]> git.sesse.net Git - ffmpeg/blob - libavcodec/hevc.c
Merge commit '1f097d168d9cad473dd44010a337c1413a9cd198'
[ffmpeg] / libavcodec / hevc.c
1 /*
2  * HEVC video Decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of FFmpeg.
10  *
11  * FFmpeg is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * FFmpeg is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with FFmpeg; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/atomic.h"
27 #include "libavutil/attributes.h"
28 #include "libavutil/common.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bytestream.h"
36 #include "cabac_functions.h"
37 #include "dsputil.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 /**
46  * NOTE: Each function hls_foo correspond to the function foo in the
47  * specification (HLS stands for High Level Syntax).
48  */
49
50 /**
51  * Section 5.7
52  */
53
54 /* free everything allocated  by pic_arrays_init() */
55 static void pic_arrays_free(HEVCContext *s)
56 {
57     av_freep(&s->sao);
58     av_freep(&s->deblock);
59     av_freep(&s->split_cu_flag);
60
61     av_freep(&s->skip_flag);
62     av_freep(&s->tab_ct_depth);
63
64     av_freep(&s->tab_ipm);
65     av_freep(&s->cbf_luma);
66     av_freep(&s->is_pcm);
67
68     av_freep(&s->qp_y_tab);
69     av_freep(&s->tab_slice_address);
70     av_freep(&s->filter_slice_edges);
71
72     av_freep(&s->horizontal_bs);
73     av_freep(&s->vertical_bs);
74
75     av_freep(&s->sh.entry_point_offset);
76     av_freep(&s->sh.size);
77     av_freep(&s->sh.offset);
78
79     av_buffer_pool_uninit(&s->tab_mvf_pool);
80     av_buffer_pool_uninit(&s->rpl_tab_pool);
81 }
82
83 /* allocate arrays that depend on frame dimensions */
84 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
85 {
86     int log2_min_cb_size = sps->log2_min_cb_size;
87     int width            = sps->width;
88     int height           = sps->height;
89     int pic_size         = width * height;
90     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
91                            ((height >> log2_min_cb_size) + 1);
92     int ctb_count        = sps->ctb_width * sps->ctb_height;
93     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
94
95     s->bs_width  = width  >> 3;
96     s->bs_height = height >> 3;
97
98     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
99     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
100     s->split_cu_flag = av_malloc(pic_size);
101     if (!s->sao || !s->deblock || !s->split_cu_flag)
102         goto fail;
103
104     s->skip_flag    = av_malloc(pic_size_in_ctb);
105     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
106     if (!s->skip_flag || !s->tab_ct_depth)
107         goto fail;
108
109     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
110     s->tab_ipm  = av_mallocz(min_pu_size);
111     s->is_pcm   = av_malloc(min_pu_size);
112     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
113         goto fail;
114
115     s->filter_slice_edges = av_malloc(ctb_count);
116     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
117                                       sizeof(*s->tab_slice_address));
118     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
119                                       sizeof(*s->qp_y_tab));
120     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
121         goto fail;
122
123     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
124     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
125     if (!s->horizontal_bs || !s->vertical_bs)
126         goto fail;
127
128     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
129                                           av_buffer_alloc);
130     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
131                                           av_buffer_allocz);
132     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
133         goto fail;
134
135     return 0;
136
137 fail:
138     pic_arrays_free(s);
139     return AVERROR(ENOMEM);
140 }
141
142 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
143 {
144     int i = 0;
145     int j = 0;
146     uint8_t luma_weight_l0_flag[16];
147     uint8_t chroma_weight_l0_flag[16];
148     uint8_t luma_weight_l1_flag[16];
149     uint8_t chroma_weight_l1_flag[16];
150
151     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
152     if (s->sps->chroma_format_idc != 0) {
153         int delta = get_se_golomb(gb);
154         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
155     }
156
157     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
158         luma_weight_l0_flag[i] = get_bits1(gb);
159         if (!luma_weight_l0_flag[i]) {
160             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
161             s->sh.luma_offset_l0[i] = 0;
162         }
163     }
164     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
165         for (i = 0; i < s->sh.nb_refs[L0]; i++)
166             chroma_weight_l0_flag[i] = get_bits1(gb);
167     } else {
168         for (i = 0; i < s->sh.nb_refs[L0]; i++)
169             chroma_weight_l0_flag[i] = 0;
170     }
171     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
172         if (luma_weight_l0_flag[i]) {
173             int delta_luma_weight_l0 = get_se_golomb(gb);
174             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
175             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
176         }
177         if (chroma_weight_l0_flag[i]) {
178             for (j = 0; j < 2; j++) {
179                 int delta_chroma_weight_l0 = get_se_golomb(gb);
180                 int delta_chroma_offset_l0 = get_se_golomb(gb);
181                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
182                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
183                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
184             }
185         } else {
186             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
187             s->sh.chroma_offset_l0[i][0] = 0;
188             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
189             s->sh.chroma_offset_l0[i][1] = 0;
190         }
191     }
192     if (s->sh.slice_type == B_SLICE) {
193         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
194             luma_weight_l1_flag[i] = get_bits1(gb);
195             if (!luma_weight_l1_flag[i]) {
196                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
197                 s->sh.luma_offset_l1[i] = 0;
198             }
199         }
200         if (s->sps->chroma_format_idc != 0) {
201             for (i = 0; i < s->sh.nb_refs[L1]; i++)
202                 chroma_weight_l1_flag[i] = get_bits1(gb);
203         } else {
204             for (i = 0; i < s->sh.nb_refs[L1]; i++)
205                 chroma_weight_l1_flag[i] = 0;
206         }
207         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
208             if (luma_weight_l1_flag[i]) {
209                 int delta_luma_weight_l1 = get_se_golomb(gb);
210                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
211                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
212             }
213             if (chroma_weight_l1_flag[i]) {
214                 for (j = 0; j < 2; j++) {
215                     int delta_chroma_weight_l1 = get_se_golomb(gb);
216                     int delta_chroma_offset_l1 = get_se_golomb(gb);
217                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
218                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
219                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
220                 }
221             } else {
222                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
223                 s->sh.chroma_offset_l1[i][0] = 0;
224                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
225                 s->sh.chroma_offset_l1[i][1] = 0;
226             }
227         }
228     }
229 }
230
231 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
232 {
233     const HEVCSPS *sps = s->sps;
234     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
235     int prev_delta_msb = 0;
236     unsigned int nb_sps = 0, nb_sh;
237     int i;
238
239     rps->nb_refs = 0;
240     if (!sps->long_term_ref_pics_present_flag)
241         return 0;
242
243     if (sps->num_long_term_ref_pics_sps > 0)
244         nb_sps = get_ue_golomb_long(gb);
245     nb_sh = get_ue_golomb_long(gb);
246
247     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
248         return AVERROR_INVALIDDATA;
249
250     rps->nb_refs = nb_sh + nb_sps;
251
252     for (i = 0; i < rps->nb_refs; i++) {
253         uint8_t delta_poc_msb_present;
254
255         if (i < nb_sps) {
256             uint8_t lt_idx_sps = 0;
257
258             if (sps->num_long_term_ref_pics_sps > 1)
259                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
260
261             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
262             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
263         } else {
264             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
265             rps->used[i] = get_bits1(gb);
266         }
267
268         delta_poc_msb_present = get_bits1(gb);
269         if (delta_poc_msb_present) {
270             int delta = get_ue_golomb_long(gb);
271
272             if (i && i != nb_sps)
273                 delta += prev_delta_msb;
274
275             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
276             prev_delta_msb = delta;
277         }
278     }
279
280     return 0;
281 }
282
283 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
284 {
285     int ret;
286     int num = 0, den = 0;
287
288     pic_arrays_free(s);
289     ret = pic_arrays_init(s, sps);
290     if (ret < 0)
291         goto fail;
292
293     s->avctx->coded_width         = sps->width;
294     s->avctx->coded_height        = sps->height;
295     s->avctx->width               = sps->output_width;
296     s->avctx->height              = sps->output_height;
297     s->avctx->pix_fmt             = sps->pix_fmt;
298     s->avctx->sample_aspect_ratio = sps->vui.sar;
299     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
300
301     if (sps->vui.video_signal_type_present_flag)
302         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
303                                                                : AVCOL_RANGE_MPEG;
304     else
305         s->avctx->color_range = AVCOL_RANGE_MPEG;
306
307     if (sps->vui.colour_description_present_flag) {
308         s->avctx->color_primaries = sps->vui.colour_primaries;
309         s->avctx->color_trc       = sps->vui.transfer_characteristic;
310         s->avctx->colorspace      = sps->vui.matrix_coeffs;
311     } else {
312         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
313         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
314         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
315     }
316
317     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
318     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
319     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
320
321     if (sps->sao_enabled) {
322         av_frame_unref(s->tmp_frame);
323         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
324         if (ret < 0)
325             goto fail;
326         s->frame = s->tmp_frame;
327     }
328
329     s->sps = sps;
330     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
331
332     if (s->vps->vps_timing_info_present_flag) {
333         num = s->vps->vps_num_units_in_tick;
334         den = s->vps->vps_time_scale;
335     } else if (sps->vui.vui_timing_info_present_flag) {
336         num = sps->vui.vui_num_units_in_tick;
337         den = sps->vui.vui_time_scale;
338     }
339
340     if (num != 0 && den != 0)
341         av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
342                   num, den, 1 << 30);
343
344     return 0;
345
346 fail:
347     pic_arrays_free(s);
348     s->sps = NULL;
349     return ret;
350 }
351
352 static int hls_slice_header(HEVCContext *s)
353 {
354     GetBitContext *gb = &s->HEVClc->gb;
355     SliceHeader *sh   = &s->sh;
356     int i, j, ret;
357
358     // Coded parameters
359     sh->first_slice_in_pic_flag = get_bits1(gb);
360     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
361         s->seq_decode = (s->seq_decode + 1) & 0xff;
362         s->max_ra     = INT_MAX;
363         if (IS_IDR(s))
364             ff_hevc_clear_refs(s);
365     }
366     if (s->nal_unit_type >= 16 && s->nal_unit_type <= 23)
367         sh->no_output_of_prior_pics_flag = get_bits1(gb);
368
369     sh->pps_id = get_ue_golomb_long(gb);
370     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
371         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
372         return AVERROR_INVALIDDATA;
373     }
374     if (!sh->first_slice_in_pic_flag &&
375         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
376         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
377         return AVERROR_INVALIDDATA;
378     }
379     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
380
381     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
382         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
383         ff_hevc_clear_refs(s);
384         ret = set_sps(s, s->sps);
385         if (ret < 0)
386             return ret;
387
388         s->seq_decode = (s->seq_decode + 1) & 0xff;
389         s->max_ra     = INT_MAX;
390     }
391
392     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
393     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
394
395     sh->dependent_slice_segment_flag = 0;
396     if (!sh->first_slice_in_pic_flag) {
397         int slice_address_length;
398
399         if (s->pps->dependent_slice_segments_enabled_flag)
400             sh->dependent_slice_segment_flag = get_bits1(gb);
401
402         slice_address_length = av_ceil_log2(s->sps->ctb_width *
403                                             s->sps->ctb_height);
404         sh->slice_segment_addr = get_bits(gb, slice_address_length);
405         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
406             av_log(s->avctx, AV_LOG_ERROR,
407                    "Invalid slice segment address: %u.\n",
408                    sh->slice_segment_addr);
409             return AVERROR_INVALIDDATA;
410         }
411
412         if (!sh->dependent_slice_segment_flag) {
413             sh->slice_addr = sh->slice_segment_addr;
414             s->slice_idx++;
415         }
416     } else {
417         sh->slice_segment_addr = sh->slice_addr = 0;
418         s->slice_idx           = 0;
419         s->slice_initialized   = 0;
420     }
421
422     if (!sh->dependent_slice_segment_flag) {
423         s->slice_initialized = 0;
424
425         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
426             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
427
428         sh->slice_type = get_ue_golomb_long(gb);
429         if (!(sh->slice_type == I_SLICE ||
430               sh->slice_type == P_SLICE ||
431               sh->slice_type == B_SLICE)) {
432             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
433                    sh->slice_type);
434             return AVERROR_INVALIDDATA;
435         }
436         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
437             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
438             return AVERROR_INVALIDDATA;
439         }
440
441         if (s->pps->output_flag_present_flag)
442             sh->pic_output_flag = get_bits1(gb);
443
444         if (s->sps->separate_colour_plane_flag)
445             sh->colour_plane_id = get_bits(gb, 2);
446
447         if (!IS_IDR(s)) {
448             int short_term_ref_pic_set_sps_flag, poc;
449
450             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
451             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
452             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
453                 av_log(s->avctx, AV_LOG_WARNING,
454                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
455                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
456                     return AVERROR_INVALIDDATA;
457                 poc = s->poc;
458             }
459             s->poc = poc;
460
461             short_term_ref_pic_set_sps_flag = get_bits1(gb);
462             if (!short_term_ref_pic_set_sps_flag) {
463                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
464                 if (ret < 0)
465                     return ret;
466
467                 sh->short_term_rps = &sh->slice_rps;
468             } else {
469                 int numbits, rps_idx;
470
471                 if (!s->sps->nb_st_rps) {
472                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
473                     return AVERROR_INVALIDDATA;
474                 }
475
476                 numbits = av_ceil_log2(s->sps->nb_st_rps);
477                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
478                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
479             }
480
481             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
482             if (ret < 0) {
483                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
484                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
485                     return AVERROR_INVALIDDATA;
486             }
487
488             if (s->sps->sps_temporal_mvp_enabled_flag)
489                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
490             else
491                 sh->slice_temporal_mvp_enabled_flag = 0;
492         } else {
493             s->sh.short_term_rps = NULL;
494             s->poc               = 0;
495         }
496
497         /* 8.3.1 */
498         if (s->temporal_id == 0 &&
499             s->nal_unit_type != NAL_TRAIL_N &&
500             s->nal_unit_type != NAL_TSA_N   &&
501             s->nal_unit_type != NAL_STSA_N  &&
502             s->nal_unit_type != NAL_RADL_N  &&
503             s->nal_unit_type != NAL_RADL_R  &&
504             s->nal_unit_type != NAL_RASL_N  &&
505             s->nal_unit_type != NAL_RASL_R)
506             s->pocTid0 = s->poc;
507
508         if (s->sps->sao_enabled) {
509             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
510             sh->slice_sample_adaptive_offset_flag[1] =
511             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
512         } else {
513             sh->slice_sample_adaptive_offset_flag[0] = 0;
514             sh->slice_sample_adaptive_offset_flag[1] = 0;
515             sh->slice_sample_adaptive_offset_flag[2] = 0;
516         }
517
518         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
519         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
520             int nb_refs;
521
522             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
523             if (sh->slice_type == B_SLICE)
524                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
525
526             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
527                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
528                 if (sh->slice_type == B_SLICE)
529                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
530             }
531             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
532                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
533                        sh->nb_refs[L0], sh->nb_refs[L1]);
534                 return AVERROR_INVALIDDATA;
535             }
536
537             sh->rpl_modification_flag[0] = 0;
538             sh->rpl_modification_flag[1] = 0;
539             nb_refs = ff_hevc_frame_nb_refs(s);
540             if (!nb_refs) {
541                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
542                 return AVERROR_INVALIDDATA;
543             }
544
545             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
546                 sh->rpl_modification_flag[0] = get_bits1(gb);
547                 if (sh->rpl_modification_flag[0]) {
548                     for (i = 0; i < sh->nb_refs[L0]; i++)
549                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
550                 }
551
552                 if (sh->slice_type == B_SLICE) {
553                     sh->rpl_modification_flag[1] = get_bits1(gb);
554                     if (sh->rpl_modification_flag[1] == 1)
555                         for (i = 0; i < sh->nb_refs[L1]; i++)
556                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
557                 }
558             }
559
560             if (sh->slice_type == B_SLICE)
561                 sh->mvd_l1_zero_flag = get_bits1(gb);
562
563             if (s->pps->cabac_init_present_flag)
564                 sh->cabac_init_flag = get_bits1(gb);
565             else
566                 sh->cabac_init_flag = 0;
567
568             sh->collocated_ref_idx = 0;
569             if (sh->slice_temporal_mvp_enabled_flag) {
570                 sh->collocated_list = L0;
571                 if (sh->slice_type == B_SLICE)
572                     sh->collocated_list = !get_bits1(gb);
573
574                 if (sh->nb_refs[sh->collocated_list] > 1) {
575                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
576                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
577                         av_log(s->avctx, AV_LOG_ERROR,
578                                "Invalid collocated_ref_idx: %d.\n",
579                                sh->collocated_ref_idx);
580                         return AVERROR_INVALIDDATA;
581                     }
582                 }
583             }
584
585             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
586                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
587                 pred_weight_table(s, gb);
588             }
589
590             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
591             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
592                 av_log(s->avctx, AV_LOG_ERROR,
593                        "Invalid number of merging MVP candidates: %d.\n",
594                        sh->max_num_merge_cand);
595                 return AVERROR_INVALIDDATA;
596             }
597         }
598
599         sh->slice_qp_delta = get_se_golomb(gb);
600
601         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
602             sh->slice_cb_qp_offset = get_se_golomb(gb);
603             sh->slice_cr_qp_offset = get_se_golomb(gb);
604         } else {
605             sh->slice_cb_qp_offset = 0;
606             sh->slice_cr_qp_offset = 0;
607         }
608
609         if (s->pps->deblocking_filter_control_present_flag) {
610             int deblocking_filter_override_flag = 0;
611
612             if (s->pps->deblocking_filter_override_enabled_flag)
613                 deblocking_filter_override_flag = get_bits1(gb);
614
615             if (deblocking_filter_override_flag) {
616                 sh->disable_deblocking_filter_flag = get_bits1(gb);
617                 if (!sh->disable_deblocking_filter_flag) {
618                     sh->beta_offset = get_se_golomb(gb) * 2;
619                     sh->tc_offset   = get_se_golomb(gb) * 2;
620                 }
621             } else {
622                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
623                 sh->beta_offset                    = s->pps->beta_offset;
624                 sh->tc_offset                      = s->pps->tc_offset;
625             }
626         } else {
627             sh->disable_deblocking_filter_flag = 0;
628             sh->beta_offset                    = 0;
629             sh->tc_offset                      = 0;
630         }
631
632         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
633             (sh->slice_sample_adaptive_offset_flag[0] ||
634              sh->slice_sample_adaptive_offset_flag[1] ||
635              !sh->disable_deblocking_filter_flag)) {
636             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
637         } else {
638             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
639         }
640     } else if (!s->slice_initialized) {
641         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
642         return AVERROR_INVALIDDATA;
643     }
644
645     sh->num_entry_point_offsets = 0;
646     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
647         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
648         if (sh->num_entry_point_offsets > 0) {
649             int offset_len = get_ue_golomb_long(gb) + 1;
650             int segments = offset_len >> 4;
651             int rest = (offset_len & 15);
652             av_freep(&sh->entry_point_offset);
653             av_freep(&sh->offset);
654             av_freep(&sh->size);
655             sh->entry_point_offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
656             sh->offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
657             sh->size = av_malloc(sh->num_entry_point_offsets * sizeof(int));
658             if (!sh->entry_point_offset || !sh->offset || !sh->size) {
659                 sh->num_entry_point_offsets = 0;
660                 av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
661                 return AVERROR(ENOMEM);
662             }
663             for (i = 0; i < sh->num_entry_point_offsets; i++) {
664                 int val = 0;
665                 for (j = 0; j < segments; j++) {
666                     val <<= 16;
667                     val += get_bits(gb, 16);
668                 }
669                 if (rest) {
670                     val <<= rest;
671                     val += get_bits(gb, rest);
672                 }
673                 sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
674             }
675             if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
676                 s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
677                 s->threads_number = 1;
678             } else
679                 s->enable_parallel_tiles = 0;
680         } else
681             s->enable_parallel_tiles = 0;
682     }
683
684     if (s->pps->slice_header_extension_present_flag) {
685         unsigned int length = get_ue_golomb_long(gb);
686         for (i = 0; i < length; i++)
687             skip_bits(gb, 8);  // slice_header_extension_data_byte
688     }
689
690     // Inferred parameters
691     sh->slice_qp = 26U + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
692     if (sh->slice_qp > 51 ||
693         sh->slice_qp < -s->sps->qp_bd_offset) {
694         av_log(s->avctx, AV_LOG_ERROR,
695                "The slice_qp %d is outside the valid range "
696                "[%d, 51].\n",
697                sh->slice_qp,
698                -s->sps->qp_bd_offset);
699         return AVERROR_INVALIDDATA;
700     }
701
702     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
703
704     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
705         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
706         return AVERROR_INVALIDDATA;
707     }
708
709     s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
710
711     if (!s->pps->cu_qp_delta_enabled_flag)
712         s->HEVClc->qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
713                                  52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
714
715     s->slice_initialized = 1;
716
717     return 0;
718 }
719
720 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
721
722 #define SET_SAO(elem, value)                            \
723 do {                                                    \
724     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
725         sao->elem = value;                              \
726     else if (sao_merge_left_flag)                       \
727         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
728     else if (sao_merge_up_flag)                         \
729         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
730     else                                                \
731         sao->elem = 0;                                  \
732 } while (0)
733
734 static void hls_sao_param(HEVCContext *s, int rx, int ry)
735 {
736     HEVCLocalContext *lc    = s->HEVClc;
737     int sao_merge_left_flag = 0;
738     int sao_merge_up_flag   = 0;
739     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
740     SAOParams *sao          = &CTB(s->sao, rx, ry);
741     int c_idx, i;
742
743     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
744         s->sh.slice_sample_adaptive_offset_flag[1]) {
745         if (rx > 0) {
746             if (lc->ctb_left_flag)
747                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
748         }
749         if (ry > 0 && !sao_merge_left_flag) {
750             if (lc->ctb_up_flag)
751                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
752         }
753     }
754
755     for (c_idx = 0; c_idx < 3; c_idx++) {
756         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
757             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
758             continue;
759         }
760
761         if (c_idx == 2) {
762             sao->type_idx[2] = sao->type_idx[1];
763             sao->eo_class[2] = sao->eo_class[1];
764         } else {
765             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
766         }
767
768         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
769             continue;
770
771         for (i = 0; i < 4; i++)
772             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
773
774         if (sao->type_idx[c_idx] == SAO_BAND) {
775             for (i = 0; i < 4; i++) {
776                 if (sao->offset_abs[c_idx][i]) {
777                     SET_SAO(offset_sign[c_idx][i],
778                             ff_hevc_sao_offset_sign_decode(s));
779                 } else {
780                     sao->offset_sign[c_idx][i] = 0;
781                 }
782             }
783             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
784         } else if (c_idx != 2) {
785             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
786         }
787
788         // Inferred parameters
789         sao->offset_val[c_idx][0] = 0;
790         for (i = 0; i < 4; i++) {
791             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
792             if (sao->type_idx[c_idx] == SAO_EDGE) {
793                 if (i > 1)
794                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
795             } else if (sao->offset_sign[c_idx][i]) {
796                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
797             }
798         }
799     }
800 }
801
802 #undef SET_SAO
803 #undef CTB
804
805 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
806                               int xBase, int yBase, int cb_xBase, int cb_yBase,
807                               int log2_cb_size, int log2_trafo_size,
808                               int trafo_depth, int blk_idx)
809 {
810     HEVCLocalContext *lc = s->HEVClc;
811
812     if (lc->cu.pred_mode == MODE_INTRA) {
813         int trafo_size = 1 << log2_trafo_size;
814         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
815
816         s->hpc.intra_pred(s, x0, y0, log2_trafo_size, 0);
817         if (log2_trafo_size > 2) {
818             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
819             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
820             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 1);
821             s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 2);
822         } else if (blk_idx == 3) {
823             trafo_size = trafo_size << s->sps->hshift[1];
824             ff_hevc_set_neighbour_available(s, xBase, yBase,
825                                             trafo_size, trafo_size);
826             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 1);
827             s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 2);
828         }
829     }
830
831     if (lc->tt.cbf_luma ||
832         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
833         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
834         int scan_idx   = SCAN_DIAG;
835         int scan_idx_c = SCAN_DIAG;
836
837         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
838             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
839             if (lc->tu.cu_qp_delta != 0)
840                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
841                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
842             lc->tu.is_cu_qp_delta_coded = 1;
843
844             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
845                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
846                 av_log(s->avctx, AV_LOG_ERROR,
847                        "The cu_qp_delta %d is outside the valid range "
848                        "[%d, %d].\n",
849                        lc->tu.cu_qp_delta,
850                        -(26 + s->sps->qp_bd_offset / 2),
851                         (25 + s->sps->qp_bd_offset / 2));
852                 return AVERROR_INVALIDDATA;
853             }
854
855             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
856         }
857
858         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
859             if (lc->tu.cur_intra_pred_mode >= 6 &&
860                 lc->tu.cur_intra_pred_mode <= 14) {
861                 scan_idx = SCAN_VERT;
862             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
863                        lc->tu.cur_intra_pred_mode <= 30) {
864                 scan_idx = SCAN_HORIZ;
865             }
866
867             if (lc->pu.intra_pred_mode_c >=  6 &&
868                 lc->pu.intra_pred_mode_c <= 14) {
869                 scan_idx_c = SCAN_VERT;
870             } else if (lc->pu.intra_pred_mode_c >= 22 &&
871                        lc->pu.intra_pred_mode_c <= 30) {
872                 scan_idx_c = SCAN_HORIZ;
873             }
874         }
875
876         if (lc->tt.cbf_luma)
877             ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
878         if (log2_trafo_size > 2) {
879             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0))
880                 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
881             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0))
882                 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
883         } else if (blk_idx == 3) {
884             if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase))
885                 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
886             if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase))
887                 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
888         }
889     }
890     return 0;
891 }
892
893 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
894 {
895     int cb_size          = 1 << log2_cb_size;
896     int log2_min_pu_size = s->sps->log2_min_pu_size;
897
898     int min_pu_width     = s->sps->min_pu_width;
899     int x_end = FFMIN(x0 + cb_size, s->sps->width);
900     int y_end = FFMIN(y0 + cb_size, s->sps->height);
901     int i, j;
902
903     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
904         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
905             s->is_pcm[i + j * min_pu_width] = 2;
906 }
907
908 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
909                               int xBase, int yBase, int cb_xBase, int cb_yBase,
910                               int log2_cb_size, int log2_trafo_size,
911                               int trafo_depth, int blk_idx)
912 {
913     HEVCLocalContext *lc = s->HEVClc;
914     uint8_t split_transform_flag;
915     int ret;
916
917     if (trafo_depth > 0 && log2_trafo_size == 2) {
918         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
919             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase);
920         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
921             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase);
922     } else {
923         SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
924         SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0;
925     }
926
927     if (lc->cu.intra_split_flag) {
928         if (trafo_depth == 1)
929             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
930     } else {
931         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
932     }
933
934     lc->tt.cbf_luma = 1;
935
936     lc->tt.inter_split_flag = s->sps->max_transform_hierarchy_depth_inter == 0 &&
937                               lc->cu.pred_mode == MODE_INTER &&
938                               lc->cu.part_mode != PART_2Nx2N &&
939                               trafo_depth == 0;
940
941     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
942         log2_trafo_size >  s->sps->log2_min_tb_size    &&
943         trafo_depth     < lc->cu.max_trafo_depth       &&
944         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
945         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
946     } else {
947         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
948                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
949                                lc->tt.inter_split_flag;
950     }
951
952     if (log2_trafo_size > 2) {
953         if (trafo_depth == 0 ||
954             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) {
955             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
956                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
957         }
958
959         if (trafo_depth == 0 ||
960             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) {
961             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
962                 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
963         }
964     }
965
966     if (split_transform_flag) {
967         int x1 = x0 + ((1 << log2_trafo_size) >> 1);
968         int y1 = y0 + ((1 << log2_trafo_size) >> 1);
969
970         ret = hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase,
971                                  log2_cb_size, log2_trafo_size - 1,
972                                  trafo_depth + 1, 0);
973         if (ret < 0)
974             return ret;
975         ret = hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase,
976                                  log2_cb_size, log2_trafo_size - 1,
977                                  trafo_depth + 1, 1);
978         if (ret < 0)
979             return ret;
980         ret = hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase,
981                                  log2_cb_size, log2_trafo_size - 1,
982                                  trafo_depth + 1, 2);
983         if (ret < 0)
984             return ret;
985         ret = hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase,
986                                  log2_cb_size, log2_trafo_size - 1,
987                                  trafo_depth + 1, 3);
988         if (ret < 0)
989             return ret;
990     } else {
991         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
992         int log2_min_tu_size = s->sps->log2_min_tb_size;
993         int min_tu_width     = s->sps->min_tb_width;
994
995         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
996             SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
997             SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
998             lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
999         }
1000
1001         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1002                                  log2_cb_size, log2_trafo_size, trafo_depth,
1003                                  blk_idx);
1004         if (ret < 0)
1005             return ret;
1006         // TODO: store cbf_luma somewhere else
1007         if (lc->tt.cbf_luma) {
1008             int i, j;
1009             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1010                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1011                     int x_tu = (x0 + j) >> log2_min_tu_size;
1012                     int y_tu = (y0 + i) >> log2_min_tu_size;
1013                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1014                 }
1015         }
1016         if (!s->sh.disable_deblocking_filter_flag) {
1017             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size,
1018                                                   lc->slice_or_tiles_up_boundary,
1019                                                   lc->slice_or_tiles_left_boundary);
1020             if (s->pps->transquant_bypass_enable_flag &&
1021                 lc->cu.cu_transquant_bypass_flag)
1022                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1023         }
1024     }
1025     return 0;
1026 }
1027
1028 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1029 {
1030     //TODO: non-4:2:0 support
1031     HEVCLocalContext *lc = s->HEVClc;
1032     GetBitContext gb;
1033     int cb_size   = 1 << log2_cb_size;
1034     int stride0   = s->frame->linesize[0];
1035     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1036     int   stride1 = s->frame->linesize[1];
1037     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1038     int   stride2 = s->frame->linesize[2];
1039     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1040
1041     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1042     const uint8_t *pcm = skip_bytes(&s->HEVClc->cc, (length + 7) >> 3);
1043     int ret;
1044
1045     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
1046                                           lc->slice_or_tiles_up_boundary,
1047                                           lc->slice_or_tiles_left_boundary);
1048
1049     ret = init_get_bits(&gb, pcm, length);
1050     if (ret < 0)
1051         return ret;
1052
1053     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1054     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1055     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1056     return 0;
1057 }
1058
1059 /**
1060  * 8.5.3.2.2.1 Luma sample interpolation process
1061  *
1062  * @param s HEVC decoding context
1063  * @param dst target buffer for block data at block position
1064  * @param dststride stride of the dst buffer
1065  * @param ref reference picture buffer at origin (0, 0)
1066  * @param mv motion vector (relative to block position) to get pixel data from
1067  * @param x_off horizontal position of block from origin (0, 0)
1068  * @param y_off vertical position of block from origin (0, 0)
1069  * @param block_w width of block
1070  * @param block_h height of block
1071  */
1072 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1073                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1074                     int block_w, int block_h)
1075 {
1076     HEVCLocalContext *lc = s->HEVClc;
1077     uint8_t *src         = ref->data[0];
1078     ptrdiff_t srcstride  = ref->linesize[0];
1079     int pic_width        = s->sps->width;
1080     int pic_height       = s->sps->height;
1081
1082     int mx         = mv->x & 3;
1083     int my         = mv->y & 3;
1084     int extra_left = ff_hevc_qpel_extra_before[mx];
1085     int extra_top  = ff_hevc_qpel_extra_before[my];
1086
1087     x_off += mv->x >> 2;
1088     y_off += mv->y >> 2;
1089     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1090
1091     if (x_off < extra_left || y_off < extra_top ||
1092         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1093         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1094         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1095         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1096         int buf_offset = extra_top *
1097                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1098
1099         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1100                                  edge_emu_stride, srcstride,
1101                                  block_w + ff_hevc_qpel_extra[mx],
1102                                  block_h + ff_hevc_qpel_extra[my],
1103                                  x_off - extra_left, y_off - extra_top,
1104                                  pic_width, pic_height);
1105         src = lc->edge_emu_buffer + buf_offset;
1106         srcstride = edge_emu_stride;
1107     }
1108     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1109                                      block_h, lc->mc_buffer);
1110 }
1111
1112 /**
1113  * 8.5.3.2.2.2 Chroma sample interpolation process
1114  *
1115  * @param s HEVC decoding context
1116  * @param dst1 target buffer for block data at block position (U plane)
1117  * @param dst2 target buffer for block data at block position (V plane)
1118  * @param dststride stride of the dst1 and dst2 buffers
1119  * @param ref reference picture buffer at origin (0, 0)
1120  * @param mv motion vector (relative to block position) to get pixel data from
1121  * @param x_off horizontal position of block from origin (0, 0)
1122  * @param y_off vertical position of block from origin (0, 0)
1123  * @param block_w width of block
1124  * @param block_h height of block
1125  */
1126 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1127                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1128                       int x_off, int y_off, int block_w, int block_h)
1129 {
1130     HEVCLocalContext *lc = s->HEVClc;
1131     uint8_t *src1        = ref->data[1];
1132     uint8_t *src2        = ref->data[2];
1133     ptrdiff_t src1stride = ref->linesize[1];
1134     ptrdiff_t src2stride = ref->linesize[2];
1135     int pic_width        = s->sps->width >> 1;
1136     int pic_height       = s->sps->height >> 1;
1137
1138     int mx = mv->x & 7;
1139     int my = mv->y & 7;
1140
1141     x_off += mv->x >> 3;
1142     y_off += mv->y >> 3;
1143     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1144     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1145
1146     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1147         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1148         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1149         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1150         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1151         int buf_offset1 = EPEL_EXTRA_BEFORE *
1152                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1153         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1154         int buf_offset2 = EPEL_EXTRA_BEFORE *
1155                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1156
1157         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1158                                  edge_emu_stride, src1stride,
1159                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1160                                  x_off - EPEL_EXTRA_BEFORE,
1161                                  y_off - EPEL_EXTRA_BEFORE,
1162                                  pic_width, pic_height);
1163
1164         src1 = lc->edge_emu_buffer + buf_offset1;
1165         src1stride = edge_emu_stride;
1166         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1167                                              block_w, block_h, mx, my, lc->mc_buffer);
1168
1169         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1170                                  edge_emu_stride, src2stride,
1171                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1172                                  x_off - EPEL_EXTRA_BEFORE,
1173                                  y_off - EPEL_EXTRA_BEFORE,
1174                                  pic_width, pic_height);
1175         src2 = lc->edge_emu_buffer + buf_offset2;
1176         src2stride = edge_emu_stride;
1177
1178         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1179                                              block_w, block_h, mx, my,
1180                                              lc->mc_buffer);
1181     } else {
1182         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1183                                              block_w, block_h, mx, my,
1184                                              lc->mc_buffer);
1185         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1186                                              block_w, block_h, mx, my,
1187                                              lc->mc_buffer);
1188     }
1189 }
1190
1191 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1192                                 const Mv *mv, int y0, int height)
1193 {
1194     int y = (mv->y >> 2) + y0 + height + 9;
1195
1196     if (s->threads_type == FF_THREAD_FRAME )
1197         ff_thread_await_progress(&ref->tf, y, 0);
1198 }
1199
1200 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1201                                 int nPbW, int nPbH,
1202                                 int log2_cb_size, int partIdx)
1203 {
1204 #define POS(c_idx, x, y)                                                              \
1205     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1206                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1207     HEVCLocalContext *lc = s->HEVClc;
1208     int merge_idx = 0;
1209     struct MvField current_mv = {{{ 0 }}};
1210
1211     int min_pu_width = s->sps->min_pu_width;
1212
1213     MvField *tab_mvf = s->ref->tab_mvf;
1214     RefPicList  *refPicList = s->ref->refPicList;
1215     HEVCFrame *ref0, *ref1;
1216
1217     int tmpstride = MAX_PB_SIZE;
1218
1219     uint8_t *dst0 = POS(0, x0, y0);
1220     uint8_t *dst1 = POS(1, x0, y0);
1221     uint8_t *dst2 = POS(2, x0, y0);
1222     int log2_min_cb_size = s->sps->log2_min_cb_size;
1223     int min_cb_width     = s->sps->min_cb_width;
1224     int x_cb             = x0 >> log2_min_cb_size;
1225     int y_cb             = y0 >> log2_min_cb_size;
1226     int ref_idx[2];
1227     int mvp_flag[2];
1228     int x_pu, y_pu;
1229     int i, j;
1230
1231     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1232         if (s->sh.max_num_merge_cand > 1)
1233             merge_idx = ff_hevc_merge_idx_decode(s);
1234         else
1235             merge_idx = 0;
1236
1237         ff_hevc_luma_mv_merge_mode(s, x0, y0,
1238                                    1 << log2_cb_size,
1239                                    1 << log2_cb_size,
1240                                    log2_cb_size, partIdx,
1241                                    merge_idx, &current_mv);
1242         x_pu = x0 >> s->sps->log2_min_pu_size;
1243         y_pu = y0 >> s->sps->log2_min_pu_size;
1244
1245         for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1246             for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1247                 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1248     } else { /* MODE_INTER */
1249         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1250         if (lc->pu.merge_flag) {
1251             if (s->sh.max_num_merge_cand > 1)
1252                 merge_idx = ff_hevc_merge_idx_decode(s);
1253             else
1254                 merge_idx = 0;
1255
1256             ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1257                                        partIdx, merge_idx, &current_mv);
1258             x_pu = x0 >> s->sps->log2_min_pu_size;
1259             y_pu = y0 >> s->sps->log2_min_pu_size;
1260
1261             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1262                 for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1263                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1264         } else {
1265             enum InterPredIdc inter_pred_idc = PRED_L0;
1266             ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1267             if (s->sh.slice_type == B_SLICE)
1268                 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1269
1270             if (inter_pred_idc != PRED_L1) {
1271                 if (s->sh.nb_refs[L0]) {
1272                     ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1273                     current_mv.ref_idx[0] = ref_idx[0];
1274                 }
1275                 current_mv.pred_flag[0] = 1;
1276                 ff_hevc_hls_mvd_coding(s, x0, y0, 0);
1277                 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
1278                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1279                                          partIdx, merge_idx, &current_mv,
1280                                          mvp_flag[0], 0);
1281                 current_mv.mv[0].x += lc->pu.mvd.x;
1282                 current_mv.mv[0].y += lc->pu.mvd.y;
1283             }
1284
1285             if (inter_pred_idc != PRED_L0) {
1286                 if (s->sh.nb_refs[L1]) {
1287                     ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1288                     current_mv.ref_idx[1] = ref_idx[1];
1289                 }
1290
1291                 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1292                     lc->pu.mvd.x = 0;
1293                     lc->pu.mvd.y = 0;
1294                 } else {
1295                     ff_hevc_hls_mvd_coding(s, x0, y0, 1);
1296                 }
1297
1298                 current_mv.pred_flag[1] = 1;
1299                 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
1300                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1301                                          partIdx, merge_idx, &current_mv,
1302                                          mvp_flag[1], 1);
1303                 current_mv.mv[1].x += lc->pu.mvd.x;
1304                 current_mv.mv[1].y += lc->pu.mvd.y;
1305             }
1306
1307             x_pu = x0 >> s->sps->log2_min_pu_size;
1308             y_pu = y0 >> s->sps->log2_min_pu_size;
1309
1310             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1311                 for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1312                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1313         }
1314     }
1315
1316     if (current_mv.pred_flag[0]) {
1317         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1318         if (!ref0)
1319             return;
1320         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1321     }
1322     if (current_mv.pred_flag[1]) {
1323         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1324         if (!ref1)
1325             return;
1326         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1327     }
1328
1329     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1330         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1331         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1332
1333         luma_mc(s, tmp, tmpstride, ref0->frame,
1334                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1335
1336         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1337             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1338             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1339                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1340                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1341                                      dst0, s->frame->linesize[0], tmp,
1342                                      tmpstride, nPbW, nPbH);
1343         } else {
1344             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1345         }
1346         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1347                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1348
1349         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1350             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1351             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1352                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1353                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1354                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1355                                      nPbW / 2, nPbH / 2);
1356             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1357                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1358                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1359                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1360                                      nPbW / 2, nPbH / 2);
1361         } else {
1362             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1363             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1364         }
1365     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1366         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1367         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1368
1369         if (!ref1)
1370             return;
1371
1372         luma_mc(s, tmp, tmpstride, ref1->frame,
1373                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1374
1375         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1376             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1377             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1378                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1379                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1380                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1381                                       nPbW, nPbH);
1382         } else {
1383             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1384         }
1385
1386         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1387                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1388
1389         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1390             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1391             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1392                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1393                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1394                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1395             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1396                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1397                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1398                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1399         } else {
1400             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1401             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1402         }
1403     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1404         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1405         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1406         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1407         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1408         HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1409         HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1410
1411         if (!ref0 || !ref1)
1412             return;
1413
1414         luma_mc(s, tmp, tmpstride, ref0->frame,
1415                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1416         luma_mc(s, tmp2, tmpstride, ref1->frame,
1417                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1418
1419         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1420             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1421             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1422                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1423                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1424                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1425                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1426                                          dst0, s->frame->linesize[0],
1427                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1428         } else {
1429             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1430                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1431         }
1432
1433         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1434                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1435         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1436                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1437
1438         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1439             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1440             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1441                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1442                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1443                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1444                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1445                                          dst1, s->frame->linesize[1], tmp, tmp3,
1446                                          tmpstride, nPbW / 2, nPbH / 2);
1447             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1448                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1449                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1450                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1451                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1452                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1453                                          tmpstride, nPbW / 2, nPbH / 2);
1454         } else {
1455             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1456             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1457         }
1458     }
1459 }
1460
1461 /**
1462  * 8.4.1
1463  */
1464 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1465                                 int prev_intra_luma_pred_flag)
1466 {
1467     HEVCLocalContext *lc = s->HEVClc;
1468     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1469     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1470     int min_pu_width     = s->sps->min_pu_width;
1471     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1472     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1473     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1474
1475     int cand_up   = (lc->ctb_up_flag || y0b) ?
1476                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1477     int cand_left = (lc->ctb_left_flag || x0b) ?
1478                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1479
1480     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1481
1482     MvField *tab_mvf = s->ref->tab_mvf;
1483     int intra_pred_mode;
1484     int candidate[3];
1485     int i, j;
1486
1487     // intra_pred_mode prediction does not cross vertical CTB boundaries
1488     if ((y0 - 1) < y_ctb)
1489         cand_up = INTRA_DC;
1490
1491     if (cand_left == cand_up) {
1492         if (cand_left < 2) {
1493             candidate[0] = INTRA_PLANAR;
1494             candidate[1] = INTRA_DC;
1495             candidate[2] = INTRA_ANGULAR_26;
1496         } else {
1497             candidate[0] = cand_left;
1498             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1499             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1500         }
1501     } else {
1502         candidate[0] = cand_left;
1503         candidate[1] = cand_up;
1504         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1505             candidate[2] = INTRA_PLANAR;
1506         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1507             candidate[2] = INTRA_DC;
1508         } else {
1509             candidate[2] = INTRA_ANGULAR_26;
1510         }
1511     }
1512
1513     if (prev_intra_luma_pred_flag) {
1514         intra_pred_mode = candidate[lc->pu.mpm_idx];
1515     } else {
1516         if (candidate[0] > candidate[1])
1517             FFSWAP(uint8_t, candidate[0], candidate[1]);
1518         if (candidate[0] > candidate[2])
1519             FFSWAP(uint8_t, candidate[0], candidate[2]);
1520         if (candidate[1] > candidate[2])
1521             FFSWAP(uint8_t, candidate[1], candidate[2]);
1522
1523         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1524         for (i = 0; i < 3; i++)
1525             if (intra_pred_mode >= candidate[i])
1526                 intra_pred_mode++;
1527     }
1528
1529     /* write the intra prediction units into the mv array */
1530     if (!size_in_pus)
1531         size_in_pus = 1;
1532     for (i = 0; i < size_in_pus; i++) {
1533         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1534                intra_pred_mode, size_in_pus);
1535
1536         for (j = 0; j < size_in_pus; j++) {
1537             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1538             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1539             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1540             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1541             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1542             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1543             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1544             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1545             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1546         }
1547     }
1548
1549     return intra_pred_mode;
1550 }
1551
1552 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1553                                           int log2_cb_size, int ct_depth)
1554 {
1555     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1556     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1557     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1558     int y;
1559
1560     for (y = 0; y < length; y++)
1561         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1562                ct_depth, length);
1563 }
1564
1565 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1566                                   int log2_cb_size)
1567 {
1568     HEVCLocalContext *lc = s->HEVClc;
1569     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1570     uint8_t prev_intra_luma_pred_flag[4];
1571     int split   = lc->cu.part_mode == PART_NxN;
1572     int pb_size = (1 << log2_cb_size) >> split;
1573     int side    = split + 1;
1574     int chroma_mode;
1575     int i, j;
1576
1577     for (i = 0; i < side; i++)
1578         for (j = 0; j < side; j++)
1579             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
1580
1581     for (i = 0; i < side; i++) {
1582         for (j = 0; j < side; j++) {
1583             if (prev_intra_luma_pred_flag[2 * i + j])
1584                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
1585             else
1586                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
1587
1588             lc->pu.intra_pred_mode[2 * i + j] =
1589                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
1590                                      prev_intra_luma_pred_flag[2 * i + j]);
1591         }
1592     }
1593
1594     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
1595     if (chroma_mode != 4) {
1596         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
1597             lc->pu.intra_pred_mode_c = 34;
1598         else
1599             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
1600     } else {
1601         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
1602     }
1603 }
1604
1605 static void intra_prediction_unit_default_value(HEVCContext *s,
1606                                                 int x0, int y0,
1607                                                 int log2_cb_size)
1608 {
1609     HEVCLocalContext *lc = s->HEVClc;
1610     int pb_size          = 1 << log2_cb_size;
1611     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
1612     int min_pu_width     = s->sps->min_pu_width;
1613     MvField *tab_mvf     = s->ref->tab_mvf;
1614     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1615     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1616     int j, k;
1617
1618     if (size_in_pus == 0)
1619         size_in_pus = 1;
1620     for (j = 0; j < size_in_pus; j++) {
1621         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
1622         for (k = 0; k < size_in_pus; k++)
1623             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
1624     }
1625 }
1626
1627 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
1628 {
1629     int cb_size          = 1 << log2_cb_size;
1630     HEVCLocalContext *lc = s->HEVClc;
1631     int log2_min_cb_size = s->sps->log2_min_cb_size;
1632     int length           = cb_size >> log2_min_cb_size;
1633     int min_cb_width     = s->sps->min_cb_width;
1634     int x_cb             = x0 >> log2_min_cb_size;
1635     int y_cb             = y0 >> log2_min_cb_size;
1636     int x, y, ret;
1637
1638     lc->cu.x                = x0;
1639     lc->cu.y                = y0;
1640     lc->cu.rqt_root_cbf     = 1;
1641     lc->cu.pred_mode        = MODE_INTRA;
1642     lc->cu.part_mode        = PART_2Nx2N;
1643     lc->cu.intra_split_flag = 0;
1644     lc->cu.pcm_flag         = 0;
1645
1646     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
1647     for (x = 0; x < 4; x++)
1648         lc->pu.intra_pred_mode[x] = 1;
1649     if (s->pps->transquant_bypass_enable_flag) {
1650         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
1651         if (lc->cu.cu_transquant_bypass_flag)
1652             set_deblocking_bypass(s, x0, y0, log2_cb_size);
1653     } else
1654         lc->cu.cu_transquant_bypass_flag = 0;
1655
1656     if (s->sh.slice_type != I_SLICE) {
1657         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
1658
1659         lc->cu.pred_mode = MODE_SKIP;
1660         x = y_cb * min_cb_width + x_cb;
1661         for (y = 0; y < length; y++) {
1662             memset(&s->skip_flag[x], skip_flag, length);
1663             x += min_cb_width;
1664         }
1665         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
1666     }
1667
1668     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1669         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
1670         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1671
1672         if (!s->sh.disable_deblocking_filter_flag)
1673             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
1674                                                   lc->slice_or_tiles_up_boundary,
1675                                                   lc->slice_or_tiles_left_boundary);
1676     } else {
1677         if (s->sh.slice_type != I_SLICE)
1678             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
1679         if (lc->cu.pred_mode != MODE_INTRA ||
1680             log2_cb_size == s->sps->log2_min_cb_size) {
1681             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
1682             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
1683                                       lc->cu.pred_mode == MODE_INTRA;
1684         }
1685
1686         if (lc->cu.pred_mode == MODE_INTRA) {
1687             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
1688                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
1689                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
1690                 lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
1691             }
1692             if (lc->cu.pcm_flag) {
1693                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1694                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
1695                 if (s->sps->pcm.loop_filter_disable_flag)
1696                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
1697
1698                 if (ret < 0)
1699                     return ret;
1700             } else {
1701                 intra_prediction_unit(s, x0, y0, log2_cb_size);
1702             }
1703         } else {
1704             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1705             switch (lc->cu.part_mode) {
1706             case PART_2Nx2N:
1707                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
1708                 break;
1709             case PART_2NxN:
1710                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
1711                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
1712                 break;
1713             case PART_Nx2N:
1714                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
1715                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
1716                 break;
1717             case PART_2NxnU:
1718                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
1719                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
1720                 break;
1721             case PART_2NxnD:
1722                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
1723                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
1724                 break;
1725             case PART_nLx2N:
1726                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
1727                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
1728                 break;
1729             case PART_nRx2N:
1730                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
1731                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
1732                 break;
1733             case PART_NxN:
1734                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
1735                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
1736                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
1737                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
1738                 break;
1739             }
1740         }
1741
1742         if (!lc->cu.pcm_flag) {
1743             if (lc->cu.pred_mode != MODE_INTRA &&
1744                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
1745                 lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
1746             }
1747             if (lc->cu.rqt_root_cbf) {
1748                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
1749                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
1750                                          s->sps->max_transform_hierarchy_depth_inter;
1751                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
1752                                          log2_cb_size,
1753                                          log2_cb_size, 0, 0);
1754                 if (ret < 0)
1755                     return ret;
1756             } else {
1757                 if (!s->sh.disable_deblocking_filter_flag)
1758                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
1759                                                           lc->slice_or_tiles_up_boundary,
1760                                                           lc->slice_or_tiles_left_boundary);
1761             }
1762         }
1763     }
1764
1765     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
1766         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
1767
1768     x = y_cb * min_cb_width + x_cb;
1769     for (y = 0; y < length; y++) {
1770         memset(&s->qp_y_tab[x], lc->qp_y, length);
1771         x += min_cb_width;
1772     }
1773
1774     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
1775
1776     return 0;
1777 }
1778
1779 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
1780                                int log2_cb_size, int cb_depth)
1781 {
1782     HEVCLocalContext *lc = s->HEVClc;
1783     const int cb_size    = 1 << log2_cb_size;
1784     int ret;
1785
1786     lc->ct.depth = cb_depth;
1787     if (x0 + cb_size <= s->sps->width  &&
1788         y0 + cb_size <= s->sps->height &&
1789         log2_cb_size > s->sps->log2_min_cb_size) {
1790         SAMPLE(s->split_cu_flag, x0, y0) =
1791             ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
1792     } else {
1793         SAMPLE(s->split_cu_flag, x0, y0) =
1794             (log2_cb_size > s->sps->log2_min_cb_size);
1795     }
1796     if (s->pps->cu_qp_delta_enabled_flag &&
1797         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
1798         lc->tu.is_cu_qp_delta_coded = 0;
1799         lc->tu.cu_qp_delta          = 0;
1800     }
1801
1802     if (SAMPLE(s->split_cu_flag, x0, y0)) {
1803         const int cb_size_split = cb_size >> 1;
1804         const int x1 = x0 + cb_size_split;
1805         const int y1 = y0 + cb_size_split;
1806
1807         int more_data = 0;
1808
1809         more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
1810         if (more_data < 0)
1811             return more_data;
1812
1813         if (more_data && x1 < s->sps->width) {
1814             more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
1815             if (more_data < 0)
1816                 return more_data;
1817         }
1818         if (more_data && y1 < s->sps->height) {
1819             more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
1820             if (more_data < 0)
1821                 return more_data;
1822         }
1823         if (more_data && x1 < s->sps->width &&
1824             y1 < s->sps->height) {
1825             return hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
1826         }
1827         if (more_data)
1828             return ((x1 + cb_size_split) < s->sps->width ||
1829                     (y1 + cb_size_split) < s->sps->height);
1830         else
1831             return 0;
1832     } else {
1833         ret = hls_coding_unit(s, x0, y0, log2_cb_size);
1834         if (ret < 0)
1835             return ret;
1836         if ((!((x0 + cb_size) %
1837                (1 << (s->sps->log2_ctb_size))) ||
1838              (x0 + cb_size >= s->sps->width)) &&
1839             (!((y0 + cb_size) %
1840                (1 << (s->sps->log2_ctb_size))) ||
1841              (y0 + cb_size >= s->sps->height))) {
1842             int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
1843             return !end_of_slice_flag;
1844         } else {
1845             return 1;
1846         }
1847     }
1848
1849     return 0;
1850 }
1851
1852 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
1853                                  int ctb_addr_ts)
1854 {
1855     HEVCLocalContext *lc  = s->HEVClc;
1856     int ctb_size          = 1 << s->sps->log2_ctb_size;
1857     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
1858     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
1859
1860     int tile_left_boundary, tile_up_boundary;
1861     int slice_left_boundary, slice_up_boundary;
1862
1863     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
1864
1865     if (s->pps->entropy_coding_sync_enabled_flag) {
1866         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
1867             lc->first_qp_group = 1;
1868         lc->end_of_tiles_x = s->sps->width;
1869     } else if (s->pps->tiles_enabled_flag) {
1870         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
1871             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
1872             lc->start_of_tiles_x = x_ctb;
1873             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
1874             lc->first_qp_group   = 1;
1875         }
1876     } else {
1877         lc->end_of_tiles_x = s->sps->width;
1878     }
1879
1880     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
1881
1882     if (s->pps->tiles_enabled_flag) {
1883         tile_left_boundary = x_ctb > 0 &&
1884                              s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
1885         slice_left_boundary = x_ctb > 0 &&
1886                               s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1];
1887         tile_up_boundary  = y_ctb > 0 &&
1888                             s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
1889         slice_up_boundary = y_ctb > 0 &&
1890                             s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width];
1891     } else {
1892         tile_left_boundary =
1893         tile_up_boundary   = 0;
1894         slice_left_boundary = ctb_addr_in_slice <= 0;
1895         slice_up_boundary   = ctb_addr_in_slice < s->sps->ctb_width;
1896     }
1897     lc->slice_or_tiles_left_boundary = slice_left_boundary + (tile_left_boundary << 1);
1898     lc->slice_or_tiles_up_boundary   = slice_up_boundary   + (tile_up_boundary   << 1);
1899     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0)                  && !tile_left_boundary);
1900     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !tile_up_boundary);
1901     lc->ctb_up_right_flag = ((y_ctb > 0)                 && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
1902     lc->ctb_up_left_flag  = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
1903 }
1904
1905 static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
1906 {
1907     HEVCContext *s  = avctxt->priv_data;
1908     int ctb_size    = 1 << s->sps->log2_ctb_size;
1909     int more_data   = 1;
1910     int x_ctb       = 0;
1911     int y_ctb       = 0;
1912     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
1913
1914     if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
1915         av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
1916         return AVERROR_INVALIDDATA;
1917     }
1918
1919     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
1920         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
1921
1922         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
1923         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
1924         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
1925
1926         ff_hevc_cabac_init(s, ctb_addr_ts);
1927
1928         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
1929
1930         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
1931         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
1932         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
1933
1934         more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
1935         if (more_data < 0)
1936             return more_data;
1937
1938         ctb_addr_ts++;
1939         ff_hevc_save_states(s, ctb_addr_ts);
1940         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
1941     }
1942
1943     if (x_ctb + ctb_size >= s->sps->width &&
1944         y_ctb + ctb_size >= s->sps->height)
1945         ff_hevc_hls_filter(s, x_ctb, y_ctb);
1946
1947     return ctb_addr_ts;
1948 }
1949
1950 static int hls_slice_data(HEVCContext *s)
1951 {
1952     int arg[2];
1953     int ret[2];
1954
1955     arg[0] = 0;
1956     arg[1] = 1;
1957
1958     s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
1959     return ret[0];
1960 }
1961 static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
1962 {
1963     HEVCContext *s1  = avctxt->priv_data, *s;
1964     HEVCLocalContext *lc;
1965     int ctb_size    = 1<< s1->sps->log2_ctb_size;
1966     int more_data   = 1;
1967     int *ctb_row_p    = input_ctb_row;
1968     int ctb_row = ctb_row_p[job];
1969     int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
1970     int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
1971     int thread = ctb_row % s1->threads_number;
1972     int ret;
1973
1974     s = s1->sList[self_id];
1975     lc = s->HEVClc;
1976
1977     if(ctb_row) {
1978         ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
1979
1980         if (ret < 0)
1981             return ret;
1982         ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
1983     }
1984
1985     while(more_data && ctb_addr_ts < s->sps->ctb_size) {
1986         int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
1987         int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
1988
1989         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
1990
1991         ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
1992
1993         if (avpriv_atomic_int_get(&s1->wpp_err)){
1994             ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
1995             return 0;
1996         }
1997
1998         ff_hevc_cabac_init(s, ctb_addr_ts);
1999         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2000         more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2001
2002         if (more_data < 0)
2003             return more_data;
2004
2005         ctb_addr_ts++;
2006
2007         ff_hevc_save_states(s, ctb_addr_ts);
2008         ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
2009         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2010
2011         if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
2012             avpriv_atomic_int_set(&s1->wpp_err,  1);
2013             ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
2014             return 0;
2015         }
2016
2017         if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
2018             ff_hevc_hls_filter(s, x_ctb, y_ctb);
2019             ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
2020             return ctb_addr_ts;
2021         }
2022         ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2023         x_ctb+=ctb_size;
2024
2025         if(x_ctb >= s->sps->width) {
2026             break;
2027         }
2028     }
2029     ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
2030
2031     return 0;
2032 }
2033
2034 static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
2035 {
2036     HEVCLocalContext *lc = s->HEVClc;
2037     int *ret = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
2038     int *arg = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
2039     int offset;
2040     int startheader, cmpt = 0;
2041     int i, j, res = 0;
2042
2043
2044     if (!s->sList[1]) {
2045         ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
2046
2047
2048         for (i = 1; i < s->threads_number; i++) {
2049             s->sList[i] = av_malloc(sizeof(HEVCContext));
2050             memcpy(s->sList[i], s, sizeof(HEVCContext));
2051             s->HEVClcList[i] = av_malloc(sizeof(HEVCLocalContext));
2052             s->sList[i]->HEVClc = s->HEVClcList[i];
2053         }
2054     }
2055
2056     offset = (lc->gb.index >> 3);
2057
2058     for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
2059         if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
2060             startheader--;
2061             cmpt++;
2062         }
2063     }
2064
2065     for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
2066         offset += (s->sh.entry_point_offset[i - 1] - cmpt);
2067         for (j = 0, cmpt = 0, startheader = offset
2068              + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
2069             if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
2070                 startheader--;
2071                 cmpt++;
2072             }
2073         }
2074         s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
2075         s->sh.offset[i - 1] = offset;
2076
2077     }
2078     if (s->sh.num_entry_point_offsets != 0) {
2079         offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
2080         s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
2081         s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
2082
2083     }
2084     s->data = nal;
2085
2086     for (i = 1; i < s->threads_number; i++) {
2087         s->sList[i]->HEVClc->first_qp_group = 1;
2088         s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
2089         memcpy(s->sList[i], s, sizeof(HEVCContext));
2090         s->sList[i]->HEVClc = s->HEVClcList[i];
2091     }
2092
2093     avpriv_atomic_int_set(&s->wpp_err, 0);
2094     ff_reset_entries(s->avctx);
2095
2096     for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
2097         arg[i] = i;
2098         ret[i] = 0;
2099     }
2100
2101     if (s->pps->entropy_coding_sync_enabled_flag)
2102         s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
2103
2104     for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
2105         res += ret[i];
2106     av_free(ret);
2107     av_free(arg);
2108     return res;
2109 }
2110
2111 /**
2112  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2113  * 0 if the unit should be skipped, 1 otherwise
2114  */
2115 static int hls_nal_unit(HEVCContext *s)
2116 {
2117     GetBitContext *gb = &s->HEVClc->gb;
2118     int nuh_layer_id;
2119
2120     if (get_bits1(gb) != 0)
2121         return AVERROR_INVALIDDATA;
2122
2123     s->nal_unit_type = get_bits(gb, 6);
2124
2125     nuh_layer_id   = get_bits(gb, 6);
2126     s->temporal_id = get_bits(gb, 3) - 1;
2127     if (s->temporal_id < 0)
2128         return AVERROR_INVALIDDATA;
2129
2130     av_log(s->avctx, AV_LOG_DEBUG,
2131            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2132            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2133
2134     return nuh_layer_id == 0;
2135 }
2136
2137 static void restore_tqb_pixels(HEVCContext *s)
2138 {
2139     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2140     int x, y, c_idx;
2141
2142     for (c_idx = 0; c_idx < 3; c_idx++) {
2143         ptrdiff_t stride = s->frame->linesize[c_idx];
2144         int hshift       = s->sps->hshift[c_idx];
2145         int vshift       = s->sps->vshift[c_idx];
2146         for (y = 0; y < s->sps->min_pu_height; y++) {
2147             for (x = 0; x < s->sps->min_pu_width; x++) {
2148                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2149                     int n;
2150                     int len      = min_pu_size >> hshift;
2151                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2152                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2153                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2154                         memcpy(dst, src, len);
2155                         src += stride;
2156                         dst += stride;
2157                     }
2158                 }
2159             }
2160         }
2161     }
2162 }
2163
2164 static int set_side_data(HEVCContext *s)
2165 {
2166     AVFrame *out = s->ref->frame;
2167
2168     if (s->sei_frame_packing_present &&
2169         s->frame_packing_arrangement_type >= 3 &&
2170         s->frame_packing_arrangement_type <= 5 &&
2171         s->content_interpretation_type > 0 &&
2172         s->content_interpretation_type < 3) {
2173         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2174         if (!stereo)
2175             return AVERROR(ENOMEM);
2176
2177         switch (s->frame_packing_arrangement_type) {
2178         case 3:
2179             if (s->quincunx_subsampling)
2180                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2181             else
2182                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2183             break;
2184         case 4:
2185             stereo->type = AV_STEREO3D_TOPBOTTOM;
2186             break;
2187         case 5:
2188             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2189             break;
2190         }
2191
2192         if (s->content_interpretation_type == 2)
2193             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2194     }
2195
2196     return 0;
2197 }
2198
2199 static int hevc_frame_start(HEVCContext *s)
2200 {
2201     HEVCLocalContext *lc = s->HEVClc;
2202     int ret;
2203
2204     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2205     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2206     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2207     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2208
2209     lc->start_of_tiles_x = 0;
2210     s->is_decoded        = 0;
2211     s->first_nal_type    = s->nal_unit_type;
2212
2213     if (s->pps->tiles_enabled_flag)
2214         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2215
2216     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2217                               s->poc);
2218     if (ret < 0)
2219         goto fail;
2220
2221     ret = ff_hevc_frame_rps(s);
2222     if (ret < 0) {
2223         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2224         goto fail;
2225     }
2226
2227     ret = set_side_data(s);
2228     if (ret < 0)
2229         goto fail;
2230
2231     av_frame_unref(s->output_frame);
2232     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2233     if (ret < 0)
2234         goto fail;
2235
2236     ff_thread_finish_setup(s->avctx);
2237
2238     return 0;
2239
2240 fail:
2241     if (s->ref && s->threads_type == FF_THREAD_FRAME)
2242         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2243     s->ref = NULL;
2244     return ret;
2245 }
2246
2247 static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2248 {
2249     HEVCLocalContext *lc = s->HEVClc;
2250     GetBitContext *gb    = &lc->gb;
2251     int ctb_addr_ts, ret;
2252
2253     ret = init_get_bits8(gb, nal, length);
2254     if (ret < 0)
2255         return ret;
2256
2257     ret = hls_nal_unit(s);
2258     if (ret < 0) {
2259         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2260                s->nal_unit_type);
2261         if (s->avctx->err_recognition & AV_EF_EXPLODE)
2262             return ret;
2263         return 0;
2264     } else if (!ret)
2265         return 0;
2266
2267     switch (s->nal_unit_type) {
2268     case NAL_VPS:
2269         ret = ff_hevc_decode_nal_vps(s);
2270         if (ret < 0)
2271             return ret;
2272         break;
2273     case NAL_SPS:
2274         ret = ff_hevc_decode_nal_sps(s);
2275         if (ret < 0)
2276             return ret;
2277         break;
2278     case NAL_PPS:
2279         ret = ff_hevc_decode_nal_pps(s);
2280         if (ret < 0)
2281             return ret;
2282         break;
2283     case NAL_SEI_PREFIX:
2284     case NAL_SEI_SUFFIX:
2285         ret = ff_hevc_decode_nal_sei(s);
2286         if (ret < 0)
2287             return ret;
2288         break;
2289     case NAL_TRAIL_R:
2290     case NAL_TRAIL_N:
2291     case NAL_TSA_N:
2292     case NAL_TSA_R:
2293     case NAL_STSA_N:
2294     case NAL_STSA_R:
2295     case NAL_BLA_W_LP:
2296     case NAL_BLA_W_RADL:
2297     case NAL_BLA_N_LP:
2298     case NAL_IDR_W_RADL:
2299     case NAL_IDR_N_LP:
2300     case NAL_CRA_NUT:
2301     case NAL_RADL_N:
2302     case NAL_RADL_R:
2303     case NAL_RASL_N:
2304     case NAL_RASL_R:
2305         ret = hls_slice_header(s);
2306         if (ret < 0)
2307             return ret;
2308
2309         if (s->max_ra == INT_MAX) {
2310             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2311                 s->max_ra = s->poc;
2312             } else {
2313                 if (IS_IDR(s))
2314                     s->max_ra = INT_MIN;
2315             }
2316         }
2317
2318         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2319             s->poc <= s->max_ra) {
2320             s->is_decoded = 0;
2321             break;
2322         } else {
2323             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2324                 s->max_ra = INT_MIN;
2325         }
2326
2327         if (s->sh.first_slice_in_pic_flag) {
2328             ret = hevc_frame_start(s);
2329             if (ret < 0)
2330                 return ret;
2331         } else if (!s->ref) {
2332             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2333             return AVERROR_INVALIDDATA;
2334         }
2335
2336         if (s->nal_unit_type != s->first_nal_type) {
2337             av_log(s->avctx, AV_LOG_ERROR,
2338                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2339                    s->first_nal_type, s->nal_unit_type);
2340             return AVERROR_INVALIDDATA;
2341         }
2342
2343         if (!s->sh.dependent_slice_segment_flag &&
2344             s->sh.slice_type != I_SLICE) {
2345             ret = ff_hevc_slice_rpl(s);
2346             if (ret < 0) {
2347                 av_log(s->avctx, AV_LOG_WARNING,
2348                        "Error constructing the reference lists for the current slice.\n");
2349                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
2350                     return ret;
2351             }
2352         }
2353
2354         if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
2355             ctb_addr_ts = hls_slice_data_wpp(s, nal, length);
2356         else
2357             ctb_addr_ts = hls_slice_data(s);
2358         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2359             s->is_decoded = 1;
2360             if ((s->pps->transquant_bypass_enable_flag ||
2361                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2362                 s->sps->sao_enabled)
2363                 restore_tqb_pixels(s);
2364         }
2365
2366         if (ctb_addr_ts < 0)
2367             return ctb_addr_ts;
2368         break;
2369     case NAL_EOS_NUT:
2370     case NAL_EOB_NUT:
2371         s->seq_decode = (s->seq_decode + 1) & 0xff;
2372         s->max_ra     = INT_MAX;
2373         break;
2374     case NAL_AUD:
2375     case NAL_FD_NUT:
2376         break;
2377     default:
2378         av_log(s->avctx, AV_LOG_INFO,
2379                "Skipping NAL unit %d\n", s->nal_unit_type);
2380     }
2381
2382     return 0;
2383 }
2384
2385 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2386  * between these functions would be nice. */
2387 int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
2388                          HEVCNAL *nal)
2389 {
2390     int i, si, di;
2391     uint8_t *dst;
2392
2393     s->skipped_bytes = 0;
2394 #define STARTCODE_TEST                                                  \
2395         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2396             if (src[i + 2] != 3) {                                      \
2397                 /* startcode, so we must be past the end */             \
2398                 length = i;                                             \
2399             }                                                           \
2400             break;                                                      \
2401         }
2402 #if HAVE_FAST_UNALIGNED
2403 #define FIND_FIRST_ZERO                                                 \
2404         if (i > 0 && !src[i])                                           \
2405             i--;                                                        \
2406         while (src[i])                                                  \
2407             i++
2408 #if HAVE_FAST_64BIT
2409     for (i = 0; i + 1 < length; i += 9) {
2410         if (!((~AV_RN64A(src + i) &
2411                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2412               0x8000800080008080ULL))
2413             continue;
2414         FIND_FIRST_ZERO;
2415         STARTCODE_TEST;
2416         i -= 7;
2417     }
2418 #else
2419     for (i = 0; i + 1 < length; i += 5) {
2420         if (!((~AV_RN32A(src + i) &
2421                (AV_RN32A(src + i) - 0x01000101U)) &
2422               0x80008080U))
2423             continue;
2424         FIND_FIRST_ZERO;
2425         STARTCODE_TEST;
2426         i -= 3;
2427     }
2428 #endif /* HAVE_FAST_64BIT */
2429 #else
2430     for (i = 0; i + 1 < length; i += 2) {
2431         if (src[i])
2432             continue;
2433         if (i > 0 && src[i - 1] == 0)
2434             i--;
2435         STARTCODE_TEST;
2436     }
2437 #endif /* HAVE_FAST_UNALIGNED */
2438
2439     if (i >= length - 1) { // no escaped 0
2440         nal->data = src;
2441         nal->size = length;
2442         return length;
2443     }
2444
2445     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2446                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2447     if (!nal->rbsp_buffer)
2448         return AVERROR(ENOMEM);
2449
2450     dst = nal->rbsp_buffer;
2451
2452     memcpy(dst, src, i);
2453     si = di = i;
2454     while (si + 2 < length) {
2455         // remove escapes (very rare 1:2^22)
2456         if (src[si + 2] > 3) {
2457             dst[di++] = src[si++];
2458             dst[di++] = src[si++];
2459         } else if (src[si] == 0 && src[si + 1] == 0) {
2460             if (src[si + 2] == 3) { // escape
2461                 dst[di++] = 0;
2462                 dst[di++] = 0;
2463                 si       += 3;
2464
2465                 s->skipped_bytes++;
2466                 if (s->skipped_bytes_pos_size < s->skipped_bytes) {
2467                     s->skipped_bytes_pos_size *= 2;
2468                     av_reallocp_array(&s->skipped_bytes_pos,
2469                             s->skipped_bytes_pos_size,
2470                             sizeof(*s->skipped_bytes_pos));
2471                     if (!s->skipped_bytes_pos)
2472                         return AVERROR(ENOMEM);
2473                 }
2474                 if (s->skipped_bytes_pos)
2475                     s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
2476                 continue;
2477             } else // next start code
2478                 goto nsc;
2479         }
2480
2481         dst[di++] = src[si++];
2482     }
2483     while (si < length)
2484         dst[di++] = src[si++];
2485
2486 nsc:
2487     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2488
2489     nal->data = dst;
2490     nal->size = di;
2491     return si;
2492 }
2493
2494 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2495 {
2496     int i, consumed, ret = 0;
2497
2498     s->ref = NULL;
2499     s->eos = 0;
2500
2501     /* split the input packet into NAL units, so we know the upper bound on the
2502      * number of slices in the frame */
2503     s->nb_nals = 0;
2504     while (length >= 4) {
2505         HEVCNAL *nal;
2506         int extract_length = 0;
2507
2508         if (s->is_nalff) {
2509             int i;
2510             for (i = 0; i < s->nal_length_size; i++)
2511                 extract_length = (extract_length << 8) | buf[i];
2512             buf    += s->nal_length_size;
2513             length -= s->nal_length_size;
2514
2515             if (extract_length > length) {
2516                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2517                 ret = AVERROR_INVALIDDATA;
2518                 goto fail;
2519             }
2520         } else {
2521             /* search start code */
2522             while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2523                 ++buf;
2524                 --length;
2525                 if (length < 4) {
2526                     av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
2527                     ret = AVERROR_INVALIDDATA;
2528                     goto fail;
2529                 }
2530             }
2531
2532             buf           += 3;
2533             length        -= 3;
2534         }
2535
2536         if (!s->is_nalff)
2537             extract_length = length;
2538
2539         if (s->nals_allocated < s->nb_nals + 1) {
2540             int new_size = s->nals_allocated + 1;
2541             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2542             if (!tmp) {
2543                 ret = AVERROR(ENOMEM);
2544                 goto fail;
2545             }
2546             s->nals = tmp;
2547             memset(s->nals + s->nals_allocated, 0,
2548                    (new_size - s->nals_allocated) * sizeof(*tmp));
2549             av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
2550             av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
2551             av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
2552             s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
2553             s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
2554             s->nals_allocated = new_size;
2555         }
2556         s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
2557         s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
2558         nal = &s->nals[s->nb_nals];
2559
2560         consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
2561
2562         s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
2563         s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
2564         s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
2565
2566
2567         if (consumed < 0) {
2568             ret = consumed;
2569             goto fail;
2570         }
2571
2572         ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
2573         if (ret < 0)
2574             goto fail;
2575         hls_nal_unit(s);
2576
2577         if (s->nal_unit_type == NAL_EOB_NUT ||
2578             s->nal_unit_type == NAL_EOS_NUT)
2579             s->eos = 1;
2580
2581         buf    += consumed;
2582         length -= consumed;
2583     }
2584
2585     /* parse the NAL units */
2586     for (i = 0; i < s->nb_nals; i++) {
2587         int ret;
2588         s->skipped_bytes = s->skipped_bytes_nal[i];
2589         s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
2590
2591         ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2592         if (ret < 0) {
2593             av_log(s->avctx, AV_LOG_WARNING,
2594                    "Error parsing NAL unit #%d.\n", i);
2595             if (s->avctx->err_recognition & AV_EF_EXPLODE)
2596                 goto fail;
2597         }
2598     }
2599
2600 fail:
2601     if (s->ref && s->threads_type == FF_THREAD_FRAME)
2602         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2603
2604     return ret;
2605 }
2606
2607 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2608 {
2609     int i;
2610     for (i = 0; i < 16; i++)
2611         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2612 }
2613
2614 static int verify_md5(HEVCContext *s, AVFrame *frame)
2615 {
2616     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2617     int pixel_shift;
2618     int i, j;
2619
2620     if (!desc)
2621         return AVERROR(EINVAL);
2622
2623     pixel_shift = desc->comp[0].depth_minus1 > 7;
2624
2625     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2626            s->poc);
2627
2628     /* the checksums are LE, so we have to byteswap for >8bpp formats
2629      * on BE arches */
2630 #if HAVE_BIGENDIAN
2631     if (pixel_shift && !s->checksum_buf) {
2632         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2633                        FFMAX3(frame->linesize[0], frame->linesize[1],
2634                               frame->linesize[2]));
2635         if (!s->checksum_buf)
2636             return AVERROR(ENOMEM);
2637     }
2638 #endif
2639
2640     for (i = 0; frame->data[i]; i++) {
2641         int width  = s->avctx->coded_width;
2642         int height = s->avctx->coded_height;
2643         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2644         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2645         uint8_t md5[16];
2646
2647         av_md5_init(s->md5_ctx);
2648         for (j = 0; j < h; j++) {
2649             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2650 #if HAVE_BIGENDIAN
2651             if (pixel_shift) {
2652                 s->dsp.bswap16_buf((uint16_t*)s->checksum_buf,
2653                                    (const uint16_t*)src, w);
2654                 src = s->checksum_buf;
2655             }
2656 #endif
2657             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2658         }
2659         av_md5_final(s->md5_ctx, md5);
2660
2661         if (!memcmp(md5, s->md5[i], 16)) {
2662             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2663             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2664             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2665         } else {
2666             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2667             print_md5(s->avctx, AV_LOG_ERROR, md5);
2668             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2669             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2670             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2671             return AVERROR_INVALIDDATA;
2672         }
2673     }
2674
2675     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2676
2677     return 0;
2678 }
2679
2680 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2681                              AVPacket *avpkt)
2682 {
2683     int ret;
2684     HEVCContext *s = avctx->priv_data;
2685
2686     if (!avpkt->size) {
2687         ret = ff_hevc_output_frame(s, data, 1);
2688         if (ret < 0)
2689             return ret;
2690
2691         *got_output = ret;
2692         return 0;
2693     }
2694
2695     s->ref = NULL;
2696     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2697     if (ret < 0)
2698         return ret;
2699
2700     /* verify the SEI checksum */
2701     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2702         s->is_md5) {
2703         ret = verify_md5(s, s->ref->frame);
2704         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2705             ff_hevc_unref_frame(s, s->ref, ~0);
2706             return ret;
2707         }
2708     }
2709     s->is_md5 = 0;
2710
2711     if (s->is_decoded) {
2712         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2713         s->is_decoded = 0;
2714     }
2715
2716     if (s->output_frame->buf[0]) {
2717         av_frame_move_ref(data, s->output_frame);
2718         *got_output = 1;
2719     }
2720
2721     return avpkt->size;
2722 }
2723
2724 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2725 {
2726     int ret;
2727
2728     ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2729     if (ret < 0)
2730         return ret;
2731
2732     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2733     if (!dst->tab_mvf_buf)
2734         goto fail;
2735     dst->tab_mvf = src->tab_mvf;
2736
2737     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2738     if (!dst->rpl_tab_buf)
2739         goto fail;
2740     dst->rpl_tab = src->rpl_tab;
2741
2742     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2743     if (!dst->rpl_buf)
2744         goto fail;
2745
2746     dst->poc        = src->poc;
2747     dst->ctb_count  = src->ctb_count;
2748     dst->window     = src->window;
2749     dst->flags      = src->flags;
2750     dst->sequence   = src->sequence;
2751
2752     return 0;
2753 fail:
2754     ff_hevc_unref_frame(s, dst, ~0);
2755     return AVERROR(ENOMEM);
2756 }
2757
2758 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2759 {
2760     HEVCContext       *s = avctx->priv_data;
2761     HEVCLocalContext *lc = s->HEVClc;
2762     int i;
2763
2764     pic_arrays_free(s);
2765
2766     av_freep(&s->md5_ctx);
2767
2768     for(i=0; i < s->nals_allocated; i++) {
2769         av_freep(&s->skipped_bytes_pos_nal[i]);
2770     }
2771     av_freep(&s->skipped_bytes_pos_size_nal);
2772     av_freep(&s->skipped_bytes_nal);
2773     av_freep(&s->skipped_bytes_pos_nal);
2774
2775     av_freep(&s->cabac_state);
2776
2777     av_frame_free(&s->tmp_frame);
2778     av_frame_free(&s->output_frame);
2779
2780     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2781         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2782         av_frame_free(&s->DPB[i].frame);
2783     }
2784
2785     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2786         av_buffer_unref(&s->vps_list[i]);
2787     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2788         av_buffer_unref(&s->sps_list[i]);
2789     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2790         av_buffer_unref(&s->pps_list[i]);
2791
2792     av_freep(&s->sh.entry_point_offset);
2793     av_freep(&s->sh.offset);
2794     av_freep(&s->sh.size);
2795
2796     for (i = 1; i < s->threads_number; i++) {
2797         lc = s->HEVClcList[i];
2798         if (lc) {
2799             av_freep(&s->HEVClcList[i]);
2800             av_freep(&s->sList[i]);
2801         }
2802     }
2803     if (s->HEVClc == s->HEVClcList[0])
2804         s->HEVClc = NULL;
2805     av_freep(&s->HEVClcList[0]);
2806
2807     for (i = 0; i < s->nals_allocated; i++)
2808         av_freep(&s->nals[i].rbsp_buffer);
2809     av_freep(&s->nals);
2810     s->nals_allocated = 0;
2811
2812     return 0;
2813 }
2814
2815 static av_cold int hevc_init_context(AVCodecContext *avctx)
2816 {
2817     HEVCContext *s = avctx->priv_data;
2818     int i;
2819
2820     s->avctx = avctx;
2821
2822     s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
2823     if (!s->HEVClc)
2824         goto fail;
2825     s->HEVClcList[0] = s->HEVClc;
2826     s->sList[0] = s;
2827
2828     s->cabac_state = av_malloc(HEVC_CONTEXTS);
2829     if (!s->cabac_state)
2830         goto fail;
2831
2832     s->tmp_frame = av_frame_alloc();
2833     if (!s->tmp_frame)
2834         goto fail;
2835
2836     s->output_frame = av_frame_alloc();
2837     if (!s->output_frame)
2838         goto fail;
2839
2840     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2841         s->DPB[i].frame = av_frame_alloc();
2842         if (!s->DPB[i].frame)
2843             goto fail;
2844         s->DPB[i].tf.f = s->DPB[i].frame;
2845     }
2846
2847     s->max_ra = INT_MAX;
2848
2849     s->md5_ctx = av_md5_alloc();
2850     if (!s->md5_ctx)
2851         goto fail;
2852
2853     ff_dsputil_init(&s->dsp, avctx);
2854
2855     s->context_initialized = 1;
2856
2857     return 0;
2858
2859 fail:
2860     hevc_decode_free(avctx);
2861     return AVERROR(ENOMEM);
2862 }
2863
2864 static int hevc_update_thread_context(AVCodecContext *dst,
2865                                       const AVCodecContext *src)
2866 {
2867     HEVCContext *s  = dst->priv_data;
2868     HEVCContext *s0 = src->priv_data;
2869     int i, ret;
2870
2871     if (!s->context_initialized) {
2872         ret = hevc_init_context(dst);
2873         if (ret < 0)
2874             return ret;
2875     }
2876
2877     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2878         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2879         if (s0->DPB[i].frame->buf[0]) {
2880             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
2881             if (ret < 0)
2882                 return ret;
2883         }
2884     }
2885
2886     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
2887         av_buffer_unref(&s->vps_list[i]);
2888         if (s0->vps_list[i]) {
2889             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
2890             if (!s->vps_list[i])
2891                 return AVERROR(ENOMEM);
2892         }
2893     }
2894
2895     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
2896         av_buffer_unref(&s->sps_list[i]);
2897         if (s0->sps_list[i]) {
2898             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
2899             if (!s->sps_list[i])
2900                 return AVERROR(ENOMEM);
2901         }
2902     }
2903
2904     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
2905         av_buffer_unref(&s->pps_list[i]);
2906         if (s0->pps_list[i]) {
2907             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
2908             if (!s->pps_list[i])
2909                 return AVERROR(ENOMEM);
2910         }
2911     }
2912
2913     if (s->sps != s0->sps)
2914         ret = set_sps(s, s0->sps);
2915
2916     s->seq_decode = s0->seq_decode;
2917     s->seq_output = s0->seq_output;
2918     s->pocTid0    = s0->pocTid0;
2919     s->max_ra     = s0->max_ra;
2920
2921     s->is_nalff        = s0->is_nalff;
2922     s->nal_length_size = s0->nal_length_size;
2923
2924     s->threads_number      = s0->threads_number;
2925     s->threads_type        = s0->threads_type;
2926
2927     if (s0->eos) {
2928         s->seq_decode = (s->seq_decode + 1) & 0xff;
2929         s->max_ra = INT_MAX;
2930     }
2931
2932     return 0;
2933 }
2934
2935 static int hevc_decode_extradata(HEVCContext *s)
2936 {
2937     AVCodecContext *avctx = s->avctx;
2938     GetByteContext gb;
2939     int ret;
2940
2941     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
2942
2943     if (avctx->extradata_size > 3 &&
2944         (avctx->extradata[0] || avctx->extradata[1] ||
2945          avctx->extradata[2] > 1)) {
2946         /* It seems the extradata is encoded as hvcC format.
2947          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
2948          * is finalized. When finalized, configurationVersion will be 1 and we
2949          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
2950         int i, j, num_arrays, nal_len_size;
2951
2952         s->is_nalff = 1;
2953
2954         bytestream2_skip(&gb, 21);
2955         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
2956         num_arrays   = bytestream2_get_byte(&gb);
2957
2958         /* nal units in the hvcC always have length coded with 2 bytes,
2959          * so put a fake nal_length_size = 2 while parsing them */
2960         s->nal_length_size = 2;
2961
2962         /* Decode nal units from hvcC. */
2963         for (i = 0; i < num_arrays; i++) {
2964             int type = bytestream2_get_byte(&gb) & 0x3f;
2965             int cnt  = bytestream2_get_be16(&gb);
2966
2967             for (j = 0; j < cnt; j++) {
2968                 // +2 for the nal size field
2969                 int nalsize = bytestream2_peek_be16(&gb) + 2;
2970                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
2971                     av_log(s->avctx, AV_LOG_ERROR,
2972                            "Invalid NAL unit size in extradata.\n");
2973                     return AVERROR_INVALIDDATA;
2974                 }
2975
2976                 ret = decode_nal_units(s, gb.buffer, nalsize);
2977                 if (ret < 0) {
2978                     av_log(avctx, AV_LOG_ERROR,
2979                            "Decoding nal unit %d %d from hvcC failed\n",
2980                            type, i);
2981                     return ret;
2982                 }
2983                 bytestream2_skip(&gb, nalsize);
2984             }
2985         }
2986
2987         /* Now store right nal length size, that will be used to parse
2988          * all other nals */
2989         s->nal_length_size = nal_len_size;
2990     } else {
2991         s->is_nalff = 0;
2992         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
2993         if (ret < 0)
2994             return ret;
2995     }
2996     return 0;
2997 }
2998
2999 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3000 {
3001     HEVCContext *s = avctx->priv_data;
3002     int ret;
3003
3004     ff_init_cabac_states();
3005
3006     avctx->internal->allocate_progress = 1;
3007
3008     ret = hevc_init_context(avctx);
3009     if (ret < 0)
3010         return ret;
3011
3012     s->enable_parallel_tiles = 0;
3013     s->picture_struct = 0;
3014
3015     if(avctx->active_thread_type & FF_THREAD_SLICE)
3016         s->threads_number = avctx->thread_count;
3017     else
3018         s->threads_number = 1;
3019
3020     if (avctx->extradata_size > 0 && avctx->extradata) {
3021         ret = hevc_decode_extradata(s);
3022         if (ret < 0) {
3023             hevc_decode_free(avctx);
3024             return ret;
3025         }
3026     }
3027
3028     if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
3029             s->threads_type = FF_THREAD_FRAME;
3030         else
3031             s->threads_type = FF_THREAD_SLICE;
3032
3033     return 0;
3034 }
3035
3036 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3037 {
3038     HEVCContext *s = avctx->priv_data;
3039     int ret;
3040
3041     memset(s, 0, sizeof(*s));
3042
3043     ret = hevc_init_context(avctx);
3044     if (ret < 0)
3045         return ret;
3046
3047     return 0;
3048 }
3049
3050 static void hevc_decode_flush(AVCodecContext *avctx)
3051 {
3052     HEVCContext *s = avctx->priv_data;
3053     ff_hevc_flush_dpb(s);
3054     s->max_ra = INT_MAX;
3055 }
3056
3057 #define OFFSET(x) offsetof(HEVCContext, x)
3058 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3059
3060 static const AVProfile profiles[] = {
3061     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3062     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3063     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3064     { FF_PROFILE_UNKNOWN },
3065 };
3066
3067 static const AVOption options[] = {
3068     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3069         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3070     { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
3071         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3072     { NULL },
3073 };
3074
3075 static const AVClass hevc_decoder_class = {
3076     .class_name = "HEVC decoder",
3077     .item_name  = av_default_item_name,
3078     .option     = options,
3079     .version    = LIBAVUTIL_VERSION_INT,
3080 };
3081
3082 AVCodec ff_hevc_decoder = {
3083     .name                  = "hevc",
3084     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3085     .type                  = AVMEDIA_TYPE_VIDEO,
3086     .id                    = AV_CODEC_ID_HEVC,
3087     .priv_data_size        = sizeof(HEVCContext),
3088     .priv_class            = &hevc_decoder_class,
3089     .init                  = hevc_decode_init,
3090     .close                 = hevc_decode_free,
3091     .decode                = hevc_decode_frame,
3092     .flush                 = hevc_decode_flush,
3093     .update_thread_context = hevc_update_thread_context,
3094     .init_thread_copy      = hevc_init_thread_copy,
3095     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3096                              CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
3097     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3098 };