]> git.sesse.net Git - ffmpeg/blob - libavcodec/hevc.c
hevc: pass the full HEVCNAL struct to decode_nal_unit
[ffmpeg] / libavcodec / hevc.c
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/common.h"
28 #include "libavutil/display.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bswapdsp.h"
36 #include "bytestream.h"
37 #include "cabac_functions.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 static const uint8_t scan_1x1[1] = { 0 };
46
47 static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
48
49 static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
50
51 static const uint8_t horiz_scan4x4_x[16] = {
52     0, 1, 2, 3,
53     0, 1, 2, 3,
54     0, 1, 2, 3,
55     0, 1, 2, 3,
56 };
57
58 static const uint8_t horiz_scan4x4_y[16] = {
59     0, 0, 0, 0,
60     1, 1, 1, 1,
61     2, 2, 2, 2,
62     3, 3, 3, 3,
63 };
64
65 static const uint8_t horiz_scan8x8_inv[8][8] = {
66     {  0,  1,  2,  3, 16, 17, 18, 19, },
67     {  4,  5,  6,  7, 20, 21, 22, 23, },
68     {  8,  9, 10, 11, 24, 25, 26, 27, },
69     { 12, 13, 14, 15, 28, 29, 30, 31, },
70     { 32, 33, 34, 35, 48, 49, 50, 51, },
71     { 36, 37, 38, 39, 52, 53, 54, 55, },
72     { 40, 41, 42, 43, 56, 57, 58, 59, },
73     { 44, 45, 46, 47, 60, 61, 62, 63, },
74 };
75
76 static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
77
78 static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
79
80 static const uint8_t diag_scan2x2_inv[2][2] = {
81     { 0, 2, },
82     { 1, 3, },
83 };
84
85 const uint8_t ff_hevc_diag_scan4x4_x[16] = {
86     0, 0, 1, 0,
87     1, 2, 0, 1,
88     2, 3, 1, 2,
89     3, 2, 3, 3,
90 };
91
92 const uint8_t ff_hevc_diag_scan4x4_y[16] = {
93     0, 1, 0, 2,
94     1, 0, 3, 2,
95     1, 0, 3, 2,
96     1, 3, 2, 3,
97 };
98
99 static const uint8_t diag_scan4x4_inv[4][4] = {
100     { 0,  2,  5,  9, },
101     { 1,  4,  8, 12, },
102     { 3,  7, 11, 14, },
103     { 6, 10, 13, 15, },
104 };
105
106 const uint8_t ff_hevc_diag_scan8x8_x[64] = {
107     0, 0, 1, 0,
108     1, 2, 0, 1,
109     2, 3, 0, 1,
110     2, 3, 4, 0,
111     1, 2, 3, 4,
112     5, 0, 1, 2,
113     3, 4, 5, 6,
114     0, 1, 2, 3,
115     4, 5, 6, 7,
116     1, 2, 3, 4,
117     5, 6, 7, 2,
118     3, 4, 5, 6,
119     7, 3, 4, 5,
120     6, 7, 4, 5,
121     6, 7, 5, 6,
122     7, 6, 7, 7,
123 };
124
125 const uint8_t ff_hevc_diag_scan8x8_y[64] = {
126     0, 1, 0, 2,
127     1, 0, 3, 2,
128     1, 0, 4, 3,
129     2, 1, 0, 5,
130     4, 3, 2, 1,
131     0, 6, 5, 4,
132     3, 2, 1, 0,
133     7, 6, 5, 4,
134     3, 2, 1, 0,
135     7, 6, 5, 4,
136     3, 2, 1, 7,
137     6, 5, 4, 3,
138     2, 7, 6, 5,
139     4, 3, 7, 6,
140     5, 4, 7, 6,
141     5, 7, 6, 7,
142 };
143
144 static const uint8_t diag_scan8x8_inv[8][8] = {
145     {  0,  2,  5,  9, 14, 20, 27, 35, },
146     {  1,  4,  8, 13, 19, 26, 34, 42, },
147     {  3,  7, 12, 18, 25, 33, 41, 48, },
148     {  6, 11, 17, 24, 32, 40, 47, 53, },
149     { 10, 16, 23, 31, 39, 46, 52, 57, },
150     { 15, 22, 30, 38, 45, 51, 56, 60, },
151     { 21, 29, 37, 44, 50, 55, 59, 62, },
152     { 28, 36, 43, 49, 54, 58, 61, 63, },
153 };
154
155 /**
156  * NOTE: Each function hls_foo correspond to the function foo in the
157  * specification (HLS stands for High Level Syntax).
158  */
159
160 /**
161  * Section 5.7
162  */
163
164 /* free everything allocated  by pic_arrays_init() */
165 static void pic_arrays_free(HEVCContext *s)
166 {
167     av_freep(&s->sao);
168     av_freep(&s->deblock);
169
170     av_freep(&s->skip_flag);
171     av_freep(&s->tab_ct_depth);
172
173     av_freep(&s->tab_ipm);
174     av_freep(&s->cbf_luma);
175     av_freep(&s->is_pcm);
176
177     av_freep(&s->qp_y_tab);
178     av_freep(&s->tab_slice_address);
179     av_freep(&s->filter_slice_edges);
180
181     av_freep(&s->horizontal_bs);
182     av_freep(&s->vertical_bs);
183
184     av_buffer_pool_uninit(&s->tab_mvf_pool);
185     av_buffer_pool_uninit(&s->rpl_tab_pool);
186 }
187
188 /* allocate arrays that depend on frame dimensions */
189 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
190 {
191     int log2_min_cb_size = sps->log2_min_cb_size;
192     int width            = sps->width;
193     int height           = sps->height;
194     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
195                            ((height >> log2_min_cb_size) + 1);
196     int ctb_count        = sps->ctb_width * sps->ctb_height;
197     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
198
199     s->bs_width  = width  >> 3;
200     s->bs_height = height >> 3;
201
202     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
203     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
204     if (!s->sao || !s->deblock)
205         goto fail;
206
207     s->skip_flag    = av_malloc(pic_size_in_ctb);
208     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
209     if (!s->skip_flag || !s->tab_ct_depth)
210         goto fail;
211
212     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
213     s->tab_ipm  = av_mallocz(min_pu_size);
214     s->is_pcm   = av_malloc(min_pu_size);
215     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
216         goto fail;
217
218     s->filter_slice_edges = av_malloc(ctb_count);
219     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
220                                       sizeof(*s->tab_slice_address));
221     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
222                                       sizeof(*s->qp_y_tab));
223     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
224         goto fail;
225
226     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
227     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
228     if (!s->horizontal_bs || !s->vertical_bs)
229         goto fail;
230
231     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
232                                           av_buffer_alloc);
233     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
234                                           av_buffer_allocz);
235     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
236         goto fail;
237
238     return 0;
239
240 fail:
241     pic_arrays_free(s);
242     return AVERROR(ENOMEM);
243 }
244
245 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
246 {
247     int i = 0;
248     int j = 0;
249     uint8_t luma_weight_l0_flag[16];
250     uint8_t chroma_weight_l0_flag[16];
251     uint8_t luma_weight_l1_flag[16];
252     uint8_t chroma_weight_l1_flag[16];
253
254     s->sh.luma_log2_weight_denom = av_clip_c(get_ue_golomb_long(gb), 0, 7);
255     if (s->sps->chroma_format_idc != 0) {
256         int delta = get_se_golomb(gb);
257         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
258     }
259
260     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
261         luma_weight_l0_flag[i] = get_bits1(gb);
262         if (!luma_weight_l0_flag[i]) {
263             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
264             s->sh.luma_offset_l0[i] = 0;
265         }
266     }
267     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
268         for (i = 0; i < s->sh.nb_refs[L0]; i++)
269             chroma_weight_l0_flag[i] = get_bits1(gb);
270     } else {
271         for (i = 0; i < s->sh.nb_refs[L0]; i++)
272             chroma_weight_l0_flag[i] = 0;
273     }
274     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
275         if (luma_weight_l0_flag[i]) {
276             int delta_luma_weight_l0 = get_se_golomb(gb);
277             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
278             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
279         }
280         if (chroma_weight_l0_flag[i]) {
281             for (j = 0; j < 2; j++) {
282                 int delta_chroma_weight_l0 = get_se_golomb(gb);
283                 int delta_chroma_offset_l0 = get_se_golomb(gb);
284                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
285                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
286                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
287             }
288         } else {
289             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
290             s->sh.chroma_offset_l0[i][0] = 0;
291             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
292             s->sh.chroma_offset_l0[i][1] = 0;
293         }
294     }
295     if (s->sh.slice_type == B_SLICE) {
296         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
297             luma_weight_l1_flag[i] = get_bits1(gb);
298             if (!luma_weight_l1_flag[i]) {
299                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
300                 s->sh.luma_offset_l1[i] = 0;
301             }
302         }
303         if (s->sps->chroma_format_idc != 0) {
304             for (i = 0; i < s->sh.nb_refs[L1]; i++)
305                 chroma_weight_l1_flag[i] = get_bits1(gb);
306         } else {
307             for (i = 0; i < s->sh.nb_refs[L1]; i++)
308                 chroma_weight_l1_flag[i] = 0;
309         }
310         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
311             if (luma_weight_l1_flag[i]) {
312                 int delta_luma_weight_l1 = get_se_golomb(gb);
313                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
314                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
315             }
316             if (chroma_weight_l1_flag[i]) {
317                 for (j = 0; j < 2; j++) {
318                     int delta_chroma_weight_l1 = get_se_golomb(gb);
319                     int delta_chroma_offset_l1 = get_se_golomb(gb);
320                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
321                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
322                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
323                 }
324             } else {
325                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
326                 s->sh.chroma_offset_l1[i][0] = 0;
327                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
328                 s->sh.chroma_offset_l1[i][1] = 0;
329             }
330         }
331     }
332 }
333
334 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
335 {
336     const HEVCSPS *sps = s->sps;
337     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
338     int prev_delta_msb = 0;
339     unsigned int nb_sps = 0, nb_sh;
340     int i;
341
342     rps->nb_refs = 0;
343     if (!sps->long_term_ref_pics_present_flag)
344         return 0;
345
346     if (sps->num_long_term_ref_pics_sps > 0)
347         nb_sps = get_ue_golomb_long(gb);
348     nb_sh = get_ue_golomb_long(gb);
349
350     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
351         return AVERROR_INVALIDDATA;
352
353     rps->nb_refs = nb_sh + nb_sps;
354
355     for (i = 0; i < rps->nb_refs; i++) {
356         uint8_t delta_poc_msb_present;
357
358         if (i < nb_sps) {
359             uint8_t lt_idx_sps = 0;
360
361             if (sps->num_long_term_ref_pics_sps > 1)
362                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
363
364             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
365             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
366         } else {
367             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
368             rps->used[i] = get_bits1(gb);
369         }
370
371         delta_poc_msb_present = get_bits1(gb);
372         if (delta_poc_msb_present) {
373             int delta = get_ue_golomb_long(gb);
374
375             if (i && i != nb_sps)
376                 delta += prev_delta_msb;
377
378             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
379             prev_delta_msb = delta;
380         }
381     }
382
383     return 0;
384 }
385
386 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
387 {
388     int ret;
389     unsigned int num = 0, den = 0;
390
391     pic_arrays_free(s);
392     ret = pic_arrays_init(s, sps);
393     if (ret < 0)
394         goto fail;
395
396     s->avctx->coded_width         = sps->width;
397     s->avctx->coded_height        = sps->height;
398     s->avctx->width               = sps->output_width;
399     s->avctx->height              = sps->output_height;
400     s->avctx->pix_fmt             = sps->pix_fmt;
401     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
402
403     ff_set_sar(s->avctx, sps->vui.sar);
404
405     if (sps->vui.video_signal_type_present_flag)
406         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
407                                                                : AVCOL_RANGE_MPEG;
408     else
409         s->avctx->color_range = AVCOL_RANGE_MPEG;
410
411     if (sps->vui.colour_description_present_flag) {
412         s->avctx->color_primaries = sps->vui.colour_primaries;
413         s->avctx->color_trc       = sps->vui.transfer_characteristic;
414         s->avctx->colorspace      = sps->vui.matrix_coeffs;
415     } else {
416         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
417         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
418         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
419     }
420
421     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
422     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
423     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
424
425     if (sps->sao_enabled) {
426         av_frame_unref(s->tmp_frame);
427         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
428         if (ret < 0)
429             goto fail;
430         s->frame = s->tmp_frame;
431     }
432
433     s->sps = sps;
434     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
435
436     if (s->vps->vps_timing_info_present_flag) {
437         num = s->vps->vps_num_units_in_tick;
438         den = s->vps->vps_time_scale;
439     } else if (sps->vui.vui_timing_info_present_flag) {
440         num = sps->vui.vui_num_units_in_tick;
441         den = sps->vui.vui_time_scale;
442     }
443
444     if (num != 0 && den != 0)
445         av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
446                   num, den, 1 << 30);
447
448     return 0;
449
450 fail:
451     pic_arrays_free(s);
452     s->sps = NULL;
453     return ret;
454 }
455
456 static int hls_slice_header(HEVCContext *s)
457 {
458     GetBitContext *gb = &s->HEVClc.gb;
459     SliceHeader *sh   = &s->sh;
460     int i, ret;
461
462     // Coded parameters
463     sh->first_slice_in_pic_flag = get_bits1(gb);
464     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
465         s->seq_decode = (s->seq_decode + 1) & 0xff;
466         s->max_ra     = INT_MAX;
467         if (IS_IDR(s))
468             ff_hevc_clear_refs(s);
469     }
470     if (IS_IRAP(s))
471         sh->no_output_of_prior_pics_flag = get_bits1(gb);
472
473     sh->pps_id = get_ue_golomb_long(gb);
474     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
475         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
476         return AVERROR_INVALIDDATA;
477     }
478     if (!sh->first_slice_in_pic_flag &&
479         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
480         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
481         return AVERROR_INVALIDDATA;
482     }
483     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
484
485     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
486         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
487
488         ff_hevc_clear_refs(s);
489         ret = set_sps(s, s->sps);
490         if (ret < 0)
491             return ret;
492
493         s->seq_decode = (s->seq_decode + 1) & 0xff;
494         s->max_ra     = INT_MAX;
495     }
496
497     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
498     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
499
500     sh->dependent_slice_segment_flag = 0;
501     if (!sh->first_slice_in_pic_flag) {
502         int slice_address_length;
503
504         if (s->pps->dependent_slice_segments_enabled_flag)
505             sh->dependent_slice_segment_flag = get_bits1(gb);
506
507         slice_address_length = av_ceil_log2(s->sps->ctb_width *
508                                             s->sps->ctb_height);
509         sh->slice_segment_addr = get_bits(gb, slice_address_length);
510         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
511             av_log(s->avctx, AV_LOG_ERROR,
512                    "Invalid slice segment address: %u.\n",
513                    sh->slice_segment_addr);
514             return AVERROR_INVALIDDATA;
515         }
516
517         if (!sh->dependent_slice_segment_flag) {
518             sh->slice_addr = sh->slice_segment_addr;
519             s->slice_idx++;
520         }
521     } else {
522         sh->slice_segment_addr = sh->slice_addr = 0;
523         s->slice_idx           = 0;
524         s->slice_initialized   = 0;
525     }
526
527     if (!sh->dependent_slice_segment_flag) {
528         s->slice_initialized = 0;
529
530         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
531             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
532
533         sh->slice_type = get_ue_golomb_long(gb);
534         if (!(sh->slice_type == I_SLICE ||
535               sh->slice_type == P_SLICE ||
536               sh->slice_type == B_SLICE)) {
537             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
538                    sh->slice_type);
539             return AVERROR_INVALIDDATA;
540         }
541         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
542             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
543             return AVERROR_INVALIDDATA;
544         }
545
546         // when flag is not present, picture is inferred to be output
547         sh->pic_output_flag = 1;
548         if (s->pps->output_flag_present_flag)
549             sh->pic_output_flag = get_bits1(gb);
550
551         if (s->sps->separate_colour_plane_flag)
552             sh->colour_plane_id = get_bits(gb, 2);
553
554         if (!IS_IDR(s)) {
555             int short_term_ref_pic_set_sps_flag, poc;
556
557             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
558             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
559             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
560                 av_log(s->avctx, AV_LOG_WARNING,
561                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
562                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
563                     return AVERROR_INVALIDDATA;
564                 poc = s->poc;
565             }
566             s->poc = poc;
567
568             short_term_ref_pic_set_sps_flag = get_bits1(gb);
569             if (!short_term_ref_pic_set_sps_flag) {
570                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
571                 if (ret < 0)
572                     return ret;
573
574                 sh->short_term_rps = &sh->slice_rps;
575             } else {
576                 int numbits, rps_idx;
577
578                 if (!s->sps->nb_st_rps) {
579                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
580                     return AVERROR_INVALIDDATA;
581                 }
582
583                 numbits = av_ceil_log2(s->sps->nb_st_rps);
584                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
585                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
586             }
587
588             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
589             if (ret < 0) {
590                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
591                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
592                     return AVERROR_INVALIDDATA;
593             }
594
595             if (s->sps->sps_temporal_mvp_enabled_flag)
596                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
597             else
598                 sh->slice_temporal_mvp_enabled_flag = 0;
599         } else {
600             s->sh.short_term_rps = NULL;
601             s->poc               = 0;
602         }
603
604         /* 8.3.1 */
605         if (s->temporal_id == 0 &&
606             s->nal_unit_type != NAL_TRAIL_N &&
607             s->nal_unit_type != NAL_TSA_N   &&
608             s->nal_unit_type != NAL_STSA_N  &&
609             s->nal_unit_type != NAL_RADL_N  &&
610             s->nal_unit_type != NAL_RADL_R  &&
611             s->nal_unit_type != NAL_RASL_N  &&
612             s->nal_unit_type != NAL_RASL_R)
613             s->pocTid0 = s->poc;
614
615         if (s->sps->sao_enabled) {
616             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
617             sh->slice_sample_adaptive_offset_flag[1] =
618             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
619         } else {
620             sh->slice_sample_adaptive_offset_flag[0] = 0;
621             sh->slice_sample_adaptive_offset_flag[1] = 0;
622             sh->slice_sample_adaptive_offset_flag[2] = 0;
623         }
624
625         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
626         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
627             int nb_refs;
628
629             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
630             if (sh->slice_type == B_SLICE)
631                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
632
633             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
634                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
635                 if (sh->slice_type == B_SLICE)
636                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
637             }
638             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
639                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
640                        sh->nb_refs[L0], sh->nb_refs[L1]);
641                 return AVERROR_INVALIDDATA;
642             }
643
644             sh->rpl_modification_flag[0] = 0;
645             sh->rpl_modification_flag[1] = 0;
646             nb_refs = ff_hevc_frame_nb_refs(s);
647             if (!nb_refs) {
648                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
649                 return AVERROR_INVALIDDATA;
650             }
651
652             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
653                 sh->rpl_modification_flag[0] = get_bits1(gb);
654                 if (sh->rpl_modification_flag[0]) {
655                     for (i = 0; i < sh->nb_refs[L0]; i++)
656                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
657                 }
658
659                 if (sh->slice_type == B_SLICE) {
660                     sh->rpl_modification_flag[1] = get_bits1(gb);
661                     if (sh->rpl_modification_flag[1] == 1)
662                         for (i = 0; i < sh->nb_refs[L1]; i++)
663                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
664                 }
665             }
666
667             if (sh->slice_type == B_SLICE)
668                 sh->mvd_l1_zero_flag = get_bits1(gb);
669
670             if (s->pps->cabac_init_present_flag)
671                 sh->cabac_init_flag = get_bits1(gb);
672             else
673                 sh->cabac_init_flag = 0;
674
675             sh->collocated_ref_idx = 0;
676             if (sh->slice_temporal_mvp_enabled_flag) {
677                 sh->collocated_list = L0;
678                 if (sh->slice_type == B_SLICE)
679                     sh->collocated_list = !get_bits1(gb);
680
681                 if (sh->nb_refs[sh->collocated_list] > 1) {
682                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
683                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
684                         av_log(s->avctx, AV_LOG_ERROR,
685                                "Invalid collocated_ref_idx: %d.\n",
686                                sh->collocated_ref_idx);
687                         return AVERROR_INVALIDDATA;
688                     }
689                 }
690             }
691
692             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
693                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
694                 pred_weight_table(s, gb);
695             }
696
697             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
698             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
699                 av_log(s->avctx, AV_LOG_ERROR,
700                        "Invalid number of merging MVP candidates: %d.\n",
701                        sh->max_num_merge_cand);
702                 return AVERROR_INVALIDDATA;
703             }
704         }
705
706         sh->slice_qp_delta = get_se_golomb(gb);
707
708         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
709             sh->slice_cb_qp_offset = get_se_golomb(gb);
710             sh->slice_cr_qp_offset = get_se_golomb(gb);
711         } else {
712             sh->slice_cb_qp_offset = 0;
713             sh->slice_cr_qp_offset = 0;
714         }
715
716         if (s->pps->deblocking_filter_control_present_flag) {
717             int deblocking_filter_override_flag = 0;
718
719             if (s->pps->deblocking_filter_override_enabled_flag)
720                 deblocking_filter_override_flag = get_bits1(gb);
721
722             if (deblocking_filter_override_flag) {
723                 sh->disable_deblocking_filter_flag = get_bits1(gb);
724                 if (!sh->disable_deblocking_filter_flag) {
725                     sh->beta_offset = get_se_golomb(gb) * 2;
726                     sh->tc_offset   = get_se_golomb(gb) * 2;
727                 }
728             } else {
729                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
730                 sh->beta_offset                    = s->pps->beta_offset;
731                 sh->tc_offset                      = s->pps->tc_offset;
732             }
733         } else {
734             sh->disable_deblocking_filter_flag = 0;
735             sh->beta_offset                    = 0;
736             sh->tc_offset                      = 0;
737         }
738
739         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
740             (sh->slice_sample_adaptive_offset_flag[0] ||
741              sh->slice_sample_adaptive_offset_flag[1] ||
742              !sh->disable_deblocking_filter_flag)) {
743             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
744         } else {
745             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
746         }
747     } else if (!s->slice_initialized) {
748         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
749         return AVERROR_INVALIDDATA;
750     }
751
752     sh->num_entry_point_offsets = 0;
753     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
754         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
755         if (sh->num_entry_point_offsets > 0) {
756             int offset_len = get_ue_golomb_long(gb) + 1;
757
758             for (i = 0; i < sh->num_entry_point_offsets; i++)
759                 skip_bits(gb, offset_len);
760         }
761     }
762
763     if (s->pps->slice_header_extension_present_flag) {
764         unsigned int length = get_ue_golomb_long(gb);
765         for (i = 0; i < length; i++)
766             skip_bits(gb, 8);  // slice_header_extension_data_byte
767     }
768
769     // Inferred parameters
770     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
771     if (sh->slice_qp > 51 ||
772         sh->slice_qp < -s->sps->qp_bd_offset) {
773         av_log(s->avctx, AV_LOG_ERROR,
774                "The slice_qp %d is outside the valid range "
775                "[%d, 51].\n",
776                sh->slice_qp,
777                -s->sps->qp_bd_offset);
778         return AVERROR_INVALIDDATA;
779     }
780
781     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
782
783     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
784         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
785         return AVERROR_INVALIDDATA;
786     }
787
788     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
789
790     if (!s->pps->cu_qp_delta_enabled_flag)
791         s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
792                                 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
793
794     s->slice_initialized = 1;
795
796     return 0;
797 }
798
799 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
800
801 #define SET_SAO(elem, value)                            \
802 do {                                                    \
803     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
804         sao->elem = value;                              \
805     else if (sao_merge_left_flag)                       \
806         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
807     else if (sao_merge_up_flag)                         \
808         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
809     else                                                \
810         sao->elem = 0;                                  \
811 } while (0)
812
813 static void hls_sao_param(HEVCContext *s, int rx, int ry)
814 {
815     HEVCLocalContext *lc    = &s->HEVClc;
816     int sao_merge_left_flag = 0;
817     int sao_merge_up_flag   = 0;
818     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
819     SAOParams *sao          = &CTB(s->sao, rx, ry);
820     int c_idx, i;
821
822     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
823         s->sh.slice_sample_adaptive_offset_flag[1]) {
824         if (rx > 0) {
825             if (lc->ctb_left_flag)
826                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
827         }
828         if (ry > 0 && !sao_merge_left_flag) {
829             if (lc->ctb_up_flag)
830                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
831         }
832     }
833
834     for (c_idx = 0; c_idx < 3; c_idx++) {
835         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
836             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
837             continue;
838         }
839
840         if (c_idx == 2) {
841             sao->type_idx[2] = sao->type_idx[1];
842             sao->eo_class[2] = sao->eo_class[1];
843         } else {
844             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
845         }
846
847         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
848             continue;
849
850         for (i = 0; i < 4; i++)
851             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
852
853         if (sao->type_idx[c_idx] == SAO_BAND) {
854             for (i = 0; i < 4; i++) {
855                 if (sao->offset_abs[c_idx][i]) {
856                     SET_SAO(offset_sign[c_idx][i],
857                             ff_hevc_sao_offset_sign_decode(s));
858                 } else {
859                     sao->offset_sign[c_idx][i] = 0;
860                 }
861             }
862             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
863         } else if (c_idx != 2) {
864             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
865         }
866
867         // Inferred parameters
868         sao->offset_val[c_idx][0] = 0;
869         for (i = 0; i < 4; i++) {
870             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
871             if (sao->type_idx[c_idx] == SAO_EDGE) {
872                 if (i > 1)
873                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
874             } else if (sao->offset_sign[c_idx][i]) {
875                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
876             }
877         }
878     }
879 }
880
881 #undef SET_SAO
882 #undef CTB
883
884 static void hls_residual_coding(HEVCContext *s, int x0, int y0,
885                                 int log2_trafo_size, enum ScanType scan_idx,
886                                 int c_idx)
887 {
888 #define GET_COORD(offset, n)                                    \
889     do {                                                        \
890         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
891         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
892     } while (0)
893     HEVCLocalContext *lc    = &s->HEVClc;
894     int transform_skip_flag = 0;
895
896     int last_significant_coeff_x, last_significant_coeff_y;
897     int last_scan_pos;
898     int n_end;
899     int num_coeff    = 0;
900     int greater1_ctx = 1;
901
902     int num_last_subset;
903     int x_cg_last_sig, y_cg_last_sig;
904
905     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
906
907     ptrdiff_t stride = s->frame->linesize[c_idx];
908     int hshift       = s->sps->hshift[c_idx];
909     int vshift       = s->sps->vshift[c_idx];
910     uint8_t *dst     = &s->frame->data[c_idx][(y0 >> vshift) * stride +
911                                               ((x0 >> hshift) << s->sps->pixel_shift)];
912     DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
913     DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
914
915     int trafo_size = 1 << log2_trafo_size;
916     int i, qp, shift, add, scale, scale_m;
917     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
918     const uint8_t *scale_matrix;
919     uint8_t dc_scale;
920
921     // Derive QP for dequant
922     if (!lc->cu.cu_transquant_bypass_flag) {
923         static const int qp_c[] = {
924             29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
925         };
926
927         static const uint8_t rem6[51 + 2 * 6 + 1] = {
928             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
929             3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
930             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
931         };
932
933         static const uint8_t div6[51 + 2 * 6 + 1] = {
934             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,  3,  3,  3,
935             3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6,  6,  6,  6,
936             7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
937         };
938         int qp_y = lc->qp_y;
939
940         if (c_idx == 0) {
941             qp = qp_y + s->sps->qp_bd_offset;
942         } else {
943             int qp_i, offset;
944
945             if (c_idx == 1)
946                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
947             else
948                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
949
950             qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
951             if (qp_i < 30)
952                 qp = qp_i;
953             else if (qp_i > 43)
954                 qp = qp_i - 6;
955             else
956                 qp = qp_c[qp_i - 30];
957
958             qp += s->sps->qp_bd_offset;
959         }
960
961         shift    = s->sps->bit_depth + log2_trafo_size - 5;
962         add      = 1 << (shift - 1);
963         scale    = level_scale[rem6[qp]] << (div6[qp]);
964         scale_m  = 16; // default when no custom scaling lists.
965         dc_scale = 16;
966
967         if (s->sps->scaling_list_enable_flag) {
968             const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
969                                     &s->pps->scaling_list : &s->sps->scaling_list;
970             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
971
972             if (log2_trafo_size != 5)
973                 matrix_id = 3 * matrix_id + c_idx;
974
975             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
976             if (log2_trafo_size >= 4)
977                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
978         }
979     }
980
981     if (s->pps->transform_skip_enabled_flag &&
982         !lc->cu.cu_transquant_bypass_flag   &&
983         log2_trafo_size == 2) {
984         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
985     }
986
987     last_significant_coeff_x =
988         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
989     last_significant_coeff_y =
990         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
991
992     if (last_significant_coeff_x > 3) {
993         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
994         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
995                                    (2 + (last_significant_coeff_x & 1)) +
996                                    suffix;
997     }
998
999     if (last_significant_coeff_y > 3) {
1000         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
1001         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1002                                    (2 + (last_significant_coeff_y & 1)) +
1003                                    suffix;
1004     }
1005
1006     if (scan_idx == SCAN_VERT)
1007         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
1008
1009     x_cg_last_sig = last_significant_coeff_x >> 2;
1010     y_cg_last_sig = last_significant_coeff_y >> 2;
1011
1012     switch (scan_idx) {
1013     case SCAN_DIAG: {
1014         int last_x_c = last_significant_coeff_x & 3;
1015         int last_y_c = last_significant_coeff_y & 3;
1016
1017         scan_x_off = ff_hevc_diag_scan4x4_x;
1018         scan_y_off = ff_hevc_diag_scan4x4_y;
1019         num_coeff  = diag_scan4x4_inv[last_y_c][last_x_c];
1020         if (trafo_size == 4) {
1021             scan_x_cg = scan_1x1;
1022             scan_y_cg = scan_1x1;
1023         } else if (trafo_size == 8) {
1024             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1025             scan_x_cg  = diag_scan2x2_x;
1026             scan_y_cg  = diag_scan2x2_y;
1027         } else if (trafo_size == 16) {
1028             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1029             scan_x_cg  = ff_hevc_diag_scan4x4_x;
1030             scan_y_cg  = ff_hevc_diag_scan4x4_y;
1031         } else { // trafo_size == 32
1032             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1033             scan_x_cg  = ff_hevc_diag_scan8x8_x;
1034             scan_y_cg  = ff_hevc_diag_scan8x8_y;
1035         }
1036         break;
1037     }
1038     case SCAN_HORIZ:
1039         scan_x_cg  = horiz_scan2x2_x;
1040         scan_y_cg  = horiz_scan2x2_y;
1041         scan_x_off = horiz_scan4x4_x;
1042         scan_y_off = horiz_scan4x4_y;
1043         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1044         break;
1045     default: //SCAN_VERT
1046         scan_x_cg  = horiz_scan2x2_y;
1047         scan_y_cg  = horiz_scan2x2_x;
1048         scan_x_off = horiz_scan4x4_y;
1049         scan_y_off = horiz_scan4x4_x;
1050         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1051         break;
1052     }
1053     num_coeff++;
1054     num_last_subset = (num_coeff - 1) >> 4;
1055
1056     for (i = num_last_subset; i >= 0; i--) {
1057         int n, m;
1058         int x_cg, y_cg, x_c, y_c;
1059         int implicit_non_zero_coeff = 0;
1060         int64_t trans_coeff_level;
1061         int prev_sig = 0;
1062         int offset   = i << 4;
1063
1064         uint8_t significant_coeff_flag_idx[16];
1065         uint8_t nb_significant_coeff_flag = 0;
1066
1067         x_cg = scan_x_cg[i];
1068         y_cg = scan_y_cg[i];
1069
1070         if (i < num_last_subset && i > 0) {
1071             int ctx_cg = 0;
1072             if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1073                 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1074             if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1075                 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1076
1077             significant_coeff_group_flag[x_cg][y_cg] =
1078                 ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
1079             implicit_non_zero_coeff = 1;
1080         } else {
1081             significant_coeff_group_flag[x_cg][y_cg] =
1082                 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1083                  (x_cg == 0 && y_cg == 0));
1084         }
1085
1086         last_scan_pos = num_coeff - offset - 1;
1087
1088         if (i == num_last_subset) {
1089             n_end                         = last_scan_pos - 1;
1090             significant_coeff_flag_idx[0] = last_scan_pos;
1091             nb_significant_coeff_flag     = 1;
1092         } else {
1093             n_end = 15;
1094         }
1095
1096         if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1097             prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1098         if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1099             prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1100
1101         for (n = n_end; n >= 0; n--) {
1102             GET_COORD(offset, n);
1103
1104             if (significant_coeff_group_flag[x_cg][y_cg] &&
1105                 (n > 0 || implicit_non_zero_coeff == 0)) {
1106                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
1107                                                           log2_trafo_size,
1108                                                           scan_idx,
1109                                                           prev_sig) == 1) {
1110                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1111                     nb_significant_coeff_flag++;
1112                     implicit_non_zero_coeff = 0;
1113                 }
1114             } else {
1115                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1116                 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1117                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1118                     nb_significant_coeff_flag++;
1119                 }
1120             }
1121         }
1122
1123         n_end = nb_significant_coeff_flag;
1124
1125         if (n_end) {
1126             int first_nz_pos_in_cg = 16;
1127             int last_nz_pos_in_cg = -1;
1128             int c_rice_param = 0;
1129             int first_greater1_coeff_idx = -1;
1130             uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1131             uint16_t coeff_sign_flag;
1132             int sum_abs = 0;
1133             int sign_hidden = 0;
1134
1135             // initialize first elem of coeff_bas_level_greater1_flag
1136             int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1137
1138             if (!(i == num_last_subset) && greater1_ctx == 0)
1139                 ctx_set++;
1140             greater1_ctx      = 1;
1141             last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1142
1143             for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1144                 int n_idx = significant_coeff_flag_idx[m];
1145                 int inc   = (ctx_set << 2) + greater1_ctx;
1146                 coeff_abs_level_greater1_flag[n_idx] =
1147                     ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
1148                 if (coeff_abs_level_greater1_flag[n_idx]) {
1149                     greater1_ctx = 0;
1150                 } else if (greater1_ctx > 0 && greater1_ctx < 3) {
1151                     greater1_ctx++;
1152                 }
1153
1154                 if (coeff_abs_level_greater1_flag[n_idx] &&
1155                     first_greater1_coeff_idx == -1)
1156                     first_greater1_coeff_idx = n_idx;
1157             }
1158             first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1159             sign_hidden        = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1160                                  !lc->cu.cu_transquant_bypass_flag;
1161
1162             if (first_greater1_coeff_idx != -1) {
1163                 coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
1164             }
1165             if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
1166                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
1167             } else {
1168                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1169             }
1170
1171             for (m = 0; m < n_end; m++) {
1172                 n = significant_coeff_flag_idx[m];
1173                 GET_COORD(offset, n);
1174                 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1175                 if (trans_coeff_level == ((m < 8) ?
1176                                           ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1177                     int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
1178
1179                     trans_coeff_level += last_coeff_abs_level_remaining;
1180                     if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1181                         c_rice_param = FFMIN(c_rice_param + 1, 4);
1182                 }
1183                 if (s->pps->sign_data_hiding_flag && sign_hidden) {
1184                     sum_abs += trans_coeff_level;
1185                     if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1186                         trans_coeff_level = -trans_coeff_level;
1187                 }
1188                 if (coeff_sign_flag >> 15)
1189                     trans_coeff_level = -trans_coeff_level;
1190                 coeff_sign_flag <<= 1;
1191                 if (!lc->cu.cu_transquant_bypass_flag) {
1192                     if (s->sps->scaling_list_enable_flag) {
1193                         if (y_c || x_c || log2_trafo_size < 4) {
1194                             int pos;
1195                             switch (log2_trafo_size) {
1196                             case 3:  pos = (y_c        << 3) +  x_c;       break;
1197                             case 4:  pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
1198                             case 5:  pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
1199                             default: pos = (y_c        << 2) +  x_c;
1200                             }
1201                             scale_m = scale_matrix[pos];
1202                         } else {
1203                             scale_m = dc_scale;
1204                         }
1205                     }
1206                     trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1207                     if(trans_coeff_level < 0) {
1208                         if((~trans_coeff_level) & 0xFffffffffff8000)
1209                             trans_coeff_level = -32768;
1210                     } else {
1211                         if (trans_coeff_level & 0xffffffffffff8000)
1212                             trans_coeff_level = 32767;
1213                     }
1214                 }
1215                 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1216             }
1217         }
1218     }
1219
1220     if (lc->cu.cu_transquant_bypass_flag) {
1221         s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
1222     } else {
1223         if (transform_skip_flag)
1224             s->hevcdsp.transform_skip(dst, coeffs, stride);
1225         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
1226                  log2_trafo_size == 2)
1227             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
1228         else
1229             s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
1230     }
1231 }
1232
1233 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
1234                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1235                               int log2_cb_size, int log2_trafo_size,
1236                               int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
1237 {
1238     HEVCLocalContext *lc = &s->HEVClc;
1239
1240     if (lc->cu.pred_mode == MODE_INTRA) {
1241         int trafo_size = 1 << log2_trafo_size;
1242         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1243
1244         s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
1245         if (log2_trafo_size > 2) {
1246             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
1247             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1248             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
1249             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
1250         } else if (blk_idx == 3) {
1251             trafo_size = trafo_size << s->sps->hshift[1];
1252             ff_hevc_set_neighbour_available(s, xBase, yBase,
1253                                             trafo_size, trafo_size);
1254             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
1255             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
1256         }
1257     }
1258
1259     if (cbf_luma || cbf_cb || cbf_cr) {
1260         int scan_idx   = SCAN_DIAG;
1261         int scan_idx_c = SCAN_DIAG;
1262
1263         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1264             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
1265             if (lc->tu.cu_qp_delta != 0)
1266                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
1267                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1268             lc->tu.is_cu_qp_delta_coded = 1;
1269
1270             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
1271                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
1272                 av_log(s->avctx, AV_LOG_ERROR,
1273                        "The cu_qp_delta %d is outside the valid range "
1274                        "[%d, %d].\n",
1275                        lc->tu.cu_qp_delta,
1276                        -(26 + s->sps->qp_bd_offset / 2),
1277                         (25 + s->sps->qp_bd_offset / 2));
1278                 return AVERROR_INVALIDDATA;
1279             }
1280
1281             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
1282         }
1283
1284         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1285             if (lc->tu.cur_intra_pred_mode >= 6 &&
1286                 lc->tu.cur_intra_pred_mode <= 14) {
1287                 scan_idx = SCAN_VERT;
1288             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
1289                        lc->tu.cur_intra_pred_mode <= 30) {
1290                 scan_idx = SCAN_HORIZ;
1291             }
1292
1293             if (lc->pu.intra_pred_mode_c >=  6 &&
1294                 lc->pu.intra_pred_mode_c <= 14) {
1295                 scan_idx_c = SCAN_VERT;
1296             } else if (lc->pu.intra_pred_mode_c >= 22 &&
1297                        lc->pu.intra_pred_mode_c <= 30) {
1298                 scan_idx_c = SCAN_HORIZ;
1299             }
1300         }
1301
1302         if (cbf_luma)
1303             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
1304         if (log2_trafo_size > 2) {
1305             if (cbf_cb)
1306                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
1307             if (cbf_cr)
1308                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
1309         } else if (blk_idx == 3) {
1310             if (cbf_cb)
1311                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
1312             if (cbf_cr)
1313                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
1314         }
1315     }
1316     return 0;
1317 }
1318
1319 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
1320 {
1321     int cb_size          = 1 << log2_cb_size;
1322     int log2_min_pu_size = s->sps->log2_min_pu_size;
1323
1324     int min_pu_width     = s->sps->min_pu_width;
1325     int x_end = FFMIN(x0 + cb_size, s->sps->width);
1326     int y_end = FFMIN(y0 + cb_size, s->sps->height);
1327     int i, j;
1328
1329     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1330         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1331             s->is_pcm[i + j * min_pu_width] = 2;
1332 }
1333
1334 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
1335                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1336                               int log2_cb_size, int log2_trafo_size,
1337                               int trafo_depth, int blk_idx,
1338                               int cbf_cb, int cbf_cr)
1339 {
1340     HEVCLocalContext *lc = &s->HEVClc;
1341     uint8_t split_transform_flag;
1342     int ret;
1343
1344     if (lc->cu.intra_split_flag) {
1345         if (trafo_depth == 1)
1346             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1347     } else {
1348         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
1349     }
1350
1351     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1352         log2_trafo_size >  s->sps->log2_min_tb_size    &&
1353         trafo_depth     < lc->cu.max_trafo_depth       &&
1354         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1355         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
1356     } else {
1357         int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
1358                           lc->cu.pred_mode == MODE_INTER &&
1359                           lc->cu.part_mode != PART_2Nx2N &&
1360                           trafo_depth == 0;
1361
1362         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
1363                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
1364                                inter_split;
1365     }
1366
1367     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1368         cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1369     else if (log2_trafo_size > 2 || trafo_depth == 0)
1370         cbf_cb = 0;
1371     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1372         cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1373     else if (log2_trafo_size > 2 || trafo_depth == 0)
1374         cbf_cr = 0;
1375
1376     if (split_transform_flag) {
1377         const int trafo_size_split = 1 << (log2_trafo_size - 1);
1378         const int x1 = x0 + trafo_size_split;
1379         const int y1 = y0 + trafo_size_split;
1380
1381 #define SUBDIVIDE(x, y, idx)                                                    \
1382 do {                                                                            \
1383     ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1384                              log2_trafo_size - 1, trafo_depth + 1, idx,         \
1385                              cbf_cb, cbf_cr);                                   \
1386     if (ret < 0)                                                                \
1387         return ret;                                                             \
1388 } while (0)
1389
1390         SUBDIVIDE(x0, y0, 0);
1391         SUBDIVIDE(x1, y0, 1);
1392         SUBDIVIDE(x0, y1, 2);
1393         SUBDIVIDE(x1, y1, 3);
1394
1395 #undef SUBDIVIDE
1396     } else {
1397         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
1398         int log2_min_tu_size = s->sps->log2_min_tb_size;
1399         int min_tu_width     = s->sps->min_tb_width;
1400         int cbf_luma         = 1;
1401
1402         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1403             cbf_cb || cbf_cr)
1404             cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
1405
1406         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1407                                  log2_cb_size, log2_trafo_size,
1408                                  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1409         if (ret < 0)
1410             return ret;
1411         // TODO: store cbf_luma somewhere else
1412         if (cbf_luma) {
1413             int i, j;
1414             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1415                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1416                     int x_tu = (x0 + j) >> log2_min_tu_size;
1417                     int y_tu = (y0 + i) >> log2_min_tu_size;
1418                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1419                 }
1420         }
1421         if (!s->sh.disable_deblocking_filter_flag) {
1422             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
1423             if (s->pps->transquant_bypass_enable_flag &&
1424                 lc->cu.cu_transquant_bypass_flag)
1425                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1426         }
1427     }
1428     return 0;
1429 }
1430
1431 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1432 {
1433     //TODO: non-4:2:0 support
1434     HEVCLocalContext *lc = &s->HEVClc;
1435     GetBitContext gb;
1436     int cb_size   = 1 << log2_cb_size;
1437     int stride0   = s->frame->linesize[0];
1438     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1439     int   stride1 = s->frame->linesize[1];
1440     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1441     int   stride2 = s->frame->linesize[2];
1442     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1443
1444     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1445     const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1446     int ret;
1447
1448     if (!s->sh.disable_deblocking_filter_flag)
1449         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
1450
1451     ret = init_get_bits(&gb, pcm, length);
1452     if (ret < 0)
1453         return ret;
1454
1455     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1456     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1457     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1458     return 0;
1459 }
1460
1461 static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
1462 {
1463     HEVCLocalContext *lc = &s->HEVClc;
1464     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
1465     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
1466
1467     if (x)
1468         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
1469     if (y)
1470         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
1471
1472     switch (x) {
1473     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
1474     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
1475     case 0: lc->pu.mvd.x = 0;                               break;
1476     }
1477
1478     switch (y) {
1479     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
1480     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
1481     case 0: lc->pu.mvd.y = 0;                               break;
1482     }
1483 }
1484
1485 /**
1486  * 8.5.3.2.2.1 Luma sample interpolation process
1487  *
1488  * @param s HEVC decoding context
1489  * @param dst target buffer for block data at block position
1490  * @param dststride stride of the dst buffer
1491  * @param ref reference picture buffer at origin (0, 0)
1492  * @param mv motion vector (relative to block position) to get pixel data from
1493  * @param x_off horizontal position of block from origin (0, 0)
1494  * @param y_off vertical position of block from origin (0, 0)
1495  * @param block_w width of block
1496  * @param block_h height of block
1497  */
1498 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1499                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1500                     int block_w, int block_h)
1501 {
1502     HEVCLocalContext *lc = &s->HEVClc;
1503     uint8_t *src         = ref->data[0];
1504     ptrdiff_t srcstride  = ref->linesize[0];
1505     int pic_width        = s->sps->width;
1506     int pic_height       = s->sps->height;
1507
1508     int mx         = mv->x & 3;
1509     int my         = mv->y & 3;
1510     int extra_left = ff_hevc_qpel_extra_before[mx];
1511     int extra_top  = ff_hevc_qpel_extra_before[my];
1512
1513     x_off += mv->x >> 2;
1514     y_off += mv->y >> 2;
1515     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1516
1517     if (x_off < extra_left || y_off < extra_top ||
1518         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1519         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1520         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1521         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1522         int buf_offset = extra_top *
1523                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1524
1525         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1526                                  edge_emu_stride, srcstride,
1527                                  block_w + ff_hevc_qpel_extra[mx],
1528                                  block_h + ff_hevc_qpel_extra[my],
1529                                  x_off - extra_left, y_off - extra_top,
1530                                  pic_width, pic_height);
1531         src = lc->edge_emu_buffer + buf_offset;
1532         srcstride = edge_emu_stride;
1533     }
1534     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1535                                      block_h, lc->mc_buffer);
1536 }
1537
1538 /**
1539  * 8.5.3.2.2.2 Chroma sample interpolation process
1540  *
1541  * @param s HEVC decoding context
1542  * @param dst1 target buffer for block data at block position (U plane)
1543  * @param dst2 target buffer for block data at block position (V plane)
1544  * @param dststride stride of the dst1 and dst2 buffers
1545  * @param ref reference picture buffer at origin (0, 0)
1546  * @param mv motion vector (relative to block position) to get pixel data from
1547  * @param x_off horizontal position of block from origin (0, 0)
1548  * @param y_off vertical position of block from origin (0, 0)
1549  * @param block_w width of block
1550  * @param block_h height of block
1551  */
1552 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1553                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1554                       int x_off, int y_off, int block_w, int block_h)
1555 {
1556     HEVCLocalContext *lc = &s->HEVClc;
1557     uint8_t *src1        = ref->data[1];
1558     uint8_t *src2        = ref->data[2];
1559     ptrdiff_t src1stride = ref->linesize[1];
1560     ptrdiff_t src2stride = ref->linesize[2];
1561     int pic_width        = s->sps->width >> 1;
1562     int pic_height       = s->sps->height >> 1;
1563
1564     int mx = mv->x & 7;
1565     int my = mv->y & 7;
1566
1567     x_off += mv->x >> 3;
1568     y_off += mv->y >> 3;
1569     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1570     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1571
1572     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1573         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1574         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1575         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1576         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1577         int buf_offset1 = EPEL_EXTRA_BEFORE *
1578                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1579         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1580         int buf_offset2 = EPEL_EXTRA_BEFORE *
1581                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1582
1583         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1584                                  edge_emu_stride, src1stride,
1585                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1586                                  x_off - EPEL_EXTRA_BEFORE,
1587                                  y_off - EPEL_EXTRA_BEFORE,
1588                                  pic_width, pic_height);
1589
1590         src1 = lc->edge_emu_buffer + buf_offset1;
1591         src1stride = edge_emu_stride;
1592         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1593                                              block_w, block_h, mx, my, lc->mc_buffer);
1594
1595         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1596                                  edge_emu_stride, src2stride,
1597                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1598                                  x_off - EPEL_EXTRA_BEFORE,
1599                                  y_off - EPEL_EXTRA_BEFORE,
1600                                  pic_width, pic_height);
1601         src2 = lc->edge_emu_buffer + buf_offset2;
1602         src2stride = edge_emu_stride;
1603
1604         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1605                                              block_w, block_h, mx, my,
1606                                              lc->mc_buffer);
1607     } else {
1608         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1609                                              block_w, block_h, mx, my,
1610                                              lc->mc_buffer);
1611         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1612                                              block_w, block_h, mx, my,
1613                                              lc->mc_buffer);
1614     }
1615 }
1616
1617 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1618                                 const Mv *mv, int y0, int height)
1619 {
1620     int y = (mv->y >> 2) + y0 + height + 9;
1621     ff_thread_await_progress(&ref->tf, y, 0);
1622 }
1623
1624 static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
1625                                   int nPbH, int log2_cb_size, int part_idx,
1626                                   int merge_idx, MvField *mv)
1627 {
1628     HEVCLocalContext *lc             = &s->HEVClc;
1629     enum InterPredIdc inter_pred_idc = PRED_L0;
1630     int mvp_flag;
1631
1632     ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1633     if (s->sh.slice_type == B_SLICE)
1634         inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1635
1636     if (inter_pred_idc != PRED_L1) {
1637         if (s->sh.nb_refs[L0])
1638             mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1639
1640         mv->pred_flag[0] = 1;
1641         hls_mvd_coding(s, x0, y0, 0);
1642         mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
1643         ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1644                                  part_idx, merge_idx, mv, mvp_flag, 0);
1645         mv->mv[0].x += lc->pu.mvd.x;
1646         mv->mv[0].y += lc->pu.mvd.y;
1647     }
1648
1649     if (inter_pred_idc != PRED_L0) {
1650         if (s->sh.nb_refs[L1])
1651             mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1652
1653         if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1654             AV_ZERO32(&lc->pu.mvd);
1655         } else {
1656             hls_mvd_coding(s, x0, y0, 1);
1657         }
1658
1659         mv->pred_flag[1] = 1;
1660         mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
1661         ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1662                                  part_idx, merge_idx, mv, mvp_flag, 1);
1663         mv->mv[1].x += lc->pu.mvd.x;
1664         mv->mv[1].y += lc->pu.mvd.y;
1665     }
1666 }
1667
1668 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1669                                 int nPbW, int nPbH,
1670                                 int log2_cb_size, int partIdx)
1671 {
1672 #define POS(c_idx, x, y)                                                              \
1673     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1674                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1675     HEVCLocalContext *lc = &s->HEVClc;
1676     int merge_idx = 0;
1677     struct MvField current_mv = {{{ 0 }}};
1678
1679     int min_pu_width = s->sps->min_pu_width;
1680
1681     MvField *tab_mvf = s->ref->tab_mvf;
1682     RefPicList  *refPicList = s->ref->refPicList;
1683     HEVCFrame *ref0, *ref1;
1684
1685     int tmpstride = MAX_PB_SIZE;
1686
1687     uint8_t *dst0 = POS(0, x0, y0);
1688     uint8_t *dst1 = POS(1, x0, y0);
1689     uint8_t *dst2 = POS(2, x0, y0);
1690     int log2_min_cb_size = s->sps->log2_min_cb_size;
1691     int min_cb_width     = s->sps->min_cb_width;
1692     int x_cb             = x0 >> log2_min_cb_size;
1693     int y_cb             = y0 >> log2_min_cb_size;
1694     int x_pu, y_pu;
1695     int i, j;
1696
1697     int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
1698
1699     if (!skip_flag)
1700         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1701
1702     if (skip_flag || lc->pu.merge_flag) {
1703         if (s->sh.max_num_merge_cand > 1)
1704             merge_idx = ff_hevc_merge_idx_decode(s);
1705         else
1706             merge_idx = 0;
1707
1708         ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1709                                    partIdx, merge_idx, &current_mv);
1710     } else {
1711         hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1712                               partIdx, merge_idx, &current_mv);
1713     }
1714
1715     x_pu = x0 >> s->sps->log2_min_pu_size;
1716     y_pu = y0 >> s->sps->log2_min_pu_size;
1717
1718     for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1719         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1720             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1721
1722     if (current_mv.pred_flag[0]) {
1723         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1724         if (!ref0)
1725             return;
1726         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1727     }
1728     if (current_mv.pred_flag[1]) {
1729         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1730         if (!ref1)
1731             return;
1732         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1733     }
1734
1735     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1736         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1737         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1738
1739         luma_mc(s, tmp, tmpstride, ref0->frame,
1740                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1741
1742         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1743             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1744             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1745                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1746                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1747                                      dst0, s->frame->linesize[0], tmp,
1748                                      tmpstride, nPbW, nPbH);
1749         } else {
1750             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1751         }
1752         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1753                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1754
1755         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1756             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1757             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1758                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1759                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1760                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1761                                      nPbW / 2, nPbH / 2);
1762             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1763                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1764                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1765                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1766                                      nPbW / 2, nPbH / 2);
1767         } else {
1768             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1769             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1770         }
1771     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1772         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1773         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1774
1775         luma_mc(s, tmp, tmpstride, ref1->frame,
1776                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1777
1778         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1779             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1780             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1781                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1782                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1783                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1784                                       nPbW, nPbH);
1785         } else {
1786             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1787         }
1788
1789         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1790                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1791
1792         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1793             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1794             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1795                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1796                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1797                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1798             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1799                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1800                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1801                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1802         } else {
1803             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1804             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1805         }
1806     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1807         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1808         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1809         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1810         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1811
1812         luma_mc(s, tmp, tmpstride, ref0->frame,
1813                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1814         luma_mc(s, tmp2, tmpstride, ref1->frame,
1815                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1816
1817         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1818             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1819             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1820                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1821                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1822                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1823                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1824                                          dst0, s->frame->linesize[0],
1825                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1826         } else {
1827             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1828                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1829         }
1830
1831         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1832                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1833         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1834                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1835
1836         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1837             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1838             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1839                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1840                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1841                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1842                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1843                                          dst1, s->frame->linesize[1], tmp, tmp3,
1844                                          tmpstride, nPbW / 2, nPbH / 2);
1845             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1846                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1847                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1848                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1849                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1850                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1851                                          tmpstride, nPbW / 2, nPbH / 2);
1852         } else {
1853             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1854             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1855         }
1856     }
1857 }
1858
1859 /**
1860  * 8.4.1
1861  */
1862 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1863                                 int prev_intra_luma_pred_flag)
1864 {
1865     HEVCLocalContext *lc = &s->HEVClc;
1866     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1867     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1868     int min_pu_width     = s->sps->min_pu_width;
1869     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1870     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1871     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1872
1873     int cand_up   = (lc->ctb_up_flag || y0b) ?
1874                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1875     int cand_left = (lc->ctb_left_flag || x0b) ?
1876                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1877
1878     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1879
1880     MvField *tab_mvf = s->ref->tab_mvf;
1881     int intra_pred_mode;
1882     int candidate[3];
1883     int i, j;
1884
1885     // intra_pred_mode prediction does not cross vertical CTB boundaries
1886     if ((y0 - 1) < y_ctb)
1887         cand_up = INTRA_DC;
1888
1889     if (cand_left == cand_up) {
1890         if (cand_left < 2) {
1891             candidate[0] = INTRA_PLANAR;
1892             candidate[1] = INTRA_DC;
1893             candidate[2] = INTRA_ANGULAR_26;
1894         } else {
1895             candidate[0] = cand_left;
1896             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1897             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1898         }
1899     } else {
1900         candidate[0] = cand_left;
1901         candidate[1] = cand_up;
1902         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1903             candidate[2] = INTRA_PLANAR;
1904         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1905             candidate[2] = INTRA_DC;
1906         } else {
1907             candidate[2] = INTRA_ANGULAR_26;
1908         }
1909     }
1910
1911     if (prev_intra_luma_pred_flag) {
1912         intra_pred_mode = candidate[lc->pu.mpm_idx];
1913     } else {
1914         if (candidate[0] > candidate[1])
1915             FFSWAP(uint8_t, candidate[0], candidate[1]);
1916         if (candidate[0] > candidate[2])
1917             FFSWAP(uint8_t, candidate[0], candidate[2]);
1918         if (candidate[1] > candidate[2])
1919             FFSWAP(uint8_t, candidate[1], candidate[2]);
1920
1921         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1922         for (i = 0; i < 3; i++)
1923             if (intra_pred_mode >= candidate[i])
1924                 intra_pred_mode++;
1925     }
1926
1927     /* write the intra prediction units into the mv array */
1928     if (!size_in_pus)
1929         size_in_pus = 1;
1930     for (i = 0; i < size_in_pus; i++) {
1931         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1932                intra_pred_mode, size_in_pus);
1933
1934         for (j = 0; j < size_in_pus; j++) {
1935             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1936             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1937             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1938             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1939             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1940             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1941             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1942             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1943             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1944         }
1945     }
1946
1947     return intra_pred_mode;
1948 }
1949
1950 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1951                                           int log2_cb_size, int ct_depth)
1952 {
1953     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1954     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1955     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1956     int y;
1957
1958     for (y = 0; y < length; y++)
1959         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1960                ct_depth, length);
1961 }
1962
1963 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1964                                   int log2_cb_size)
1965 {
1966     HEVCLocalContext *lc = &s->HEVClc;
1967     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1968     uint8_t prev_intra_luma_pred_flag[4];
1969     int split   = lc->cu.part_mode == PART_NxN;
1970     int pb_size = (1 << log2_cb_size) >> split;
1971     int side    = split + 1;
1972     int chroma_mode;
1973     int i, j;
1974
1975     for (i = 0; i < side; i++)
1976         for (j = 0; j < side; j++)
1977             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
1978
1979     for (i = 0; i < side; i++) {
1980         for (j = 0; j < side; j++) {
1981             if (prev_intra_luma_pred_flag[2 * i + j])
1982                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
1983             else
1984                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
1985
1986             lc->pu.intra_pred_mode[2 * i + j] =
1987                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
1988                                      prev_intra_luma_pred_flag[2 * i + j]);
1989         }
1990     }
1991
1992     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
1993     if (chroma_mode != 4) {
1994         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
1995             lc->pu.intra_pred_mode_c = 34;
1996         else
1997             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
1998     } else {
1999         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
2000     }
2001 }
2002
2003 static void intra_prediction_unit_default_value(HEVCContext *s,
2004                                                 int x0, int y0,
2005                                                 int log2_cb_size)
2006 {
2007     HEVCLocalContext *lc = &s->HEVClc;
2008     int pb_size          = 1 << log2_cb_size;
2009     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
2010     int min_pu_width     = s->sps->min_pu_width;
2011     MvField *tab_mvf     = s->ref->tab_mvf;
2012     int x_pu             = x0 >> s->sps->log2_min_pu_size;
2013     int y_pu             = y0 >> s->sps->log2_min_pu_size;
2014     int j, k;
2015
2016     if (size_in_pus == 0)
2017         size_in_pus = 1;
2018     for (j = 0; j < size_in_pus; j++) {
2019         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2020         for (k = 0; k < size_in_pus; k++)
2021             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
2022     }
2023 }
2024
2025 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
2026 {
2027     int cb_size          = 1 << log2_cb_size;
2028     HEVCLocalContext *lc = &s->HEVClc;
2029     int log2_min_cb_size = s->sps->log2_min_cb_size;
2030     int length           = cb_size >> log2_min_cb_size;
2031     int min_cb_width     = s->sps->min_cb_width;
2032     int x_cb             = x0 >> log2_min_cb_size;
2033     int y_cb             = y0 >> log2_min_cb_size;
2034     int x, y, ret;
2035
2036     lc->cu.x                = x0;
2037     lc->cu.y                = y0;
2038     lc->cu.pred_mode        = MODE_INTRA;
2039     lc->cu.part_mode        = PART_2Nx2N;
2040     lc->cu.intra_split_flag = 0;
2041
2042     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
2043     for (x = 0; x < 4; x++)
2044         lc->pu.intra_pred_mode[x] = 1;
2045     if (s->pps->transquant_bypass_enable_flag) {
2046         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
2047         if (lc->cu.cu_transquant_bypass_flag)
2048             set_deblocking_bypass(s, x0, y0, log2_cb_size);
2049     } else
2050         lc->cu.cu_transquant_bypass_flag = 0;
2051
2052     if (s->sh.slice_type != I_SLICE) {
2053         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
2054
2055         x = y_cb * min_cb_width + x_cb;
2056         for (y = 0; y < length; y++) {
2057             memset(&s->skip_flag[x], skip_flag, length);
2058             x += min_cb_width;
2059         }
2060         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2061     }
2062
2063     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
2064         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2065         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2066
2067         if (!s->sh.disable_deblocking_filter_flag)
2068             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2069     } else {
2070         int pcm_flag = 0;
2071
2072         if (s->sh.slice_type != I_SLICE)
2073             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
2074         if (lc->cu.pred_mode != MODE_INTRA ||
2075             log2_cb_size == s->sps->log2_min_cb_size) {
2076             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
2077             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2078                                       lc->cu.pred_mode == MODE_INTRA;
2079         }
2080
2081         if (lc->cu.pred_mode == MODE_INTRA) {
2082             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
2083                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
2084                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2085                 pcm_flag = ff_hevc_pcm_flag_decode(s);
2086             }
2087             if (pcm_flag) {
2088                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2089                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
2090                 if (s->sps->pcm.loop_filter_disable_flag)
2091                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
2092
2093                 if (ret < 0)
2094                     return ret;
2095             } else {
2096                 intra_prediction_unit(s, x0, y0, log2_cb_size);
2097             }
2098         } else {
2099             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2100             switch (lc->cu.part_mode) {
2101             case PART_2Nx2N:
2102                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2103                 break;
2104             case PART_2NxN:
2105                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
2106                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
2107                 break;
2108             case PART_Nx2N:
2109                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
2110                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
2111                 break;
2112             case PART_2NxnU:
2113                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
2114                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
2115                 break;
2116             case PART_2NxnD:
2117                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
2118                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
2119                 break;
2120             case PART_nLx2N:
2121                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
2122                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
2123                 break;
2124             case PART_nRx2N:
2125                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
2126                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
2127                 break;
2128             case PART_NxN:
2129                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
2130                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
2131                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
2132                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2133                 break;
2134             }
2135         }
2136
2137         if (!pcm_flag) {
2138             int rqt_root_cbf = 1;
2139
2140             if (lc->cu.pred_mode != MODE_INTRA &&
2141                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2142                 rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
2143             }
2144             if (rqt_root_cbf) {
2145                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2146                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2147                                          s->sps->max_transform_hierarchy_depth_inter;
2148                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
2149                                          log2_cb_size,
2150                                          log2_cb_size, 0, 0, 0, 0);
2151                 if (ret < 0)
2152                     return ret;
2153             } else {
2154                 if (!s->sh.disable_deblocking_filter_flag)
2155                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2156             }
2157         }
2158     }
2159
2160     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2161         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
2162
2163     x = y_cb * min_cb_width + x_cb;
2164     for (y = 0; y < length; y++) {
2165         memset(&s->qp_y_tab[x], lc->qp_y, length);
2166         x += min_cb_width;
2167     }
2168
2169     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
2170
2171     return 0;
2172 }
2173
2174 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
2175                                int log2_cb_size, int cb_depth)
2176 {
2177     HEVCLocalContext *lc = &s->HEVClc;
2178     const int cb_size    = 1 << log2_cb_size;
2179     int split_cu;
2180
2181     lc->ct.depth = cb_depth;
2182     if (x0 + cb_size <= s->sps->width  &&
2183         y0 + cb_size <= s->sps->height &&
2184         log2_cb_size > s->sps->log2_min_cb_size) {
2185         split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
2186     } else {
2187         split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
2188     }
2189     if (s->pps->cu_qp_delta_enabled_flag &&
2190         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
2191         lc->tu.is_cu_qp_delta_coded = 0;
2192         lc->tu.cu_qp_delta          = 0;
2193     }
2194
2195     if (split_cu) {
2196         const int cb_size_split = cb_size >> 1;
2197         const int x1 = x0 + cb_size_split;
2198         const int y1 = y0 + cb_size_split;
2199
2200         log2_cb_size--;
2201         cb_depth++;
2202
2203 #define SUBDIVIDE(x, y)                                                \
2204 do {                                                                   \
2205     if (x < s->sps->width && y < s->sps->height) {                     \
2206         int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2207         if (ret < 0)                                                   \
2208             return ret;                                                \
2209     }                                                                  \
2210 } while (0)
2211
2212         SUBDIVIDE(x0, y0);
2213         SUBDIVIDE(x1, y0);
2214         SUBDIVIDE(x0, y1);
2215         SUBDIVIDE(x1, y1);
2216     } else {
2217         int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
2218         if (ret < 0)
2219             return ret;
2220     }
2221
2222     return 0;
2223 }
2224
2225 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
2226                                  int ctb_addr_ts)
2227 {
2228     HEVCLocalContext *lc  = &s->HEVClc;
2229     int ctb_size          = 1 << s->sps->log2_ctb_size;
2230     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2231     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2232
2233     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2234
2235     if (s->pps->entropy_coding_sync_enabled_flag) {
2236         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2237             lc->first_qp_group = 1;
2238         lc->end_of_tiles_x = s->sps->width;
2239     } else if (s->pps->tiles_enabled_flag) {
2240         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
2241             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
2242             lc->start_of_tiles_x = x_ctb;
2243             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
2244             lc->first_qp_group   = 1;
2245         }
2246     } else {
2247         lc->end_of_tiles_x = s->sps->width;
2248     }
2249
2250     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
2251
2252     lc->boundary_flags = 0;
2253     if (s->pps->tiles_enabled_flag) {
2254         if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2255             lc->boundary_flags |= BOUNDARY_LEFT_TILE;
2256         if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
2257             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2258         if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
2259             lc->boundary_flags |= BOUNDARY_UPPER_TILE;
2260         if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
2261             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2262     } else {
2263         if (!ctb_addr_in_slice > 0)
2264             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2265         if (ctb_addr_in_slice < s->sps->ctb_width)
2266             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2267     }
2268
2269     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2270     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2271     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
2272     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
2273 }
2274
2275 static int hls_slice_data(HEVCContext *s)
2276 {
2277     int ctb_size    = 1 << s->sps->log2_ctb_size;
2278     int more_data   = 1;
2279     int x_ctb       = 0;
2280     int y_ctb       = 0;
2281     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2282     int ret;
2283
2284     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2285         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2286
2287         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2288         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2289         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
2290
2291         ff_hevc_cabac_init(s, ctb_addr_ts);
2292
2293         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2294
2295         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2296         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
2297         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
2298
2299         ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2300         if (ret < 0)
2301             return ret;
2302         more_data = !ff_hevc_end_of_slice_flag_decode(s);
2303
2304         ctb_addr_ts++;
2305         ff_hevc_save_states(s, ctb_addr_ts);
2306         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2307     }
2308
2309     if (x_ctb + ctb_size >= s->sps->width &&
2310         y_ctb + ctb_size >= s->sps->height)
2311         ff_hevc_hls_filter(s, x_ctb, y_ctb);
2312
2313     return ctb_addr_ts;
2314 }
2315
2316 /**
2317  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2318  * 0 if the unit should be skipped, 1 otherwise
2319  */
2320 static int hls_nal_unit(HEVCContext *s)
2321 {
2322     GetBitContext *gb = &s->HEVClc.gb;
2323     int nuh_layer_id;
2324
2325     if (get_bits1(gb) != 0)
2326         return AVERROR_INVALIDDATA;
2327
2328     s->nal_unit_type = get_bits(gb, 6);
2329
2330     nuh_layer_id   = get_bits(gb, 6);
2331     s->temporal_id = get_bits(gb, 3) - 1;
2332     if (s->temporal_id < 0)
2333         return AVERROR_INVALIDDATA;
2334
2335     av_log(s->avctx, AV_LOG_DEBUG,
2336            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2337            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2338
2339     return nuh_layer_id == 0;
2340 }
2341
2342 static void restore_tqb_pixels(HEVCContext *s)
2343 {
2344     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2345     int x, y, c_idx;
2346
2347     for (c_idx = 0; c_idx < 3; c_idx++) {
2348         ptrdiff_t stride = s->frame->linesize[c_idx];
2349         int hshift       = s->sps->hshift[c_idx];
2350         int vshift       = s->sps->vshift[c_idx];
2351         for (y = 0; y < s->sps->min_pu_height; y++) {
2352             for (x = 0; x < s->sps->min_pu_width; x++) {
2353                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2354                     int n;
2355                     int len      = min_pu_size >> hshift;
2356                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2357                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2358                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2359                         memcpy(dst, src, len);
2360                         src += stride;
2361                         dst += stride;
2362                     }
2363                 }
2364             }
2365         }
2366     }
2367 }
2368
2369 static int set_side_data(HEVCContext *s)
2370 {
2371     AVFrame *out = s->ref->frame;
2372
2373     if (s->sei_frame_packing_present &&
2374         s->frame_packing_arrangement_type >= 3 &&
2375         s->frame_packing_arrangement_type <= 5 &&
2376         s->content_interpretation_type > 0 &&
2377         s->content_interpretation_type < 3) {
2378         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2379         if (!stereo)
2380             return AVERROR(ENOMEM);
2381
2382         switch (s->frame_packing_arrangement_type) {
2383         case 3:
2384             if (s->quincunx_subsampling)
2385                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2386             else
2387                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2388             break;
2389         case 4:
2390             stereo->type = AV_STEREO3D_TOPBOTTOM;
2391             break;
2392         case 5:
2393             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2394             break;
2395         }
2396
2397         if (s->content_interpretation_type == 2)
2398             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2399     }
2400
2401     if (s->sei_display_orientation_present &&
2402         (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
2403         double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
2404         AVFrameSideData *rotation = av_frame_new_side_data(out,
2405                                                            AV_FRAME_DATA_DISPLAYMATRIX,
2406                                                            sizeof(int32_t) * 9);
2407         if (!rotation)
2408             return AVERROR(ENOMEM);
2409
2410         av_display_rotation_set((int32_t *)rotation->data, angle);
2411         av_display_matrix_flip((int32_t *)rotation->data,
2412                                s->sei_hflip, s->sei_vflip);
2413     }
2414
2415     return 0;
2416 }
2417
2418 static int hevc_frame_start(HEVCContext *s)
2419 {
2420     HEVCLocalContext *lc = &s->HEVClc;
2421     int ret;
2422
2423     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2424     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2425     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2426     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2427
2428     lc->start_of_tiles_x = 0;
2429     s->is_decoded        = 0;
2430     s->first_nal_type    = s->nal_unit_type;
2431
2432     if (s->pps->tiles_enabled_flag)
2433         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2434
2435     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2436                               s->poc);
2437     if (ret < 0)
2438         goto fail;
2439
2440     ret = ff_hevc_frame_rps(s);
2441     if (ret < 0) {
2442         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2443         goto fail;
2444     }
2445
2446     s->ref->frame->key_frame = IS_IRAP(s);
2447
2448     ret = set_side_data(s);
2449     if (ret < 0)
2450         goto fail;
2451
2452     av_frame_unref(s->output_frame);
2453     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2454     if (ret < 0)
2455         goto fail;
2456
2457     ff_thread_finish_setup(s->avctx);
2458
2459     return 0;
2460
2461 fail:
2462     if (s->ref)
2463         ff_hevc_unref_frame(s, s->ref, ~0);
2464     s->ref = NULL;
2465     return ret;
2466 }
2467
2468 static int decode_nal_unit(HEVCContext *s, const HEVCNAL *nal)
2469 {
2470     HEVCLocalContext *lc = &s->HEVClc;
2471     GetBitContext *gb    = &lc->gb;
2472     int ctb_addr_ts, ret;
2473
2474     ret = init_get_bits8(gb, nal->data, nal->size);
2475     if (ret < 0)
2476         return ret;
2477
2478     ret = hls_nal_unit(s);
2479     if (ret < 0) {
2480         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2481                s->nal_unit_type);
2482         goto fail;
2483     } else if (!ret)
2484         return 0;
2485
2486     switch (s->nal_unit_type) {
2487     case NAL_VPS:
2488         ret = ff_hevc_decode_nal_vps(s);
2489         if (ret < 0)
2490             goto fail;
2491         break;
2492     case NAL_SPS:
2493         ret = ff_hevc_decode_nal_sps(s);
2494         if (ret < 0)
2495             goto fail;
2496         break;
2497     case NAL_PPS:
2498         ret = ff_hevc_decode_nal_pps(s);
2499         if (ret < 0)
2500             goto fail;
2501         break;
2502     case NAL_SEI_PREFIX:
2503     case NAL_SEI_SUFFIX:
2504         ret = ff_hevc_decode_nal_sei(s);
2505         if (ret < 0)
2506             goto fail;
2507         break;
2508     case NAL_TRAIL_R:
2509     case NAL_TRAIL_N:
2510     case NAL_TSA_N:
2511     case NAL_TSA_R:
2512     case NAL_STSA_N:
2513     case NAL_STSA_R:
2514     case NAL_BLA_W_LP:
2515     case NAL_BLA_W_RADL:
2516     case NAL_BLA_N_LP:
2517     case NAL_IDR_W_RADL:
2518     case NAL_IDR_N_LP:
2519     case NAL_CRA_NUT:
2520     case NAL_RADL_N:
2521     case NAL_RADL_R:
2522     case NAL_RASL_N:
2523     case NAL_RASL_R:
2524         ret = hls_slice_header(s);
2525         if (ret < 0)
2526             return ret;
2527
2528         if (s->max_ra == INT_MAX) {
2529             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2530                 s->max_ra = s->poc;
2531             } else {
2532                 if (IS_IDR(s))
2533                     s->max_ra = INT_MIN;
2534             }
2535         }
2536
2537         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2538             s->poc <= s->max_ra) {
2539             s->is_decoded = 0;
2540             break;
2541         } else {
2542             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2543                 s->max_ra = INT_MIN;
2544         }
2545
2546         if (s->sh.first_slice_in_pic_flag) {
2547             ret = hevc_frame_start(s);
2548             if (ret < 0)
2549                 return ret;
2550         } else if (!s->ref) {
2551             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2552             goto fail;
2553         }
2554
2555         if (s->nal_unit_type != s->first_nal_type) {
2556             av_log(s->avctx, AV_LOG_ERROR,
2557                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2558                    s->first_nal_type, s->nal_unit_type);
2559             return AVERROR_INVALIDDATA;
2560         }
2561
2562         if (!s->sh.dependent_slice_segment_flag &&
2563             s->sh.slice_type != I_SLICE) {
2564             ret = ff_hevc_slice_rpl(s);
2565             if (ret < 0) {
2566                 av_log(s->avctx, AV_LOG_WARNING,
2567                        "Error constructing the reference lists for the current slice.\n");
2568                 goto fail;
2569             }
2570         }
2571
2572         ctb_addr_ts = hls_slice_data(s);
2573         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2574             s->is_decoded = 1;
2575             if ((s->pps->transquant_bypass_enable_flag ||
2576                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2577                 s->sps->sao_enabled)
2578                 restore_tqb_pixels(s);
2579         }
2580
2581         if (ctb_addr_ts < 0) {
2582             ret = ctb_addr_ts;
2583             goto fail;
2584         }
2585         break;
2586     case NAL_EOS_NUT:
2587     case NAL_EOB_NUT:
2588         s->seq_decode = (s->seq_decode + 1) & 0xff;
2589         s->max_ra     = INT_MAX;
2590         break;
2591     case NAL_AUD:
2592     case NAL_FD_NUT:
2593         break;
2594     default:
2595         av_log(s->avctx, AV_LOG_INFO,
2596                "Skipping NAL unit %d\n", s->nal_unit_type);
2597     }
2598
2599     return 0;
2600 fail:
2601     if (s->avctx->err_recognition & AV_EF_EXPLODE)
2602         return ret;
2603     return 0;
2604 }
2605
2606 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2607  * between these functions would be nice. */
2608 static int extract_rbsp(const uint8_t *src, int length,
2609                         HEVCNAL *nal)
2610 {
2611     int i, si, di;
2612     uint8_t *dst;
2613
2614 #define STARTCODE_TEST                                                  \
2615         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2616             if (src[i + 2] != 3) {                                      \
2617                 /* startcode, so we must be past the end */             \
2618                 length = i;                                             \
2619             }                                                           \
2620             break;                                                      \
2621         }
2622 #if HAVE_FAST_UNALIGNED
2623 #define FIND_FIRST_ZERO                                                 \
2624         if (i > 0 && !src[i])                                           \
2625             i--;                                                        \
2626         while (src[i])                                                  \
2627             i++
2628 #if HAVE_FAST_64BIT
2629     for (i = 0; i + 1 < length; i += 9) {
2630         if (!((~AV_RN64A(src + i) &
2631                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2632               0x8000800080008080ULL))
2633             continue;
2634         FIND_FIRST_ZERO;
2635         STARTCODE_TEST;
2636         i -= 7;
2637     }
2638 #else
2639     for (i = 0; i + 1 < length; i += 5) {
2640         if (!((~AV_RN32A(src + i) &
2641                (AV_RN32A(src + i) - 0x01000101U)) &
2642               0x80008080U))
2643             continue;
2644         FIND_FIRST_ZERO;
2645         STARTCODE_TEST;
2646         i -= 3;
2647     }
2648 #endif /* HAVE_FAST_64BIT */
2649 #else
2650     for (i = 0; i + 1 < length; i += 2) {
2651         if (src[i])
2652             continue;
2653         if (i > 0 && src[i - 1] == 0)
2654             i--;
2655         STARTCODE_TEST;
2656     }
2657 #endif /* HAVE_FAST_UNALIGNED */
2658
2659     if (i >= length - 1) { // no escaped 0
2660         nal->data = src;
2661         nal->size = length;
2662         return length;
2663     }
2664
2665     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2666                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2667     if (!nal->rbsp_buffer)
2668         return AVERROR(ENOMEM);
2669
2670     dst = nal->rbsp_buffer;
2671
2672     memcpy(dst, src, i);
2673     si = di = i;
2674     while (si + 2 < length) {
2675         // remove escapes (very rare 1:2^22)
2676         if (src[si + 2] > 3) {
2677             dst[di++] = src[si++];
2678             dst[di++] = src[si++];
2679         } else if (src[si] == 0 && src[si + 1] == 0) {
2680             if (src[si + 2] == 3) { // escape
2681                 dst[di++] = 0;
2682                 dst[di++] = 0;
2683                 si       += 3;
2684
2685                 continue;
2686             } else // next start code
2687                 goto nsc;
2688         }
2689
2690         dst[di++] = src[si++];
2691     }
2692     while (si < length)
2693         dst[di++] = src[si++];
2694
2695 nsc:
2696     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2697
2698     nal->data = dst;
2699     nal->size = di;
2700     return si;
2701 }
2702
2703 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2704 {
2705     int i, consumed, ret = 0;
2706
2707     s->ref = NULL;
2708     s->eos = 0;
2709
2710     /* split the input packet into NAL units, so we know the upper bound on the
2711      * number of slices in the frame */
2712     s->nb_nals = 0;
2713     while (length >= 4) {
2714         HEVCNAL *nal;
2715         int extract_length = 0;
2716
2717         if (s->is_nalff) {
2718             int i;
2719             for (i = 0; i < s->nal_length_size; i++)
2720                 extract_length = (extract_length << 8) | buf[i];
2721             buf    += s->nal_length_size;
2722             length -= s->nal_length_size;
2723
2724             if (extract_length > length) {
2725                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2726                 ret = AVERROR_INVALIDDATA;
2727                 goto fail;
2728             }
2729         } else {
2730             if (buf[2] == 0) {
2731                 length--;
2732                 buf++;
2733                 continue;
2734             }
2735             if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2736                 ret = AVERROR_INVALIDDATA;
2737                 goto fail;
2738             }
2739
2740             buf           += 3;
2741             length        -= 3;
2742             extract_length = length;
2743         }
2744
2745         if (s->nals_allocated < s->nb_nals + 1) {
2746             int new_size = s->nals_allocated + 1;
2747             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2748             if (!tmp) {
2749                 ret = AVERROR(ENOMEM);
2750                 goto fail;
2751             }
2752             s->nals = tmp;
2753             memset(s->nals + s->nals_allocated, 0,
2754                    (new_size - s->nals_allocated) * sizeof(*tmp));
2755             s->nals_allocated = new_size;
2756         }
2757         nal = &s->nals[s->nb_nals++];
2758
2759         consumed = extract_rbsp(buf, extract_length, nal);
2760         if (consumed < 0) {
2761             ret = consumed;
2762             goto fail;
2763         }
2764
2765         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
2766         if (ret < 0)
2767             goto fail;
2768         hls_nal_unit(s);
2769
2770         if (s->nal_unit_type == NAL_EOB_NUT ||
2771             s->nal_unit_type == NAL_EOS_NUT)
2772             s->eos = 1;
2773
2774         buf    += consumed;
2775         length -= consumed;
2776     }
2777
2778     /* parse the NAL units */
2779     for (i = 0; i < s->nb_nals; i++) {
2780         int ret = decode_nal_unit(s, &s->nals[i]);
2781         if (ret < 0) {
2782             av_log(s->avctx, AV_LOG_WARNING,
2783                    "Error parsing NAL unit #%d.\n", i);
2784             goto fail;
2785         }
2786     }
2787
2788 fail:
2789     if (s->ref)
2790         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2791
2792     return ret;
2793 }
2794
2795 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2796 {
2797     int i;
2798     for (i = 0; i < 16; i++)
2799         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2800 }
2801
2802 static int verify_md5(HEVCContext *s, AVFrame *frame)
2803 {
2804     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2805     int pixel_shift;
2806     int i, j;
2807
2808     if (!desc)
2809         return AVERROR(EINVAL);
2810
2811     pixel_shift = desc->comp[0].depth_minus1 > 7;
2812
2813     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2814            s->poc);
2815
2816     /* the checksums are LE, so we have to byteswap for >8bpp formats
2817      * on BE arches */
2818 #if HAVE_BIGENDIAN
2819     if (pixel_shift && !s->checksum_buf) {
2820         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2821                        FFMAX3(frame->linesize[0], frame->linesize[1],
2822                               frame->linesize[2]));
2823         if (!s->checksum_buf)
2824             return AVERROR(ENOMEM);
2825     }
2826 #endif
2827
2828     for (i = 0; frame->data[i]; i++) {
2829         int width  = s->avctx->coded_width;
2830         int height = s->avctx->coded_height;
2831         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2832         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2833         uint8_t md5[16];
2834
2835         av_md5_init(s->md5_ctx);
2836         for (j = 0; j < h; j++) {
2837             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2838 #if HAVE_BIGENDIAN
2839             if (pixel_shift) {
2840                 s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
2841                                     (const uint16_t *) src, w);
2842                 src = s->checksum_buf;
2843             }
2844 #endif
2845             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2846         }
2847         av_md5_final(s->md5_ctx, md5);
2848
2849         if (!memcmp(md5, s->md5[i], 16)) {
2850             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2851             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2852             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2853         } else {
2854             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2855             print_md5(s->avctx, AV_LOG_ERROR, md5);
2856             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2857             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2858             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2859             return AVERROR_INVALIDDATA;
2860         }
2861     }
2862
2863     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2864
2865     return 0;
2866 }
2867
2868 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2869                              AVPacket *avpkt)
2870 {
2871     int ret;
2872     HEVCContext *s = avctx->priv_data;
2873
2874     if (!avpkt->size) {
2875         ret = ff_hevc_output_frame(s, data, 1);
2876         if (ret < 0)
2877             return ret;
2878
2879         *got_output = ret;
2880         return 0;
2881     }
2882
2883     s->ref = NULL;
2884     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2885     if (ret < 0)
2886         return ret;
2887
2888     /* verify the SEI checksum */
2889     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2890         s->is_md5) {
2891         ret = verify_md5(s, s->ref->frame);
2892         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2893             ff_hevc_unref_frame(s, s->ref, ~0);
2894             return ret;
2895         }
2896     }
2897     s->is_md5 = 0;
2898
2899     if (s->is_decoded) {
2900         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2901         s->is_decoded = 0;
2902     }
2903
2904     if (s->output_frame->buf[0]) {
2905         av_frame_move_ref(data, s->output_frame);
2906         *got_output = 1;
2907     }
2908
2909     return avpkt->size;
2910 }
2911
2912 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2913 {
2914     int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2915     if (ret < 0)
2916         return ret;
2917
2918     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2919     if (!dst->tab_mvf_buf)
2920         goto fail;
2921     dst->tab_mvf = src->tab_mvf;
2922
2923     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2924     if (!dst->rpl_tab_buf)
2925         goto fail;
2926     dst->rpl_tab = src->rpl_tab;
2927
2928     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2929     if (!dst->rpl_buf)
2930         goto fail;
2931
2932     dst->poc        = src->poc;
2933     dst->ctb_count  = src->ctb_count;
2934     dst->window     = src->window;
2935     dst->flags      = src->flags;
2936     dst->sequence   = src->sequence;
2937
2938     return 0;
2939 fail:
2940     ff_hevc_unref_frame(s, dst, ~0);
2941     return AVERROR(ENOMEM);
2942 }
2943
2944 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2945 {
2946     HEVCContext       *s = avctx->priv_data;
2947     int i;
2948
2949     pic_arrays_free(s);
2950
2951     av_freep(&s->md5_ctx);
2952
2953     av_frame_free(&s->tmp_frame);
2954     av_frame_free(&s->output_frame);
2955
2956     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2957         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2958         av_frame_free(&s->DPB[i].frame);
2959     }
2960
2961     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2962         av_buffer_unref(&s->vps_list[i]);
2963     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2964         av_buffer_unref(&s->sps_list[i]);
2965     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2966         av_buffer_unref(&s->pps_list[i]);
2967
2968     for (i = 0; i < s->nals_allocated; i++)
2969         av_freep(&s->nals[i].rbsp_buffer);
2970     av_freep(&s->nals);
2971     s->nals_allocated = 0;
2972
2973     return 0;
2974 }
2975
2976 static av_cold int hevc_init_context(AVCodecContext *avctx)
2977 {
2978     HEVCContext *s = avctx->priv_data;
2979     int i;
2980
2981     s->avctx = avctx;
2982
2983     s->tmp_frame = av_frame_alloc();
2984     if (!s->tmp_frame)
2985         goto fail;
2986
2987     s->output_frame = av_frame_alloc();
2988     if (!s->output_frame)
2989         goto fail;
2990
2991     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2992         s->DPB[i].frame = av_frame_alloc();
2993         if (!s->DPB[i].frame)
2994             goto fail;
2995         s->DPB[i].tf.f = s->DPB[i].frame;
2996     }
2997
2998     s->max_ra = INT_MAX;
2999
3000     s->md5_ctx = av_md5_alloc();
3001     if (!s->md5_ctx)
3002         goto fail;
3003
3004     ff_bswapdsp_init(&s->bdsp);
3005
3006     s->context_initialized = 1;
3007
3008     return 0;
3009
3010 fail:
3011     hevc_decode_free(avctx);
3012     return AVERROR(ENOMEM);
3013 }
3014
3015 static int hevc_update_thread_context(AVCodecContext *dst,
3016                                       const AVCodecContext *src)
3017 {
3018     HEVCContext *s  = dst->priv_data;
3019     HEVCContext *s0 = src->priv_data;
3020     int i, ret;
3021
3022     if (!s->context_initialized) {
3023         ret = hevc_init_context(dst);
3024         if (ret < 0)
3025             return ret;
3026     }
3027
3028     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3029         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
3030         if (s0->DPB[i].frame->buf[0]) {
3031             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
3032             if (ret < 0)
3033                 return ret;
3034         }
3035     }
3036
3037     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
3038         av_buffer_unref(&s->vps_list[i]);
3039         if (s0->vps_list[i]) {
3040             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
3041             if (!s->vps_list[i])
3042                 return AVERROR(ENOMEM);
3043         }
3044     }
3045
3046     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
3047         av_buffer_unref(&s->sps_list[i]);
3048         if (s0->sps_list[i]) {
3049             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
3050             if (!s->sps_list[i])
3051                 return AVERROR(ENOMEM);
3052         }
3053     }
3054
3055     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
3056         av_buffer_unref(&s->pps_list[i]);
3057         if (s0->pps_list[i]) {
3058             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
3059             if (!s->pps_list[i])
3060                 return AVERROR(ENOMEM);
3061         }
3062     }
3063
3064     if (s->sps != s0->sps)
3065         ret = set_sps(s, s0->sps);
3066
3067     s->seq_decode = s0->seq_decode;
3068     s->seq_output = s0->seq_output;
3069     s->pocTid0    = s0->pocTid0;
3070     s->max_ra     = s0->max_ra;
3071
3072     s->is_nalff        = s0->is_nalff;
3073     s->nal_length_size = s0->nal_length_size;
3074
3075     if (s0->eos) {
3076         s->seq_decode = (s->seq_decode + 1) & 0xff;
3077         s->max_ra = INT_MAX;
3078     }
3079
3080     return 0;
3081 }
3082
3083 static int hevc_decode_extradata(HEVCContext *s)
3084 {
3085     AVCodecContext *avctx = s->avctx;
3086     GetByteContext gb;
3087     int ret;
3088
3089     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
3090
3091     if (avctx->extradata_size > 3 &&
3092         (avctx->extradata[0] || avctx->extradata[1] ||
3093          avctx->extradata[2] > 1)) {
3094         /* It seems the extradata is encoded as hvcC format.
3095          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
3096          * is finalized. When finalized, configurationVersion will be 1 and we
3097          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
3098         int i, j, num_arrays, nal_len_size;
3099
3100         s->is_nalff = 1;
3101
3102         bytestream2_skip(&gb, 21);
3103         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3104         num_arrays   = bytestream2_get_byte(&gb);
3105
3106         /* nal units in the hvcC always have length coded with 2 bytes,
3107          * so put a fake nal_length_size = 2 while parsing them */
3108         s->nal_length_size = 2;
3109
3110         /* Decode nal units from hvcC. */
3111         for (i = 0; i < num_arrays; i++) {
3112             int type = bytestream2_get_byte(&gb) & 0x3f;
3113             int cnt  = bytestream2_get_be16(&gb);
3114
3115             for (j = 0; j < cnt; j++) {
3116                 // +2 for the nal size field
3117                 int nalsize = bytestream2_peek_be16(&gb) + 2;
3118                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
3119                     av_log(s->avctx, AV_LOG_ERROR,
3120                            "Invalid NAL unit size in extradata.\n");
3121                     return AVERROR_INVALIDDATA;
3122                 }
3123
3124                 ret = decode_nal_units(s, gb.buffer, nalsize);
3125                 if (ret < 0) {
3126                     av_log(avctx, AV_LOG_ERROR,
3127                            "Decoding nal unit %d %d from hvcC failed\n",
3128                            type, i);
3129                     return ret;
3130                 }
3131                 bytestream2_skip(&gb, nalsize);
3132             }
3133         }
3134
3135         /* Now store right nal length size, that will be used to parse
3136          * all other nals */
3137         s->nal_length_size = nal_len_size;
3138     } else {
3139         s->is_nalff = 0;
3140         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
3141         if (ret < 0)
3142             return ret;
3143     }
3144     return 0;
3145 }
3146
3147 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3148 {
3149     HEVCContext *s = avctx->priv_data;
3150     int ret;
3151
3152     ff_init_cabac_states();
3153
3154     avctx->internal->allocate_progress = 1;
3155
3156     ret = hevc_init_context(avctx);
3157     if (ret < 0)
3158         return ret;
3159
3160     if (avctx->extradata_size > 0 && avctx->extradata) {
3161         ret = hevc_decode_extradata(s);
3162         if (ret < 0) {
3163             hevc_decode_free(avctx);
3164             return ret;
3165         }
3166     }
3167
3168     return 0;
3169 }
3170
3171 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3172 {
3173     HEVCContext *s = avctx->priv_data;
3174     int ret;
3175
3176     memset(s, 0, sizeof(*s));
3177
3178     ret = hevc_init_context(avctx);
3179     if (ret < 0)
3180         return ret;
3181
3182     return 0;
3183 }
3184
3185 static void hevc_decode_flush(AVCodecContext *avctx)
3186 {
3187     HEVCContext *s = avctx->priv_data;
3188     ff_hevc_flush_dpb(s);
3189     s->max_ra = INT_MAX;
3190 }
3191
3192 #define OFFSET(x) offsetof(HEVCContext, x)
3193 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3194
3195 static const AVProfile profiles[] = {
3196     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3197     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3198     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3199     { FF_PROFILE_UNKNOWN },
3200 };
3201
3202 static const AVOption options[] = {
3203     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3204         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3205     { NULL },
3206 };
3207
3208 static const AVClass hevc_decoder_class = {
3209     .class_name = "HEVC decoder",
3210     .item_name  = av_default_item_name,
3211     .option     = options,
3212     .version    = LIBAVUTIL_VERSION_INT,
3213 };
3214
3215 AVCodec ff_hevc_decoder = {
3216     .name                  = "hevc",
3217     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3218     .type                  = AVMEDIA_TYPE_VIDEO,
3219     .id                    = AV_CODEC_ID_HEVC,
3220     .priv_data_size        = sizeof(HEVCContext),
3221     .priv_class            = &hevc_decoder_class,
3222     .init                  = hevc_decode_init,
3223     .close                 = hevc_decode_free,
3224     .decode                = hevc_decode_frame,
3225     .flush                 = hevc_decode_flush,
3226     .update_thread_context = hevc_update_thread_context,
3227     .init_thread_copy      = hevc_init_thread_copy,
3228     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3229                              CODEC_CAP_FRAME_THREADS,
3230     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3231 };