2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * IMC - Intel Music Coder
27 * A mdct based codec using a 256 points large transform
28 * divided into 32 bands with some mix of scale factors.
29 * Only mono is supported.
38 #include "libavutil/channel_layout.h"
39 #include "libavutil/float_dsp.h"
40 #include "libavutil/internal.h"
41 #include "libavutil/libm.h"
51 #define IMC_BLOCK_SIZE 64
52 #define IMC_FRAME_ID 0x21
56 typedef struct IMCChannel {
57 float old_floor[BANDS];
58 float flcoeffs1[BANDS];
59 float flcoeffs2[BANDS];
60 float flcoeffs3[BANDS];
61 float flcoeffs4[BANDS];
62 float flcoeffs5[BANDS];
63 float flcoeffs6[BANDS];
64 float CWdecoded[COEFFS];
66 int bandWidthT[BANDS]; ///< codewords per band
67 int bitsBandT[BANDS]; ///< how many bits per codeword in band
68 int CWlengthT[COEFFS]; ///< how many bits in each codeword
69 int levlCoeffBuf[BANDS];
70 int bandFlagsBuf[BANDS]; ///< flags for each band
71 int sumLenArr[BANDS]; ///< bits for all coeffs in band
72 int skipFlagRaw[BANDS]; ///< skip flags are stored in raw form or not
73 int skipFlagBits[BANDS]; ///< bits used to code skip flags
74 int skipFlagCount[BANDS]; ///< skipped coeffients per band
75 int skipFlags[COEFFS]; ///< skip coefficient decoding or not
76 int codewords[COEFFS]; ///< raw codewords read from bitstream
78 float last_fft_im[COEFFS];
83 typedef struct IMCContext {
88 float mdct_sine_window[COEFFS];
89 float post_cos[COEFFS];
90 float post_sin[COEFFS];
91 float pre_coef1[COEFFS];
92 float pre_coef2[COEFFS];
99 AVFloatDSPContext *fdsp;
101 DECLARE_ALIGNED(32, FFTComplex, samples)[COEFFS / 2];
106 int8_t cyclTab[32], cyclTab2[32];
107 float weights1[31], weights2[31];
110 static VLC huffman_vlc[4][4];
112 #define VLC_TABLES_SIZE 9512
114 static const int vlc_offsets[17] = {
115 0, 640, 1156, 1732, 2308, 2852, 3396, 3924,
116 4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE
119 static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
121 static inline double freq2bark(double freq)
123 return 3.5 * atan((freq / 7500.0) * (freq / 7500.0)) + 13.0 * atan(freq * 0.00076);
126 static av_cold void iac_generate_tabs(IMCContext *q, int sampling_rate)
128 double freqmin[32], freqmid[32], freqmax[32];
129 double scale = sampling_rate / (256.0 * 2.0 * 2.0);
130 double nyquist_freq = sampling_rate * 0.5;
131 double freq, bark, prev_bark = 0, tf, tb;
134 for (i = 0; i < 32; i++) {
135 freq = (band_tab[i] + band_tab[i + 1] - 1) * scale;
136 bark = freq2bark(freq);
139 tb = bark - prev_bark;
140 q->weights1[i - 1] = pow(10.0, -1.0 * tb);
141 q->weights2[i - 1] = pow(10.0, -2.7 * tb);
148 while (tf < nyquist_freq) {
160 if (tb <= bark - 0.5)
166 for (i = 0; i < 32; i++) {
168 for (j = 31; j > 0 && freq <= freqmid[j]; j--);
169 q->cyclTab[i] = j + 1;
172 for (j = 0; j < 32 && freq >= freqmid[j]; j++);
173 q->cyclTab2[i] = j - 1;
177 static av_cold int imc_decode_init(AVCodecContext *avctx)
180 IMCContext *q = avctx->priv_data;
183 if (avctx->codec_id == AV_CODEC_ID_IAC && avctx->sample_rate > 96000) {
184 av_log(avctx, AV_LOG_ERROR,
185 "Strange sample rate of %i, file likely corrupt or "
186 "needing a new table derivation method.\n",
188 return AVERROR_PATCHWELCOME;
191 if (avctx->codec_id == AV_CODEC_ID_IMC)
194 if (avctx->channels > 2) {
195 avpriv_request_sample(avctx, "Number of channels > 2");
196 return AVERROR_PATCHWELCOME;
199 for (j = 0; j < avctx->channels; j++) {
200 q->chctx[j].decoder_reset = 1;
202 for (i = 0; i < BANDS; i++)
203 q->chctx[j].old_floor[i] = 1.0;
205 for (i = 0; i < COEFFS / 2; i++)
206 q->chctx[j].last_fft_im[i] = 0;
209 /* Build mdct window, a simple sine window normalized with sqrt(2) */
210 ff_sine_window_init(q->mdct_sine_window, COEFFS);
211 for (i = 0; i < COEFFS; i++)
212 q->mdct_sine_window[i] *= sqrt(2.0);
213 for (i = 0; i < COEFFS / 2; i++) {
214 q->post_cos[i] = (1.0f / 32768) * cos(i / 256.0 * M_PI);
215 q->post_sin[i] = (1.0f / 32768) * sin(i / 256.0 * M_PI);
217 r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
218 r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
221 q->pre_coef1[i] = (r1 + r2) * sqrt(2.0);
222 q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
224 q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
225 q->pre_coef2[i] = (r1 - r2) * sqrt(2.0);
229 /* Generate a square root table */
231 for (i = 0; i < 30; i++)
232 q->sqrt_tab[i] = sqrt(i);
234 /* initialize the VLC tables */
235 for (i = 0; i < 4 ; i++) {
236 for (j = 0; j < 4; j++) {
237 huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
238 huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
239 init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
240 imc_huffman_lens[i][j], 1, 1,
241 imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
245 if (avctx->codec_id == AV_CODEC_ID_IAC) {
246 iac_generate_tabs(q, avctx->sample_rate);
248 memcpy(q->cyclTab, cyclTab, sizeof(cyclTab));
249 memcpy(q->cyclTab2, cyclTab2, sizeof(cyclTab2));
250 memcpy(q->weights1, imc_weights1, sizeof(imc_weights1));
251 memcpy(q->weights2, imc_weights2, sizeof(imc_weights2));
254 if ((ret = ff_fft_init(&q->fft, 7, 1))) {
255 av_log(avctx, AV_LOG_INFO, "FFT init failed\n");
258 ff_bswapdsp_init(&q->bdsp);
259 q->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
263 return AVERROR(ENOMEM);
266 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
267 avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO
268 : AV_CH_LAYOUT_STEREO;
273 static void imc_calculate_coeffs(IMCContext *q, float *flcoeffs1,
274 float *flcoeffs2, int *bandWidthT,
275 float *flcoeffs3, float *flcoeffs5)
280 float snr_limit = 1.e-30;
284 for (i = 0; i < BANDS; i++) {
285 flcoeffs5[i] = workT2[i] = 0.0;
287 workT1[i] = flcoeffs1[i] * flcoeffs1[i];
288 flcoeffs3[i] = 2.0 * flcoeffs2[i];
291 flcoeffs3[i] = -30000.0;
293 workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
294 if (workT3[i] <= snr_limit)
298 for (i = 0; i < BANDS; i++) {
299 for (cnt2 = i; cnt2 < q->cyclTab[i]; cnt2++)
300 flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
301 workT2[cnt2 - 1] = workT2[cnt2 - 1] + workT3[i];
304 for (i = 1; i < BANDS; i++) {
305 accum = (workT2[i - 1] + accum) * q->weights1[i - 1];
306 flcoeffs5[i] += accum;
309 for (i = 0; i < BANDS; i++)
312 for (i = 0; i < BANDS; i++) {
313 for (cnt2 = i - 1; cnt2 > q->cyclTab2[i]; cnt2--)
314 flcoeffs5[cnt2] += workT3[i];
315 workT2[cnt2+1] += workT3[i];
320 for (i = BANDS-2; i >= 0; i--) {
321 accum = (workT2[i+1] + accum) * q->weights2[i];
322 flcoeffs5[i] += accum;
323 // there is missing code here, but it seems to never be triggered
328 static void imc_read_level_coeffs(IMCContext *q, int stream_format_code,
334 const uint8_t *cb_sel;
337 s = stream_format_code >> 1;
338 hufftab[0] = &huffman_vlc[s][0];
339 hufftab[1] = &huffman_vlc[s][1];
340 hufftab[2] = &huffman_vlc[s][2];
341 hufftab[3] = &huffman_vlc[s][3];
342 cb_sel = imc_cb_select[s];
344 if (stream_format_code & 4)
347 levlCoeffs[0] = get_bits(&q->gb, 7);
348 for (i = start; i < BANDS; i++) {
349 levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table,
350 hufftab[cb_sel[i]]->bits, 2);
351 if (levlCoeffs[i] == 17)
352 levlCoeffs[i] += get_bits(&q->gb, 4);
356 static void imc_read_level_coeffs_raw(IMCContext *q, int stream_format_code,
361 q->coef0_pos = get_bits(&q->gb, 5);
362 levlCoeffs[0] = get_bits(&q->gb, 7);
363 for (i = 1; i < BANDS; i++)
364 levlCoeffs[i] = get_bits(&q->gb, 4);
367 static void imc_decode_level_coefficients(IMCContext *q, int *levlCoeffBuf,
368 float *flcoeffs1, float *flcoeffs2)
372 // maybe some frequency division thingy
374 flcoeffs1[0] = 20000.0 / exp2 (levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
375 flcoeffs2[0] = log2f(flcoeffs1[0]);
379 for (i = 1; i < BANDS; i++) {
380 level = levlCoeffBuf[i];
387 else if (level <= 24)
392 tmp *= imc_exp_tab[15 + level];
393 tmp2 += 0.83048 * level; // 0.83048 = log2(10) * 0.25
401 static void imc_decode_level_coefficients2(IMCContext *q, int *levlCoeffBuf,
402 float *old_floor, float *flcoeffs1,
406 /* FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
407 * and flcoeffs2 old scale factors
408 * might be incomplete due to a missing table that is in the binary code
410 for (i = 0; i < BANDS; i++) {
412 if (levlCoeffBuf[i] < 16) {
413 flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
414 flcoeffs2[i] = (levlCoeffBuf[i] - 7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
416 flcoeffs1[i] = old_floor[i];
421 static void imc_decode_level_coefficients_raw(IMCContext *q, int *levlCoeffBuf,
422 float *flcoeffs1, float *flcoeffs2)
428 flcoeffs1[pos] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
429 flcoeffs2[pos] = log2f(flcoeffs1[0]);
430 tmp = flcoeffs1[pos];
431 tmp2 = flcoeffs2[pos];
434 for (i = 0; i < BANDS; i++) {
437 level = *levlCoeffBuf++;
438 flcoeffs1[i] = tmp * powf(10.0, -level * 0.4375); //todo tab
439 flcoeffs2[i] = tmp2 - 1.4533435415 * level; // 1.4533435415 = log2(10) * 0.4375
444 * Perform bit allocation depending on bits available
446 static int bit_allocation(IMCContext *q, IMCChannel *chctx,
447 int stream_format_code, int freebits, int flag)
450 const float limit = -1.e20;
459 float lowest = 1.e10;
465 for (i = 0; i < BANDS; i++)
466 highest = FFMAX(highest, chctx->flcoeffs1[i]);
468 for (i = 0; i < BANDS - 1; i++) {
469 if (chctx->flcoeffs5[i] <= 0) {
470 av_log(NULL, AV_LOG_ERROR, "flcoeffs5 %f invalid\n", chctx->flcoeffs5[i]);
471 return AVERROR_INVALIDDATA;
473 chctx->flcoeffs4[i] = chctx->flcoeffs3[i] - log2f(chctx->flcoeffs5[i]);
475 chctx->flcoeffs4[BANDS - 1] = limit;
477 highest = highest * 0.25;
479 for (i = 0; i < BANDS; i++) {
481 if ((band_tab[i + 1] - band_tab[i]) == chctx->bandWidthT[i])
484 if ((band_tab[i + 1] - band_tab[i]) > chctx->bandWidthT[i])
487 if (((band_tab[i + 1] - band_tab[i]) / 2) >= chctx->bandWidthT[i])
491 return AVERROR_INVALIDDATA;
493 chctx->flcoeffs4[i] += xTab[(indx * 2 + (chctx->flcoeffs1[i] < highest)) * 2 + flag];
496 if (stream_format_code & 0x2) {
497 chctx->flcoeffs4[0] = limit;
498 chctx->flcoeffs4[1] = limit;
499 chctx->flcoeffs4[2] = limit;
500 chctx->flcoeffs4[3] = limit;
503 for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS - 1; i++) {
504 iacc += chctx->bandWidthT[i];
505 summa += chctx->bandWidthT[i] * chctx->flcoeffs4[i];
509 return AVERROR_INVALIDDATA;
511 chctx->bandWidthT[BANDS - 1] = 0;
512 summa = (summa * 0.5 - freebits) / iacc;
515 for (i = 0; i < BANDS / 2; i++) {
516 rres = summer - freebits;
517 if ((rres >= -8) && (rres <= 8))
523 for (j = (stream_format_code & 0x2) ? 4 : 0; j < BANDS; j++) {
524 cwlen = av_clipf(((chctx->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
526 chctx->bitsBandT[j] = cwlen;
527 summer += chctx->bandWidthT[j] * cwlen;
530 iacc += chctx->bandWidthT[j];
535 if (freebits < summer)
542 summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
545 for (i = (stream_format_code & 0x2) ? 4 : 0; i < BANDS; i++) {
546 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
547 chctx->CWlengthT[j] = chctx->bitsBandT[i];
550 if (freebits > summer) {
551 for (i = 0; i < BANDS; i++) {
552 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
553 : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
559 if (highest <= -1.e20)
565 for (i = 0; i < BANDS; i++) {
566 if (workT[i] > highest) {
572 if (highest > -1.e20) {
573 workT[found_indx] -= 2.0;
574 if (++chctx->bitsBandT[found_indx] == 6)
575 workT[found_indx] = -1.e20;
577 for (j = band_tab[found_indx]; j < band_tab[found_indx + 1] && (freebits > summer); j++) {
578 chctx->CWlengthT[j]++;
582 } while (freebits > summer);
584 if (freebits < summer) {
585 for (i = 0; i < BANDS; i++) {
586 workT[i] = chctx->bitsBandT[i] ? (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] + 1.585)
589 if (stream_format_code & 0x2) {
595 while (freebits < summer) {
598 for (i = 0; i < BANDS; i++) {
599 if (workT[i] < lowest) {
604 // if (lowest >= 1.e10)
606 workT[low_indx] = lowest + 2.0;
608 if (!--chctx->bitsBandT[low_indx])
609 workT[low_indx] = 1.e20;
611 for (j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++) {
612 if (chctx->CWlengthT[j] > 0) {
613 chctx->CWlengthT[j]--;
622 static void imc_get_skip_coeff(IMCContext *q, IMCChannel *chctx)
626 memset(chctx->skipFlagBits, 0, sizeof(chctx->skipFlagBits));
627 memset(chctx->skipFlagCount, 0, sizeof(chctx->skipFlagCount));
628 for (i = 0; i < BANDS; i++) {
629 if (!chctx->bandFlagsBuf[i] || !chctx->bandWidthT[i])
632 if (!chctx->skipFlagRaw[i]) {
633 chctx->skipFlagBits[i] = band_tab[i + 1] - band_tab[i];
635 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
636 chctx->skipFlags[j] = get_bits1(&q->gb);
637 if (chctx->skipFlags[j])
638 chctx->skipFlagCount[i]++;
641 for (j = band_tab[i]; j < band_tab[i + 1] - 1; j += 2) {
642 if (!get_bits1(&q->gb)) { // 0
643 chctx->skipFlagBits[i]++;
644 chctx->skipFlags[j] = 1;
645 chctx->skipFlags[j + 1] = 1;
646 chctx->skipFlagCount[i] += 2;
648 if (get_bits1(&q->gb)) { // 11
649 chctx->skipFlagBits[i] += 2;
650 chctx->skipFlags[j] = 0;
651 chctx->skipFlags[j + 1] = 1;
652 chctx->skipFlagCount[i]++;
654 chctx->skipFlagBits[i] += 3;
655 chctx->skipFlags[j + 1] = 0;
656 if (!get_bits1(&q->gb)) { // 100
657 chctx->skipFlags[j] = 1;
658 chctx->skipFlagCount[i]++;
660 chctx->skipFlags[j] = 0;
666 if (j < band_tab[i + 1]) {
667 chctx->skipFlagBits[i]++;
668 if ((chctx->skipFlags[j] = get_bits1(&q->gb)))
669 chctx->skipFlagCount[i]++;
676 * Increase highest' band coefficient sizes as some bits won't be used
678 static void imc_adjust_bit_allocation(IMCContext *q, IMCChannel *chctx,
687 for (i = 0; i < BANDS; i++) {
688 workT[i] = (chctx->bitsBandT[i] == 6) ? -1.e20
689 : (chctx->bitsBandT[i] * -2 + chctx->flcoeffs4[i] - 0.415);
692 while (corrected < summer) {
693 if (highest <= -1.e20)
698 for (i = 0; i < BANDS; i++) {
699 if (workT[i] > highest) {
705 if (highest > -1.e20) {
706 workT[found_indx] -= 2.0;
707 if (++(chctx->bitsBandT[found_indx]) == 6)
708 workT[found_indx] = -1.e20;
710 for (j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
711 if (!chctx->skipFlags[j] && (chctx->CWlengthT[j] < 6)) {
712 chctx->CWlengthT[j]++;
720 static void imc_imdct256(IMCContext *q, IMCChannel *chctx, int channels)
724 float *dst1 = q->out_samples;
725 float *dst2 = q->out_samples + (COEFFS - 1);
728 for (i = 0; i < COEFFS / 2; i++) {
729 q->samples[i].re = -(q->pre_coef1[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
730 (q->pre_coef2[i] * chctx->CWdecoded[i * 2]);
731 q->samples[i].im = (q->pre_coef2[i] * chctx->CWdecoded[COEFFS - 1 - i * 2]) -
732 (q->pre_coef1[i] * chctx->CWdecoded[i * 2]);
736 q->fft.fft_permute(&q->fft, q->samples);
737 q->fft.fft_calc(&q->fft, q->samples);
739 /* postrotation, window and reorder */
740 for (i = 0; i < COEFFS / 2; i++) {
741 re = ( q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
742 im = (-q->samples[i].im * q->post_cos[i]) - ( q->samples[i].re * q->post_sin[i]);
743 *dst1 = (q->mdct_sine_window[COEFFS - 1 - i * 2] * chctx->last_fft_im[i])
744 + (q->mdct_sine_window[i * 2] * re);
745 *dst2 = (q->mdct_sine_window[i * 2] * chctx->last_fft_im[i])
746 - (q->mdct_sine_window[COEFFS - 1 - i * 2] * re);
749 chctx->last_fft_im[i] = im;
753 static int inverse_quant_coeff(IMCContext *q, IMCChannel *chctx,
754 int stream_format_code)
757 int middle_value, cw_len, max_size;
758 const float *quantizer;
760 for (i = 0; i < BANDS; i++) {
761 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
762 chctx->CWdecoded[j] = 0;
763 cw_len = chctx->CWlengthT[j];
765 if (cw_len <= 0 || chctx->skipFlags[j])
768 max_size = 1 << cw_len;
769 middle_value = max_size >> 1;
771 if (chctx->codewords[j] >= max_size || chctx->codewords[j] < 0)
772 return AVERROR_INVALIDDATA;
775 quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
776 if (chctx->codewords[j] >= middle_value)
777 chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 8] * chctx->flcoeffs6[i];
779 chctx->CWdecoded[j] = -quantizer[max_size - chctx->codewords[j] - 8 - 1] * chctx->flcoeffs6[i];
781 quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (chctx->bandFlagsBuf[i] << 1)];
782 if (chctx->codewords[j] >= middle_value)
783 chctx->CWdecoded[j] = quantizer[chctx->codewords[j] - 1] * chctx->flcoeffs6[i];
785 chctx->CWdecoded[j] = -quantizer[max_size - 2 - chctx->codewords[j]] * chctx->flcoeffs6[i];
793 static void imc_get_coeffs(AVCodecContext *avctx,
794 IMCContext *q, IMCChannel *chctx)
796 int i, j, cw_len, cw;
798 for (i = 0; i < BANDS; i++) {
799 if (!chctx->sumLenArr[i])
801 if (chctx->bandFlagsBuf[i] || chctx->bandWidthT[i]) {
802 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
803 cw_len = chctx->CWlengthT[j];
806 if (cw_len && (!chctx->bandFlagsBuf[i] || !chctx->skipFlags[j])) {
807 if (get_bits_count(&q->gb) + cw_len > 512) {
808 av_log(avctx, AV_LOG_WARNING,
809 "Potential problem on band %i, coefficient %i"
810 ": cw_len=%i\n", i, j, cw_len);
812 cw = get_bits(&q->gb, cw_len);
815 chctx->codewords[j] = cw;
821 static void imc_refine_bit_allocation(IMCContext *q, IMCChannel *chctx)
826 for (i = 0; i < BANDS; i++) {
827 chctx->sumLenArr[i] = 0;
828 chctx->skipFlagRaw[i] = 0;
829 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
830 chctx->sumLenArr[i] += chctx->CWlengthT[j];
831 if (chctx->bandFlagsBuf[i])
832 if ((((band_tab[i + 1] - band_tab[i]) * 1.5) > chctx->sumLenArr[i]) && (chctx->sumLenArr[i] > 0))
833 chctx->skipFlagRaw[i] = 1;
836 imc_get_skip_coeff(q, chctx);
838 for (i = 0; i < BANDS; i++) {
839 chctx->flcoeffs6[i] = chctx->flcoeffs1[i];
840 /* band has flag set and at least one coded coefficient */
841 if (chctx->bandFlagsBuf[i] && (band_tab[i + 1] - band_tab[i]) != chctx->skipFlagCount[i]) {
842 chctx->flcoeffs6[i] *= q->sqrt_tab[ band_tab[i + 1] - band_tab[i]] /
843 q->sqrt_tab[(band_tab[i + 1] - band_tab[i] - chctx->skipFlagCount[i])];
847 /* calculate bits left, bits needed and adjust bit allocation */
850 for (i = 0; i < BANDS; i++) {
851 if (chctx->bandFlagsBuf[i]) {
852 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
853 if (chctx->skipFlags[j]) {
854 summer += chctx->CWlengthT[j];
855 chctx->CWlengthT[j] = 0;
858 bits += chctx->skipFlagBits[i];
859 summer -= chctx->skipFlagBits[i];
862 imc_adjust_bit_allocation(q, chctx, summer);
865 static int imc_decode_block(AVCodecContext *avctx, IMCContext *q, int ch)
867 int stream_format_code;
868 int imc_hdr, i, j, ret;
871 int counter, bitscount;
872 IMCChannel *chctx = q->chctx + ch;
875 /* Check the frame header */
876 imc_hdr = get_bits(&q->gb, 9);
877 if (imc_hdr & 0x18) {
878 av_log(avctx, AV_LOG_ERROR, "frame header check failed!\n");
879 av_log(avctx, AV_LOG_ERROR, "got %X.\n", imc_hdr);
880 return AVERROR_INVALIDDATA;
882 stream_format_code = get_bits(&q->gb, 3);
884 if (stream_format_code & 0x04)
885 chctx->decoder_reset = 1;
887 if (chctx->decoder_reset) {
888 for (i = 0; i < BANDS; i++)
889 chctx->old_floor[i] = 1.0;
890 for (i = 0; i < COEFFS; i++)
891 chctx->CWdecoded[i] = 0;
892 chctx->decoder_reset = 0;
895 flag = get_bits1(&q->gb);
896 if (stream_format_code & 0x1)
897 imc_read_level_coeffs_raw(q, stream_format_code, chctx->levlCoeffBuf);
899 imc_read_level_coeffs(q, stream_format_code, chctx->levlCoeffBuf);
901 if (stream_format_code & 0x1)
902 imc_decode_level_coefficients_raw(q, chctx->levlCoeffBuf,
903 chctx->flcoeffs1, chctx->flcoeffs2);
904 else if (stream_format_code & 0x4)
905 imc_decode_level_coefficients(q, chctx->levlCoeffBuf,
906 chctx->flcoeffs1, chctx->flcoeffs2);
908 imc_decode_level_coefficients2(q, chctx->levlCoeffBuf, chctx->old_floor,
909 chctx->flcoeffs1, chctx->flcoeffs2);
911 for(i=0; i<BANDS; i++) {
912 if(chctx->flcoeffs1[i] > INT_MAX) {
913 av_log(avctx, AV_LOG_ERROR, "scalefactor out of range\n");
914 return AVERROR_INVALIDDATA;
918 memcpy(chctx->old_floor, chctx->flcoeffs1, 32 * sizeof(float));
921 if (stream_format_code & 0x1) {
922 for (i = 0; i < BANDS; i++) {
923 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
924 chctx->bandFlagsBuf[i] = 0;
925 chctx->flcoeffs3[i] = chctx->flcoeffs2[i] * 2;
926 chctx->flcoeffs5[i] = 1.0;
929 for (i = 0; i < BANDS; i++) {
930 if (chctx->levlCoeffBuf[i] == 16) {
931 chctx->bandWidthT[i] = 0;
934 chctx->bandWidthT[i] = band_tab[i + 1] - band_tab[i];
937 memset(chctx->bandFlagsBuf, 0, BANDS * sizeof(int));
938 for (i = 0; i < BANDS - 1; i++)
939 if (chctx->bandWidthT[i])
940 chctx->bandFlagsBuf[i] = get_bits1(&q->gb);
942 imc_calculate_coeffs(q, chctx->flcoeffs1, chctx->flcoeffs2,
943 chctx->bandWidthT, chctx->flcoeffs3,
948 /* first 4 bands will be assigned 5 bits per coefficient */
949 if (stream_format_code & 0x2) {
952 chctx->bitsBandT[0] = 5;
953 chctx->CWlengthT[0] = 5;
954 chctx->CWlengthT[1] = 5;
955 chctx->CWlengthT[2] = 5;
956 for (i = 1; i < 4; i++) {
957 if (stream_format_code & 0x1)
960 bits = (chctx->levlCoeffBuf[i] == 16) ? 0 : 5;
961 chctx->bitsBandT[i] = bits;
962 for (j = band_tab[i]; j < band_tab[i + 1]; j++) {
963 chctx->CWlengthT[j] = bits;
968 if (avctx->codec_id == AV_CODEC_ID_IAC) {
969 bitscount += !!chctx->bandWidthT[BANDS - 1];
970 if (!(stream_format_code & 0x2))
974 if ((ret = bit_allocation(q, chctx, stream_format_code,
975 512 - bitscount - get_bits_count(&q->gb),
977 av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
978 chctx->decoder_reset = 1;
982 if (stream_format_code & 0x1) {
983 for (i = 0; i < BANDS; i++)
984 chctx->skipFlags[i] = 0;
986 imc_refine_bit_allocation(q, chctx);
989 for (i = 0; i < BANDS; i++) {
990 chctx->sumLenArr[i] = 0;
992 for (j = band_tab[i]; j < band_tab[i + 1]; j++)
993 if (!chctx->skipFlags[j])
994 chctx->sumLenArr[i] += chctx->CWlengthT[j];
997 memset(chctx->codewords, 0, sizeof(chctx->codewords));
999 imc_get_coeffs(avctx, q, chctx);
1001 if (inverse_quant_coeff(q, chctx, stream_format_code) < 0) {
1002 av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
1003 chctx->decoder_reset = 1;
1004 return AVERROR_INVALIDDATA;
1007 memset(chctx->skipFlags, 0, sizeof(chctx->skipFlags));
1009 imc_imdct256(q, chctx, avctx->channels);
1014 static int imc_decode_frame(AVCodecContext *avctx, void *data,
1015 int *got_frame_ptr, AVPacket *avpkt)
1017 AVFrame *frame = data;
1018 const uint8_t *buf = avpkt->data;
1019 int buf_size = avpkt->size;
1022 IMCContext *q = avctx->priv_data;
1024 LOCAL_ALIGNED_16(uint16_t, buf16, [IMC_BLOCK_SIZE / 2 + FF_INPUT_BUFFER_PADDING_SIZE/2]);
1026 if (buf_size < IMC_BLOCK_SIZE * avctx->channels) {
1027 av_log(avctx, AV_LOG_ERROR, "frame too small!\n");
1028 return AVERROR_INVALIDDATA;
1031 /* get output buffer */
1032 frame->nb_samples = COEFFS;
1033 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1036 for (i = 0; i < avctx->channels; i++) {
1037 q->out_samples = (float *)frame->extended_data[i];
1039 q->bdsp.bswap16_buf(buf16, (const uint16_t *) buf, IMC_BLOCK_SIZE / 2);
1041 init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
1043 buf += IMC_BLOCK_SIZE;
1045 if ((ret = imc_decode_block(avctx, q, i)) < 0)
1049 if (avctx->channels == 2) {
1050 q->fdsp->butterflies_float((float *)frame->extended_data[0],
1051 (float *)frame->extended_data[1], COEFFS);
1056 return IMC_BLOCK_SIZE * avctx->channels;
1059 static av_cold int imc_decode_close(AVCodecContext * avctx)
1061 IMCContext *q = avctx->priv_data;
1063 ff_fft_end(&q->fft);
1069 static av_cold void flush(AVCodecContext *avctx)
1071 IMCContext *q = avctx->priv_data;
1073 q->chctx[0].decoder_reset =
1074 q->chctx[1].decoder_reset = 1;
1077 #if CONFIG_IMC_DECODER
1078 AVCodec ff_imc_decoder = {
1080 .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
1081 .type = AVMEDIA_TYPE_AUDIO,
1082 .id = AV_CODEC_ID_IMC,
1083 .priv_data_size = sizeof(IMCContext),
1084 .init = imc_decode_init,
1085 .close = imc_decode_close,
1086 .decode = imc_decode_frame,
1088 .capabilities = CODEC_CAP_DR1,
1089 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1090 AV_SAMPLE_FMT_NONE },
1093 #if CONFIG_IAC_DECODER
1094 AVCodec ff_iac_decoder = {
1096 .long_name = NULL_IF_CONFIG_SMALL("IAC (Indeo Audio Coder)"),
1097 .type = AVMEDIA_TYPE_AUDIO,
1098 .id = AV_CODEC_ID_IAC,
1099 .priv_data_size = sizeof(IMCContext),
1100 .init = imc_decode_init,
1101 .close = imc_decode_close,
1102 .decode = imc_decode_frame,
1104 .capabilities = CODEC_CAP_DR1,
1105 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1106 AV_SAMPLE_FMT_NONE },