422             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
1423             if (s->pps->transquant_bypass_enable_flag &&
1424                 lc->cu.cu_transquant_bypass_flag)
1425                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1426         }
1427     }
1428     return 0;
1429 }
1430
1431 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1432 {
1433     //TODO: non-4:2:0 support
1434     HEVCLocalContext *lc = &s->HEVClc;
1435     GetBitContext gb;
1436     int cb_size   = 1 << log2_cb_size;
1437     int stride0   = s->frame->linesize[0];
1438     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1439     int   stride1 = s->frame->linesize[1];
1440     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1441     int   stride2 = s->frame->linesize[2];
1442     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1443
1444     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1445     const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1446     int ret;
1447
1448     if (!s->sh.disable_deblocking_filter_flag)
1449         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
1450
1451     ret = init_get_bits(&gb, pcm, length);
1452     if (ret < 0)
1453         return ret;
1454
1455     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1456     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1457     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1458     return 0;
1459 }
1460
1461 static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
1462 {
1463     HEVCLocalContext *lc = &s->HEVClc;
1464     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
1465     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
1466
1467     if (x)
1468         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
1469     if (y)
1470         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
1471
1472     switch (x) {
1473     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
1474     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
1475     case 0: lc->pu.mvd.x = 0;                               break;
1476     }
1477
1478     switch (y) {
1479     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
1480     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
1481     case 0: lc->pu.mvd.y = 0;                               break;
1482     }
1483 }
1484
1485 /**
1486  * 8.5.3.2.2.1 Luma sample interpolation process
1487  *
1488  * @param s HEVC decoding context
1489  * @param dst target buffer for block data at block position
1490  * @param dststride stride of the dst buffer
1491  * @param ref reference picture buffer at origin (0, 0)
1492  * @param mv motion vector (relative to block position) to get pixel data from
1493  * @param x_off horizontal position of block from origin (0, 0)
1494  * @param y_off vertical position of block from origin (0, 0)
1495  * @param block_w width of block
1496  * @param block_h height of block
1497  */
1498 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1499                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1500                     int block_w, int block_h)
1501 {
1502     HEVCLocalContext *lc = &s->HEVClc;
1503     uint8_t *src         = ref->data[0];
1504     ptrdiff_t srcstride  = ref->linesize[0];
1505     int pic_width        = s->sps->width;
1506     int pic_height       = s->sps->height;
1507
1508     int mx         = mv->x & 3;
1509     int my         = mv->y & 3;
1510     int extra_left = ff_hevc_qpel_extra_before[mx];
1511     int extra_top  = ff_hevc_qpel_extra_before[my];
1512
1513     x_off += mv->x >> 2;
1514     y_off += mv->y >> 2;
1515     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1516
1517     if (x_off < extra_left || y_off < extra_top ||
1518         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1519         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1520         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1521         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1522         int buf_offset = extra_top *
1523                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1524
1525         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1526                                  edge_emu_stride, srcstride,
1527                                  block_w + ff_hevc_qpel_extra[mx],
1528                                  block_h + ff_hevc_qpel_extra[my],
1529                                  x_off - extra_left, y_off - extra_top,
1530                                  pic_width, pic_height);
1531         src = lc->edge_emu_buffer + buf_offset;
1532         srcstride = edge_emu_stride;
1533     }
1534     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1535                                      block_h, lc->mc_buffer);
1536 }
1537
1538 /**
1539  * 8.5.3.2.2.2 Chroma sample interpolation process
1540  *
1541  * @param s HEVC decoding context
1542  * @param dst1 target buffer for block data at block position (U plane)
1543  * @param dst2 target buffer for block data at block position (V plane)
1544  * @param dststride stride of the dst1 and dst2 buffers
1545  * @param ref reference picture buffer at origin (0, 0)
1546  * @param mv motion vector (relative to block position) to get pixel data from
1547  * @param x_off horizontal position of block from origin (0, 0)
1548  * @param y_off vertical position of block from origin (0, 0)
1549  * @param block_w width of block
1550  * @param block_h height of block
1551  */
1552 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1553                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1554                       int x_off, int y_off, int block_w, int block_h)
1555 {
1556     HEVCLocalContext *lc = &s->HEVClc;
1557     uint8_t *src1        = ref->data[1];
1558     uint8_t *src2        = ref->data[2];
1559     ptrdiff_t src1stride = ref->linesize[1];
1560     ptrdiff_t src2stride = ref->linesize[2];
1561     int pic_width        = s->sps->width >> 1;
1562     int pic_height       = s->sps->height >> 1;
1563
1564     int mx = mv->x & 7;
1565     int my = mv->y & 7;
1566
1567     x_off += mv->x >> 3;
1568     y_off += mv->y >> 3;
1569     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1570     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1571
1572     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1573         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1574         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1575         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1576         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1577         int buf_offset1 = EPEL_EXTRA_BEFORE *
1578                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1579         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1580         int buf_offset2 = EPEL_EXTRA_BEFORE *
1581                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1582
1583         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1584                                  edge_emu_stride, src1stride,
1585                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1586                                  x_off - EPEL_EXTRA_BEFORE,
1587                                  y_off - EPEL_EXTRA_BEFORE,
1588                                  pic_width, pic_height);
1589
1590         src1 = lc->edge_emu_buffer + buf_offset1;
1591         src1stride = edge_emu_stride;
1592         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1593                                              block_w, block_h, mx, my, lc->mc_buffer);
1594
1595         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1596                                  edge_emu_stride, src2stride,
1597                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1598                                  x_off - EPEL_EXTRA_BEFORE,
1599                                  y_off - EPEL_EXTRA_BEFORE,
1600                                  pic_width, pic_height);
1601         src2 = lc->edge_emu_buffer + buf_offset2;
1602         src2stride = edge_emu_stride;
1603
1604         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1605                                              block_w, block_h, mx, my,
1606                                              lc->mc_buffer);
1607     } else {
1608         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1609                                              block_w, block_h, mx, my,
1610                                              lc->mc_buffer);
1611         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1612                                              block_w, block_h, mx, my,
1613                                              lc->mc_buffer);
1614     }
1615 }
1616
1617 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1618                                 const Mv *mv, int y0, int height)
1619 {
1620     int y = (mv->y >> 2) + y0 + height + 9;
1621     ff_thread_await_progress(&ref->tf, y, 0);
1622 }
1623
1624 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1625                                 int nPbW, int nPbH,
1626                                 int log2_cb_size, int partIdx)
1627 {
1628 #define POS(c_idx, x, y)                                                              \
1629     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1630                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1631     HEVCLocalContext *lc = &s->HEVClc;
1632     int merge_idx = 0;
1633     struct MvField current_mv = {{{ 0 }}};
1634
1635     int min_pu_width = s->sps->min_pu_width;
1636
1637     MvField *tab_mvf = s->ref->tab_mvf;
1638     RefPicList  *refPicList = s->ref->refPicList;
1639     HEVCFrame *ref0, *ref1;
1640
1641     int tmpstride = MAX_PB_SIZE;
1642
1643     uint8_t *dst0 = POS(0, x0, y0);
1644     uint8_t *dst1 = POS(1, x0, y0);
1645     uint8_t *dst2 = POS(2, x0, y0);
1646     int log2_min_cb_size = s->sps->log2_min_cb_size;
1647     int min_cb_width     = s->sps->min_cb_width;
1648     int x_cb             = x0 >> log2_min_cb_size;
1649     int y_cb             = y0 >> log2_min_cb_size;
1650     int x_pu, y_pu;
1651     int i, j;
1652
1653     int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
1654
1655     if (!skip_flag)
1656         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1657
1658     if (skip_flag || lc->pu.merge_flag) {
1659         if (s->sh.max_num_merge_cand > 1)
1660             merge_idx = ff_hevc_merge_idx_decode(s);
1661         else
1662             merge_idx = 0;
1663
1664         ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1665                                    partIdx, merge_idx, &current_mv);
1666     } else {
1667         enum InterPredIdc inter_pred_idc = PRED_L0;
1668         int mvp_flag;
1669
1670         ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1671         if (s->sh.slice_type == B_SLICE)
1672             inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1673
1674         if (inter_pred_idc != PRED_L1) {
1675             if (s->sh.nb_refs[L0]) {
1676                 current_mv.ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1677             }
1678             current_mv.pred_flag[0] = 1;
1679             hls_mvd_coding(s, x0, y0, 0);
1680             mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
1681             ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1682                                      partIdx, merge_idx, &current_mv,
1683                                      mvp_flag, 0);
1684             current_mv.mv[0].x += lc->pu.mvd.x;
1685             current_mv.mv[0].y += lc->pu.mvd.y;
1686         }
1687
1688         if (inter_pred_idc != PRED_L0) {
1689             if (s->sh.nb_refs[L1]) {
1690                 current_mv.ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1691             }
1692
1693             if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1694                 AV_ZERO32(&lc->pu.mvd);
1695             } else {
1696                 hls_mvd_coding(s, x0, y0, 1);
1697             }
1698
1699             current_mv.pred_flag[1] = 1;
1700             mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
1701             ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1702                                      partIdx, merge_idx, &current_mv,
1703                                      mvp_flag, 1);
1704             current_mv.mv[1].x += lc->pu.mvd.x;
1705             current_mv.mv[1].y += lc->pu.mvd.y;
1706         }
1707     }
1708
1709     x_pu = x0 >> s->sps->log2_min_pu_size;
1710     y_pu = y0 >> s->sps->log2_min_pu_size;
1711
1712     for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1713         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1714             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1715
1716     if (current_mv.pred_flag[0]) {
1717         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1718         if (!ref0)
1719             return;
1720         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1721     }
1722     if (current_mv.pred_flag[1]) {
1723         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1724         if (!ref1)
1725             return;
1726         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1727     }
1728
1729     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1730         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1731         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1732
1733         luma_mc(s, tmp, tmpstride, ref0->frame,
1734                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1735
1736         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1737             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1738             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1739                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1740                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1741                                      dst0, s->frame->linesize[0], tmp,
1742                                      tmpstride, nPbW, nPbH);
1743         } else {
1744             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1745         }
1746         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1747                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1748
1749         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1750             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1751             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1752                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1753                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1754                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1755                                      nPbW / 2, nPbH / 2);
1756             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1757                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1758                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1759                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1760                                      nPbW / 2, nPbH / 2);
1761         } else {
1762             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1763             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1764         }
1765     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1766         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1767         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1768
1769         luma_mc(s, tmp, tmpstride, ref1->frame,
1770                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1771
1772         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1773             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1774             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1775                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1776                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1777                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1778                                       nPbW, nPbH);
1779         } else {
1780             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1781         }
1782
1783         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1784                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1785
1786         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1787             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1788             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1789                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1790                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1791                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1792             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1793                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1794                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1795                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1796         } else {
1797             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1798             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1799         }
1800     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1801         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1802         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1803         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1804         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1805
1806         luma_mc(s, tmp, tmpstride, ref0->frame,
1807                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1808         luma_mc(s, tmp2, tmpstride, ref1->frame,
1809                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1810
1811         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1812             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1813             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1814                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1815                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1816                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1817                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1818                                          dst0, s->frame->linesize[0],
1819                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1820         } else {
1821             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1822                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1823         }
1824
1825         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1826                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1827         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1828                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1829
1830         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1831             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1832             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1833                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1834                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1835                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1836                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1837                                          dst1, s->frame->linesize[1], tmp, tmp3,
1838                                          tmpstride, nPbW / 2, nPbH / 2);
1839             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1840                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1841                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1842                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1843                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1844                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1845                                          tmpstride, nPbW / 2, nPbH / 2);
1846         } else {
1847             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1848             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1849         }
1850     }
1851 }
1852
1853 /**
1854  * 8.4.1
1855  */
1856 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1857                                 int prev_intra_luma_pred_flag)
1858 {
1859     HEVCLocalContext *lc = &s->HEVClc;
1860     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1861     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1862     int min_pu_width     = s->sps->min_pu_width;
1863     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1864     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1865     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1866
1867     int cand_up   = (lc->ctb_up_flag || y0b) ?
1868                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1869     int cand_left = (lc->ctb_left_flag || x0b) ?
1870                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1871
1872     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1873
1874     MvField *tab_mvf = s->ref->tab_mvf;
1875     int intra_pred_mode;
1876     int candidate[3];
1877     int i, j;
1878
1879     // intra_pred_mode prediction does not cross vertical CTB boundaries
1880     if ((y0 - 1) < y_ctb)
1881         cand_up = INTRA_DC;
1882
1883     if (cand_left == cand_up) {
1884         if (cand_left < 2) {
1885             candidate[0] = INTRA_PLANAR;
1886             candidate[1] = INTRA_DC;
1887             candidate[2] = INTRA_ANGULAR_26;
1888         } else {
1889             candidate[0] = cand_left;
1890             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1891             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1892         }
1893     } else {
1894         candidate[0] = cand_left;
1895         candidate[1] = cand_up;
1896         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1897             candidate[2] = INTRA_PLANAR;
1898         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1899             candidate[2] = INTRA_DC;
1900         } else {
1901             candidate[2] = INTRA_ANGULAR_26;
1902         }
1903     }
1904
1905     if (prev_intra_luma_pred_flag) {
1906         intra_pred_mode = candidate[lc->pu.mpm_idx];
1907     } else {
1908         if (candidate[0] > candidate[1])
1909             FFSWAP(uint8_t, candidate[0], candidate[1]);
1910         if (candidate[0] > candidate[2])
1911             FFSWAP(uint8_t, candidate[0], candidate[2]);
1912         if (candidate[1] > candidate[2])
1913             FFSWAP(uint8_t, candidate[1], candidate[2]);
1914
1915         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1916         for (i = 0; i < 3; i++)
1917             if (intra_pred_mode >= candidate[i])
1918                 intra_pred_mode++;
1919     }
1920
1921     /* write the intra prediction units into the mv array */
1922     if (!size_in_pus)
1923         size_in_pus = 1;
1924     for (i = 0; i < size_in_pus; i++) {
1925         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1926                intra_pred_mode, size_in_pus);
1927
1928         for (j = 0; j < size_in_pus; j++) {
1929             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1930             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1931             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1932             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1933             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1934             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1935             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1936             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1937             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1938         }
1939     }
1940
1941     return intra_pred_mode;
1942 }
1943
1944 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1945                                           int log2_cb_size, int ct_depth)
1946 {
1947     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1948     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1949     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1950     int y;
1951
1952     for (y = 0; y < length; y++)
1953         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1954                ct_depth, length);
1955 }
1956
1957 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1958                                   int log2_cb_size)
1959 {
1960     HEVCLocalContext *lc = &s->HEVClc;
1961     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1962     uint8_t prev_intra_luma_pred_flag[4];
1963     int split   = lc->cu.part_mode == PART_NxN;
1964     int pb_size = (1 << log2_cb_size) >> split;
1965     int side    = split + 1;
1966     int chroma_mode;
1967     int i, j;
1968
1969     for (i = 0; i < side; i++)
1970         for (j = 0; j < side; j++)
1971             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
1972
1973     for (i = 0; i < side; i++) {
1974         for (j = 0; j < side; j++) {
1975             if (prev_intra_luma_pred_flag[2 * i + j])
1976                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
1977             else
1978                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
1979
1980             lc->pu.intra_pred_mode[2 * i + j] =
1981                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
1982                                      prev_intra_luma_pred_flag[2 * i + j]);
1983         }
1984     }
1985
1986     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
1987     if (chroma_mode != 4) {
1988         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
1989             lc->pu.intra_pred_mode_c = 34;
1990         else
1991             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
1992     } else {
1993         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
1994     }
1995 }
1996
1997 static void intra_prediction_unit_default_value(HEVCContext *s,
1998                                                 int x0, int y0,
1999                                                 int log2_cb_size)
2000 {
2001     HEVCLocalContext *lc = &s->HEVClc;
2002     int pb_size          = 1 << log2_cb_size;
2003     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
2004     int min_pu_width     = s->sps->min_pu_width;
2005     MvField *tab_mvf     = s->ref->tab_mvf;
2006     int x_pu             = x0 >> s->sps->log2_min_pu_size;
2007     int y_pu             = y0 >> s->sps->log2_min_pu_size;
2008     int j, k;
2009
2010     if (size_in_pus == 0)
2011         size_in_pus = 1;
2012     for (j = 0; j < size_in_pus; j++) {
2013         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2014         for (k = 0; k < size_in_pus; k++)
2015             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
2016     }
2017 }
2018
2019 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
2020 {
2021     int cb_size          = 1 << log2_cb_size;
2022     HEVCLocalContext *lc = &s->HEVClc;
2023     int log2_min_cb_size = s->sps->log2_min_cb_size;
2024     int length           = cb_size >> log2_min_cb_size;
2025     int min_cb_width     = s->sps->min_cb_width;
2026     int x_cb             = x0 >> log2_min_cb_size;
2027     int y_cb             = y0 >> log2_min_cb_size;
2028     int x, y, ret;
2029
2030     lc->cu.x                = x0;
2031     lc->cu.y                = y0;
2032     lc->cu.pred_mode        = MODE_INTRA;
2033     lc->cu.part_mode        = PART_2Nx2N;
2034     lc->cu.intra_split_flag = 0;
2035
2036     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
2037     for (x = 0; x < 4; x++)
2038         lc->pu.intra_pred_mode[x] = 1;
2039     if (s->pps->transquant_bypass_enable_flag) {
2040         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
2041         if (lc->cu.cu_transquant_bypass_flag)
2042             set_deblocking_bypass(s, x0, y0, log2_cb_size);
2043     } else
2044         lc->cu.cu_transquant_bypass_flag = 0;
2045
2046     if (s->sh.slice_type != I_SLICE) {
2047         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
2048
2049         x = y_cb * min_cb_width + x_cb;
2050         for (y = 0; y < length; y++) {
2051             memset(&s->skip_flag[x], skip_flag, length);
2052             x += min_cb_width;
2053         }
2054         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2055     }
2056
2057     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
2058         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2059         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2060
2061         if (!s->sh.disable_deblocking_filter_flag)
2062             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2063     } else {
2064         int pcm_flag = 0;
2065
2066         if (s->sh.slice_type != I_SLICE)
2067             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
2068         if (lc->cu.pred_mode != MODE_INTRA ||
2069             log2_cb_size == s->sps->log2_min_cb_size) {
2070             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
2071             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2072                                       lc->cu.pred_mode == MODE_INTRA;
2073         }
2074
2075         if (lc->cu.pred_mode == MODE_INTRA) {
2076             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
2077                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
2078                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2079                 pcm_flag = ff_hevc_pcm_flag_decode(s);
2080             }
2081             if (pcm_flag) {
2082                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2083                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
2084                 if (s->sps->pcm.loop_filter_disable_flag)
2085                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
2086
2087                 if (ret < 0)
2088                     return ret;
2089             } else {
2090                 intra_prediction_unit(s, x0, y0, log2_cb_size);
2091             }
2092         } else {
2093             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2094             switch (lc->cu.part_mode) {
2095             case PART_2Nx2N:
2096                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2097                 break;
2098             case PART_2NxN:
2099                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
2100                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
2101                 break;
2102             case PART_Nx2N:
2103                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
2104                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
2105                 break;
2106             case PART_2NxnU:
2107                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
2108                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
2109                 break;
2110             case PART_2NxnD:
2111                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
2112                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
2113                 break;
2114             case PART_nLx2N:
2115                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
2116                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
2117                 break;
2118             case PART_nRx2N:
2119                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
2120                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
2121                 break;
2122             case PART_NxN:
2123                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
2124                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
2125                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
2126                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2127                 break;
2128             }
2129         }
2130
2131         if (!pcm_flag) {
2132             int rqt_root_cbf = 1;
2133
2134             if (lc->cu.pred_mode != MODE_INTRA &&
2135                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2136                 rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
2137             }
2138             if (rqt_root_cbf) {
2139                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2140                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2141                                          s->sps->max_transform_hierarchy_depth_inter;
2142                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
2143                                          log2_cb_size,
2144                                          log2_cb_size, 0, 0, 0, 0);
2145                 if (ret < 0)
2146                     return ret;
2147             } else {
2148                 if (!s->sh.disable_deblocking_filter_flag)
2149                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2150             }
2151         }
2152     }
2153
2154     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2155         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
2156
2157     x = y_cb * min_cb_width + x_cb;
2158     for (y = 0; y < length; y++) {
2159         memset(&s->qp_y_tab[x], lc->qp_y, length);
2160         x += min_cb_width;
2161     }
2162
2163     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
2164
2165     return 0;
2166 }
2167
2168 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
2169                                int log2_cb_size, int cb_depth)
2170 {
2171     HEVCLocalContext *lc = &s->HEVClc;
2172     const int cb_size    = 1 << log2_cb_size;
2173     int split_cu;
2174
2175     lc->ct.depth = cb_depth;
2176     if (x0 + cb_size <= s->sps->width  &&
2177         y0 + cb_size <= s->sps->height &&
2178         log2_cb_size > s->sps->log2_min_cb_size) {
2179         split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
2180     } else {
2181         split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
2182     }
2183     if (s->pps->cu_qp_delta_enabled_flag &&
2184         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
2185         lc->tu.is_cu_qp_delta_coded = 0;
2186         lc->tu.cu_qp_delta          = 0;
2187     }
2188
2189     if (split_cu) {
2190         const int cb_size_split = cb_size >> 1;
2191         const int x1 = x0 + cb_size_split;
2192         const int y1 = y0 + cb_size_split;
2193
2194         log2_cb_size--;
2195         cb_depth++;
2196
2197 #define SUBDIVIDE(x, y)                                                \
2198 do {                                                                   \
2199     if (x < s->sps->width && y < s->sps->height) {                     \
2200         int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2201         if (ret < 0)                                                   \
2202             return ret;                                                \
2203     }                                                                  \
2204 } while (0)
2205
2206         SUBDIVIDE(x0, y0);
2207         SUBDIVIDE(x1, y0);
2208         SUBDIVIDE(x0, y1);
2209         SUBDIVIDE(x1, y1);
2210     } else {
2211         int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
2212         if (ret < 0)
2213             return ret;
2214     }
2215
2216     return 0;
2217 }
2218
2219 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
2220                                  int ctb_addr_ts)
2221 {
2222     HEVCLocalContext *lc  = &s->HEVClc;
2223     int ctb_size          = 1 << s->sps->log2_ctb_size;
2224     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2225     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2226
2227     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2228
2229     if (s->pps->entropy_coding_sync_enabled_flag) {
2230         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2231             lc->first_qp_group = 1;
2232         lc->end_of_tiles_x = s->sps->width;
2233     } else if (s->pps->tiles_enabled_flag) {
2234         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
2235             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
2236             lc->start_of_tiles_x = x_ctb;
2237             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
2238             lc->first_qp_group   = 1;
2239         }
2240     } else {
2241         lc->end_of_tiles_x = s->sps->width;
2242     }
2243
2244     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
2245
2246     lc->boundary_flags = 0;
2247     if (s->pps->tiles_enabled_flag) {
2248         if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2249             lc->boundary_flags |= BOUNDARY_LEFT_TILE;
2250         if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
2251             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2252         if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
2253             lc->boundary_flags |= BOUNDARY_UPPER_TILE;
2254         if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
2255             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2256     } else {
2257         if (!ctb_addr_in_slice > 0)
2258             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2259         if (ctb_addr_in_slice < s->sps->ctb_width)
2260             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2261     }
2262
2263     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2264     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2265     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
2266     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
2267 }
2268
2269 static int hls_slice_data(HEVCContext *s)
2270 {
2271     int ctb_size    = 1 << s->sps->log2_ctb_size;
2272     int more_data   = 1;
2273     int x_ctb       = 0;
2274     int y_ctb       = 0;
2275     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2276     int ret;
2277
2278     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2279         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2280
2281         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2282         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2283         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
2284
2285         ff_hevc_cabac_init(s, ctb_addr_ts);
2286
2287         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2288
2289         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2290         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
2291         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
2292
2293         ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2294         if (ret < 0)
2295             return ret;
2296         more_data = !ff_hevc_end_of_slice_flag_decode(s);
2297
2298         ctb_addr_ts++;
2299         ff_hevc_save_states(s, ctb_addr_ts);
2300         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2301     }
2302
2303     if (x_ctb + ctb_size >= s->sps->width &&
2304         y_ctb + ctb_size >= s->sps->height)
2305         ff_hevc_hls_filter(s, x_ctb, y_ctb);
2306
2307     return ctb_addr_ts;
2308 }
2309
2310 /**
2311  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2312  * 0 if the unit should be skipped, 1 otherwise
2313  */
2314 static int hls_nal_unit(HEVCContext *s)
2315 {
2316     GetBitContext *gb = &s->HEVClc.gb;
2317     int nuh_layer_id;
2318
2319     if (get_bits1(gb) != 0)
2320         return AVERROR_INVALIDDATA;
2321
2322     s->nal_unit_type = get_bits(gb, 6);
2323
2324     nuh_layer_id   = get_bits(gb, 6);
2325     s->temporal_id = get_bits(gb, 3) - 1;
2326     if (s->temporal_id < 0)
2327         return AVERROR_INVALIDDATA;
2328
2329     av_log(s->avctx, AV_LOG_DEBUG,
2330            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2331            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2332
2333     return nuh_layer_id == 0;
2334 }
2335
2336 static void restore_tqb_pixels(HEVCContext *s)
2337 {
2338     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2339     int x, y, c_idx;
2340
2341     for (c_idx = 0; c_idx < 3; c_idx++) {
2342         ptrdiff_t stride = s->frame->linesize[c_idx];
2343         int hshift       = s->sps->hshift[c_idx];
2344         int vshift       = s->sps->vshift[c_idx];
2345         for (y = 0; y < s->sps->min_pu_height; y++) {
2346             for (x = 0; x < s->sps->min_pu_width; x++) {
2347                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2348                     int n;
2349                     int len      = min_pu_size >> hshift;
2350                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2351                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2352                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2353                         memcpy(dst, src, len);
2354                         src += stride;
2355                         dst += stride;
2356                     }
2357                 }
2358             }
2359         }
2360     }
2361 }
2362
2363 static int set_side_data(HEVCContext *s)
2364 {
2365     AVFrame *out = s->ref->frame;
2366
2367     if (s->sei_frame_packing_present &&
2368         s->frame_packing_arrangement_type >= 3 &&
2369         s->frame_packing_arrangement_type <= 5 &&
2370         s->content_interpretation_type > 0 &&
2371         s->content_interpretation_type < 3) {
2372         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2373         if (!stereo)
2374             return AVERROR(ENOMEM);
2375
2376         switch (s->frame_packing_arrangement_type) {
2377         case 3:
2378             if (s->quincunx_subsampling)
2379                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2380             else
2381                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2382             break;
2383         case 4:
2384             stereo->type = AV_STEREO3D_TOPBOTTOM;
2385             break;
2386         case 5:
2387             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2388             break;
2389         }
2390
2391         if (s->content_interpretation_type == 2)
2392             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2393     }
2394
2395     if (s->sei_display_orientation_present &&
2396         (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
2397         double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
2398         AVFrameSideData *rotation = av_frame_new_side_data(out,
2399                                                            AV_FRAME_DATA_DISPLAYMATRIX,
2400                                                            sizeof(int32_t) * 9);
2401         if (!rotation)
2402             return AVERROR(ENOMEM);
2403
2404         av_display_rotation_set((int32_t *)rotation->data, angle);
2405         av_display_matrix_flip((int32_t *)rotation->data,
2406                                s->sei_hflip, s->sei_vflip);
2407     }
2408
2409     return 0;
2410 }
2411
2412 static int hevc_frame_start(HEVCContext *s)
2413 {
2414     HEVCLocalContext *lc = &s->HEVClc;
2415     int ret;
2416
2417     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2418     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2419     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2420     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2421
2422     lc->start_of_tiles_x = 0;
2423     s->is_decoded        = 0;
2424     s->first_nal_type    = s->nal_unit_type;
2425
2426     if (s->pps->tiles_enabled_flag)
2427         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2428
2429     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2430                               s->poc);
2431     if (ret < 0)
2432         goto fail;
2433
2434     ret = ff_hevc_frame_rps(s);
2435     if (ret < 0) {
2436         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2437         goto fail;
2438     }
2439
2440     s->ref->frame->key_frame = IS_IRAP(s);
2441
2442     ret = set_side_data(s);
2443     if (ret < 0)
2444         goto fail;
2445
2446     av_frame_unref(s->output_frame);
2447     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2448     if (ret < 0)
2449         goto fail;
2450
2451     ff_thread_finish_setup(s->avctx);
2452
2453     return 0;
2454
2455 fail:
2456     if (s->ref)
2457         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2458     s->ref = NULL;
2459     return ret;
2460 }
2461
2462 static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2463 {
2464     HEVCLocalContext *lc = &s->HEVClc;
2465     GetBitContext *gb    = &lc->gb;
2466     int ctb_addr_ts, ret;
2467
2468     ret = init_get_bits8(gb, nal, length);
2469     if (ret < 0)
2470         return ret;
2471
2472     ret = hls_nal_unit(s);
2473     if (ret < 0) {
2474         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2475                s->nal_unit_type);
2476         goto fail;
2477     } else if (!ret)
2478         return 0;
2479
2480     switch (s->nal_unit_type) {
2481     case NAL_VPS:
2482         ret = ff_hevc_decode_nal_vps(s);
2483         if (ret < 0)
2484             goto fail;
2485         break;
2486     case NAL_SPS:
2487         ret = ff_hevc_decode_nal_sps(s);
2488         if (ret < 0)
2489             goto fail;
2490         break;
2491     case NAL_PPS:
2492         ret = ff_hevc_decode_nal_pps(s);
2493         if (ret < 0)
2494             goto fail;
2495         break;
2496     case NAL_SEI_PREFIX:
2497     case NAL_SEI_SUFFIX:
2498         ret = ff_hevc_decode_nal_sei(s);
2499         if (ret < 0)
2500             goto fail;
2501         break;
2502     case NAL_TRAIL_R:
2503     case NAL_TRAIL_N:
2504     case NAL_TSA_N:
2505     case NAL_TSA_R:
2506     case NAL_STSA_N:
2507     case NAL_STSA_R:
2508     case NAL_BLA_W_LP:
2509     case NAL_BLA_W_RADL:
2510     case NAL_BLA_N_LP:
2511     case NAL_IDR_W_RADL:
2512     case NAL_IDR_N_LP:
2513     case NAL_CRA_NUT:
2514     case NAL_RADL_N:
2515     case NAL_RADL_R:
2516     case NAL_RASL_N:
2517     case NAL_RASL_R:
2518         ret = hls_slice_header(s);
2519         if (ret < 0)
2520             return ret;
2521
2522         if (s->max_ra == INT_MAX) {
2523             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2524                 s->max_ra = s->poc;
2525             } else {
2526                 if (IS_IDR(s))
2527                     s->max_ra = INT_MIN;
2528             }
2529         }
2530
2531         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2532             s->poc <= s->max_ra) {
2533             s->is_decoded = 0;
2534             break;
2535         } else {
2536             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2537                 s->max_ra = INT_MIN;
2538         }
2539
2540         if (s->sh.first_slice_in_pic_flag) {
2541             ret = hevc_frame_start(s);
2542             if (ret < 0)
2543                 return ret;
2544         } else if (!s->ref) {
2545             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2546             goto fail;
2547         }
2548
2549         if (s->nal_unit_type != s->first_nal_type) {
2550             av_log(s->avctx, AV_LOG_ERROR,
2551                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2552                    s->first_nal_type, s->nal_unit_type);
2553             return AVERROR_INVALIDDATA;
2554         }
2555
2556         if (!s->sh.dependent_slice_segment_flag &&
2557             s->sh.slice_type != I_SLICE) {
2558             ret = ff_hevc_slice_rpl(s);
2559             if (ret < 0) {
2560                 av_log(s->avctx, AV_LOG_WARNING,
2561                        "Error constructing the reference lists for the current slice.\n");
2562                 goto fail;
2563             }
2564         }
2565
2566         ctb_addr_ts = hls_slice_data(s);
2567         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2568             s->is_decoded = 1;
2569             if ((s->pps->transquant_bypass_enable_flag ||
2570                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2571                 s->sps->sao_enabled)
2572                 restore_tqb_pixels(s);
2573         }
2574
2575         if (ctb_addr_ts < 0) {
2576             ret = ctb_addr_ts;
2577             goto fail;
2578         }
2579         break;
2580     case NAL_EOS_NUT:
2581     case NAL_EOB_NUT:
2582         s->seq_decode = (s->seq_decode + 1) & 0xff;
2583         s->max_ra     = INT_MAX;
2584         break;
2585     case NAL_AUD:
2586     case NAL_FD_NUT:
2587         break;
2588     default:
2589         av_log(s->avctx, AV_LOG_INFO,
2590                "Skipping NAL unit %d\n", s->nal_unit_type);
2591     }
2592
2593     return 0;
2594 fail:
2595     if (s->avctx->err_recognition & AV_EF_EXPLODE)
2596         return ret;
2597     return 0;
2598 }
2599
2600 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2601  * between these functions would be nice. */
2602 static int extract_rbsp(const uint8_t *src, int length,
2603                         HEVCNAL *nal)
2604 {
2605     int i, si, di;
2606     uint8_t *dst;
2607
2608 #define STARTCODE_TEST                                                  \
2609         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2610             if (src[i + 2] != 3) {                                      \
2611                 /* startcode, so we must be past the end */             \
2612                 length = i;                                             \
2613             }                                                           \
2614             break;                                                      \
2615         }
2616 #if HAVE_FAST_UNALIGNED
2617 #define FIND_FIRST_ZERO                                                 \
2618         if (i > 0 && !src[i])                                           \
2619             i--;                                                        \
2620         while (src[i])                                                  \
2621             i++
2622 #if HAVE_FAST_64BIT
2623     for (i = 0; i + 1 < length; i += 9) {
2624         if (!((~AV_RN64A(src + i) &
2625                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2626               0x8000800080008080ULL))
2627             continue;
2628         FIND_FIRST_ZERO;
2629         STARTCODE_TEST;
2630         i -= 7;
2631     }
2632 #else
2633     for (i = 0; i + 1 < length; i += 5) {
2634         if (!((~AV_RN32A(src + i) &
2635                (AV_RN32A(src + i) - 0x01000101U)) &
2636               0x80008080U))
2637             continue;
2638         FIND_FIRST_ZERO;
2639         STARTCODE_TEST;
2640         i -= 3;
2641     }
2642 #endif /* HAVE_FAST_64BIT */
2643 #else
2644     for (i = 0; i + 1 < length; i += 2) {
2645         if (src[i])
2646             continue;
2647         if (i > 0 && src[i - 1] == 0)
2648             i--;
2649         STARTCODE_TEST;
2650     }
2651 #endif /* HAVE_FAST_UNALIGNED */
2652
2653     if (i >= length - 1) { // no escaped 0
2654         nal->data = src;
2655         nal->size = length;
2656         return length;
2657     }
2658
2659     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2660                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2661     if (!nal->rbsp_buffer)
2662         return AVERROR(ENOMEM);
2663
2664     dst = nal->rbsp_buffer;
2665
2666     memcpy(dst, src, i);
2667     si = di = i;
2668     while (si + 2 < length) {
2669         // remove escapes (very rare 1:2^22)
2670         if (src[si + 2] > 3) {
2671             dst[di++] = src[si++];
2672             dst[di++] = src[si++];
2673         } else if (src[si] == 0 && src[si + 1] == 0) {
2674             if (src[si + 2] == 3) { // escape
2675                 dst[di++] = 0;
2676                 dst[di++] = 0;
2677                 si       += 3;
2678
2679                 continue;
2680             } else // next start code
2681                 goto nsc;
2682         }
2683
2684         dst[di++] = src[si++];
2685     }
2686     while (si < length)
2687         dst[di++] = src[si++];
2688
2689 nsc:
2690     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2691
2692     nal->data = dst;
2693     nal->size = di;
2694     return si;
2695 }
2696
2697 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2698 {
2699     int i, consumed, ret = 0;
2700
2701     s->ref = NULL;
2702     s->eos = 0;
2703
2704     /* split the input packet into NAL units, so we know the upper bound on the
2705      * number of slices in the frame */
2706     s->nb_nals = 0;
2707     while (length >= 4) {
2708         HEVCNAL *nal;
2709         int extract_length = 0;
2710
2711         if (s->is_nalff) {
2712             int i;
2713             for (i = 0; i < s->nal_length_size; i++)
2714                 extract_length = (extract_length << 8) | buf[i];
2715             buf    += s->nal_length_size;
2716             length -= s->nal_length_size;
2717
2718             if (extract_length > length) {
2719                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2720                 ret = AVERROR_INVALIDDATA;
2721                 goto fail;
2722             }
2723         } else {
2724             if (buf[2] == 0) {
2725                 length--;
2726                 buf++;
2727                 continue;
2728             }
2729             if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2730                 ret = AVERROR_INVALIDDATA;
2731                 goto fail;
2732             }
2733
2734             buf           += 3;
2735             length        -= 3;
2736             extract_length = length;
2737         }
2738
2739         if (s->nals_allocated < s->nb_nals + 1) {
2740             int new_size = s->nals_allocated + 1;
2741             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2742             if (!tmp) {
2743                 ret = AVERROR(ENOMEM);
2744                 goto fail;
2745             }
2746             s->nals = tmp;
2747             memset(s->nals + s->nals_allocated, 0,
2748                    (new_size - s->nals_allocated) * sizeof(*tmp));
2749             s->nals_allocated = new_size;
2750         }
2751         nal = &s->nals[s->nb_nals++];
2752
2753         consumed = extract_rbsp(buf, extract_length, nal);
2754         if (consumed < 0) {
2755             ret = consumed;
2756             goto fail;
2757         }
2758
2759         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
2760         if (ret < 0)
2761             goto fail;
2762         hls_nal_unit(s);
2763
2764         if (s->nal_unit_type == NAL_EOB_NUT ||
2765             s->nal_unit_type == NAL_EOS_NUT)
2766             s->eos = 1;
2767
2768         buf    += consumed;
2769         length -= consumed;
2770     }
2771
2772     /* parse the NAL units */
2773     for (i = 0; i < s->nb_nals; i++) {
2774         int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2775         if (ret < 0) {
2776             av_log(s->avctx, AV_LOG_WARNING,
2777                    "Error parsing NAL unit #%d.\n", i);
2778             goto fail;
2779         }
2780     }
2781
2782 fail:
2783     if (s->ref)
2784         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2785
2786     return ret;
2787 }
2788
2789 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2790 {
2791     int i;
2792     for (i = 0; i < 16; i++)
2793         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2794 }
2795
2796 static int verify_md5(HEVCContext *s, AVFrame *frame)
2797 {
2798     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2799     int pixel_shift;
2800     int i, j;
2801
2802     if (!desc)
2803         return AVERROR(EINVAL);
2804
2805     pixel_shift = desc->comp[0].depth_minus1 > 7;
2806
2807     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2808            s->poc);
2809
2810     /* the checksums are LE, so we have to byteswap for >8bpp formats
2811      * on BE arches */
2812 #if HAVE_BIGENDIAN
2813     if (pixel_shift && !s->checksum_buf) {
2814         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2815                        FFMAX3(frame->linesize[0], frame->linesize[1],
2816                               frame->linesize[2]));
2817         if (!s->checksum_buf)
2818             return AVERROR(ENOMEM);
2819     }
2820 #endif
2821
2822     for (i = 0; frame->data[i]; i++) {
2823         int width  = s->avctx->coded_width;
2824         int height = s->avctx->coded_height;
2825         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2826         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2827         uint8_t md5[16];
2828
2829         av_md5_init(s->md5_ctx);
2830         for (j = 0; j < h; j++) {
2831             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2832 #if HAVE_BIGENDIAN
2833             if (pixel_shift) {
2834                 s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
2835                                     (const uint16_t *) src, w);
2836                 src = s->checksum_buf;
2837             }
2838 #endif
2839             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2840         }
2841         av_md5_final(s->md5_ctx, md5);
2842
2843         if (!memcmp(md5, s->md5[i], 16)) {
2844             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2845             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2846             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2847         } else {
2848             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2849             print_md5(s->avctx, AV_LOG_ERROR, md5);
2850             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2851             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2852             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2853             return AVERROR_INVALIDDATA;
2854         }
2855     }
2856
2857     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2858
2859     return 0;
2860 }
2861
2862 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2863                              AVPacket *avpkt)
2864 {
2865     int ret;
2866     HEVCContext *s = avctx->priv_data;
2867
2868     if (!avpkt->size) {
2869         ret = ff_hevc_output_frame(s, data, 1);
2870         if (ret < 0)
2871             return ret;
2872
2873         *got_output = ret;
2874         return 0;
2875     }
2876
2877     s->ref = NULL;
2878     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2879     if (ret < 0)
2880         return ret;
2881
2882     /* verify the SEI checksum */
2883     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2884         s->is_md5) {
2885         ret = verify_md5(s, s->ref->frame);
2886         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2887             ff_hevc_unref_frame(s, s->ref, ~0);
2888             return ret;
2889         }
2890     }
2891     s->is_md5 = 0;
2892
2893     if (s->is_decoded) {
2894         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2895         s->is_decoded = 0;
2896     }
2897
2898     if (s->output_frame->buf[0]) {
2899         av_frame_move_ref(data, s->output_frame);
2900         *got_output = 1;
2901     }
2902
2903     return avpkt->size;
2904 }
2905
2906 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2907 {
2908     int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2909     if (ret < 0)
2910         return ret;
2911
2912     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2913     if (!dst->tab_mvf_buf)
2914         goto fail;
2915     dst->tab_mvf = src->tab_mvf;
2916
2917     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2918     if (!dst->rpl_tab_buf)
2919         goto fail;
2920     dst->rpl_tab = src->rpl_tab;
2921
2922     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2923     if (!dst->rpl_buf)
2924         goto fail;
2925
2926     dst->poc        = src->poc;
2927     dst->ctb_count  = src->ctb_count;
2928     dst->window     = src->window;
2929     dst->flags      = src->flags;
2930     dst->sequence   = src->sequence;
2931
2932     return 0;
2933 fail:
2934     ff_hevc_unref_frame(s, dst, ~0);
2935     return AVERROR(ENOMEM);
2936 }
2937
2938 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2939 {
2940     HEVCContext       *s = avctx->priv_data;
2941     int i;
2942
2943     pic_arrays_free(s);
2944
2945     av_freep(&s->md5_ctx);
2946
2947     av_frame_free(&s->tmp_frame);
2948     av_frame_free(&s->output_frame);
2949
2950     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2951         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2952         av_frame_free(&s->DPB[i].frame);
2953     }
2954
2955     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2956         av_buffer_unref(&s->vps_list[i]);
2957     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2958         av_buffer_unref(&s->sps_list[i]);
2959     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2960         av_buffer_unref(&s->pps_list[i]);
2961
2962     for (i = 0; i < s->nals_allocated; i++)
2963         av_freep(&s->nals[i].rbsp_buffer);
2964     av_freep(&s->nals);
2965     s->nals_allocated = 0;
2966
2967     return 0;
2968 }
2969
2970 static av_cold int hevc_init_context(AVCodecContext *avctx)
2971 {
2972     HEVCContext *s = avctx->priv_data;
2973     int i;
2974
2975     s->avctx = avctx;
2976
2977     s->tmp_frame = av_frame_alloc();
2978     if (!s->tmp_frame)
2979         goto fail;
2980
2981     s->output_frame = av_frame_alloc();
2982     if (!s->output_frame)
2983         goto fail;
2984
2985     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2986         s->DPB[i].frame = av_frame_alloc();
2987         if (!s->DPB[i].frame)
2988             goto fail;
2989         s->DPB[i].tf.f = s->DPB[i].frame;
2990     }
2991
2992     s->max_ra = INT_MAX;
2993
2994     s->md5_ctx = av_md5_alloc();
2995     if (!s->md5_ctx)
2996         goto fail;
2997
2998     ff_bswapdsp_init(&s->bdsp);
2999
3000     s->context_initialized = 1;
3001
3002     return 0;
3003
3004 fail:
3005     hevc_decode_free(avctx);
3006     return AVERROR(ENOMEM);
3007 }
3008
3009 static int hevc_update_thread_context(AVCodecContext *dst,
3010                                       const AVCodecContext *src)
3011 {
3012     HEVCContext *s  = dst->priv_data;
3013     HEVCContext *s0 = src->priv_data;
3014     int i, ret;
3015
3016     if (!s->context_initialized) {
3017         ret = hevc_init_context(dst);
3018         if (ret < 0)
3019             return ret;
3020     }
3021
3022     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3023         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
3024         if (s0->DPB[i].frame->buf[0]) {
3025             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
3026             if (ret < 0)
3027                 return ret;
3028         }
3029     }
3030
3031     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
3032         av_buffer_unref(&s->vps_list[i]);
3033         if (s0->vps_list[i]) {
3034             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
3035             if (!s->vps_list[i])
3036                 return AVERROR(ENOMEM);
3037         }
3038     }
3039
3040     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
3041         av_buffer_unref(&s->sps_list[i]);
3042         if (s0->sps_list[i]) {
3043             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
3044             if (!s->sps_list[i])
3045                 return AVERROR(ENOMEM);
3046         }
3047     }
3048
3049     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
3050         av_buffer_unref(&s->pps_list[i]);
3051         if (s0->pps_list[i]) {
3052             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
3053             if (!s->pps_list[i])
3054                 return AVERROR(ENOMEM);
3055         }
3056     }
3057
3058     if (s->sps != s0->sps)
3059         ret = set_sps(s, s0->sps);
3060
3061     s->seq_decode = s0->seq_decode;
3062     s->seq_output = s0->seq_output;
3063     s->pocTid0    = s0->pocTid0;
3064     s->max_ra     = s0->max_ra;
3065
3066     s->is_nalff        = s0->is_nalff;
3067     s->nal_length_size = s0->nal_length_size;
3068
3069     if (s0->eos) {
3070         s->seq_decode = (s->seq_decode + 1) & 0xff;
3071         s->max_ra = INT_MAX;
3072     }
3073
3074     return 0;
3075 }
3076
3077 static int hevc_decode_extradata(HEVCContext *s)
3078 {
3079     AVCodecContext *avctx = s->avctx;
3080     GetByteContext gb;
3081     int ret;
3082
3083     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
3084
3085     if (avctx->extradata_size > 3 &&
3086         (avctx->extradata[0] || avctx->extradata[1] ||
3087          avctx->extradata[2] > 1)) {
3088         /* It seems the extradata is encoded as hvcC format.
3089          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
3090          * is finalized. When finalized, configurationVersion will be 1 and we
3091          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
3092         int i, j, num_arrays, nal_len_size;
3093
3094         s->is_nalff = 1;
3095
3096         bytestream2_skip(&gb, 21);
3097         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3098         num_arrays   = bytestream2_get_byte(&gb);
3099
3100         /* nal units in the hvcC always have length coded with 2 bytes,
3101          * so put a fake nal_length_size = 2 while parsing them */
3102         s->nal_length_size = 2;
3103
3104         /* Decode nal units from hvcC. */
3105         for (i = 0; i < num_arrays; i++) {
3106             int type = bytestream2_get_byte(&gb) & 0x3f;
3107             int cnt  = bytestream2_get_be16(&gb);
3108
3109             for (j = 0; j < cnt; j++) {
3110                 // +2 for the nal size field
3111                 int nalsize = bytestream2_peek_be16(&gb) + 2;
3112                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
3113                     av_log(s->avctx, AV_LOG_ERROR,
3114                            "Invalid NAL unit size in extradata.\n");
3115                     return AVERROR_INVALIDDATA;
3116                 }
3117
3118                 ret = decode_nal_units(s, gb.buffer, nalsize);
3119                 if (ret < 0) {
3120                     av_log(avctx, AV_LOG_ERROR,
3121                            "Decoding nal unit %d %d from hvcC failed\n",
3122                            type, i);
3123                     return ret;
3124                 }
3125                 bytestream2_skip(&gb, nalsize);
3126             }
3127         }
3128
3129         /* Now store right nal length size, that will be used to parse
3130          * all other nals */
3131         s->nal_length_size = nal_len_size;
3132     } else {
3133         s->is_nalff = 0;
3134         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
3135         if (ret < 0)
3136             return ret;
3137     }
3138     return 0;
3139 }
3140
3141 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3142 {
3143     HEVCContext *s = avctx->priv_data;
3144     int ret;
3145
3146     ff_init_cabac_states();
3147
3148     avctx->internal->allocate_progress = 1;
3149
3150     ret = hevc_init_context(avctx);
3151     if (ret < 0)
3152         return ret;
3153
3154     if (avctx->extradata_size > 0 && avctx->extradata) {
3155         ret = hevc_decode_extradata(s);
3156         if (ret < 0) {
3157             hevc_decode_free(avctx);
3158             return ret;
3159         }
3160     }
3161
3162     return 0;
3163 }
3164
3165 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3166 {
3167     HEVCContext *s = avctx->priv_data;
3168     int ret;
3169
3170     memset(s, 0, sizeof(*s));
3171
3172     ret = hevc_init_context(avctx);
3173     if (ret < 0)
3174         return ret;
3175
3176     return 0;
3177 }
3178
3179 static void hevc_decode_flush(AVCodecContext *avctx)
3180 {
3181     HEVCContext *s = avctx->priv_data;
3182     ff_hevc_flush_dpb(s);
3183     s->max_ra = INT_MAX;
3184 }
3185
3186 #define OFFSET(x) offsetof(HEVCContext, x)
3187 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3188
3189 static const AVProfile profiles[] = {
3190     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3191     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3192     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3193     { FF_PROFILE_UNKNOWN },
3194 };
3195
3196 static const AVOption options[] = {
3197     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3198         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3199     { NULL },
3200 };
3201
3202 static const AVClass hevc_decoder_class = {
3203     .class_name = "HEVC decoder",
3204     .item_name  = av_default_item_name,
3205     .option     = options,
3206     .version    = LIBAVUTIL_VERSION_INT,
3207 };
3208
3209 AVCodec ff_hevc_decoder = {
3210     .name                  = "hevc",
3211     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3212     .type                  = AVMEDIA_TYPE_VIDEO,
3213     .id                    = AV_CODEC_ID_HEVC,
3214     .priv_data_size        = sizeof(HEVCContext),
3215     .priv_class            = &hevc_decoder_class,
3216     .init                  = hevc_decode_init,
3217     .close                 = hevc_decode_free,
3218     .decode                = hevc_decode_frame,
3219     .flush                 = hevc_decode_flush,
3220     .update_thread_context = hevc_update_thread_context,
3221     .init_thread_copy      = hevc_init_thread_copy,
3222     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3223                              CODEC_CAP_FRAME_THREADS,
3224     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3225 };